Conrad Wasko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6782108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking Total Precipitable Water to Precipitation Extremes Globally. Earth's Future, 2022, 10, .	6.3	22
2	Do Longer Dry Spells Associated With Warmer Years Compound the Stress on Global Water Resources?. Earth's Future, 2022, 10, .	6.3	13
3	Understanding event runoff coefficient variability across Australia using the <i><scp>hydroEvents</scp> R</i> package. Hydrological Processes, 2022, 36, .	2.6	13
4	Automating rainfall recording: Ensuring homogeneity when instruments change. Journal of Hydrology, 2022, 609, 127758.	5.4	5
5	A global assessment of change in flood volume with surface air temperature. Advances in Water Resources, 2022, 165, 104241.	3.8	6
6	Rethinking urban storm water management through resilience – The case for using green infrastructure in our warming world. Cities, 2022, 128, 103789.	5.6	13
7	Understanding trends in hydrologic extremes across Australia. Journal of Hydrology, 2021, 593, 125877.	5.4	32
8	Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2021, 2, 107-122.	29.7	279
9	Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190542.	3.4	56
10	Estimating design hydrologic extremes in a warming climate: alternatives, uncertainties and the way forward. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190623.	3.4	14
11	Intensification of short-duration rainfall extremes and implications for flood risk: current state of the art and future directions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190541.	3.4	44
12	Review: Can temperature be used to inform changes to flood extremes with global warming?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190551.	3.4	19
13	Incorporating climate change in flood estimation guidance. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190548.	3.4	44
14	Implications of event-based loss model structure on simulating large floods. Journal of Hydrology, 2021, 595, 126008.	5.4	4
15	Decreases in relative humidity across Australia. Environmental Research Letters, 2021, 16, 074023.	5.2	18
16	Humans, climate and streamflow. Nature Climate Change, 2021, 11, 725-726.	18.8	31
17	Eliminating the "hook―in Precipitation-Temperature Scaling. Journal of Climate, 2021, , 1-42.	3.2	13
18	Linking temperature to catastrophe damages from hydrologic and meteorological extremes. Journal of Hydrology, 2021, 602, 126731.	5.4	14

2

CONRAD WASKO

#	Article	IF	CITATIONS
19	Evidence of shorter more extreme rainfalls and increased flood variability under climate change. Journal of Hydrology, 2021, 603, 126994.	5.4	70
20	AWAPer: An R package for area weighted catchment daily meteorological data anywhere within Australia. Hydrological Processes, 2020, 34, 1301-1306.	2.6	15
21	An Improved Covariate for Projecting Future Rainfall Extremes?. Water Resources Research, 2020, 56, e2019WR026924.	4.2	32
22	Resolving Inconsistencies in Extreme Precipitationâ€Temperature Sensitivities. Geophysical Research Letters, 2020, 47, e2020GL089723.	4.0	43
23	Trends in Global Flood and Streamflow Timing Based on Local Water Year. Water Resources Research, 2020, 56, e2020WR027233.	4.2	50
24	Changes in Antecedent Soil Moisture Modulate Flood Seasonality in a Changing Climate. Water Resources Research, 2020, 56, e2019WR026300.	4.2	81
25	Impact of atmospheric circulation on the rainfall-temperature relationship in Australia. Environmental Research Letters, 2020, 15, 094098.	5.2	21
26	The local dependency of precipitation on historical changes in temperature. Climatic Change, 2019, 156, 105-120.	3.6	28
27	The relationship of atmospheric air temperature and dew point temperature to extreme rainfall. Environmental Research Letters, 2019, 14, 074025.	5.2	39
28	Sensitivity of Australian roof drainage structures to design rainfall variability and climatic change. Building and Environment, 2019, 161, 106230.	6.9	11
29	Atmospheric Moisture Measurements Explain Increases in Tropical Rainfall Extremes. Geophysical Research Letters, 2019, 46, 1375-1382.	4.0	76
30	Can antecedent moisture conditions modulate the increase in flood risk due to climate change in urban catchments?. Journal of Hydrology, 2019, 571, 11-20.	5.4	41
31	Influence of changes in rainfall and soil moisture on trends in flooding. Journal of Hydrology, 2019, 575, 432-441.	5.4	157
32	Increases in temperature do not translate to increased flooding. Nature Communications, 2019, 10, 5676.	12.8	37
33	Trends and Changes in Streamflow With Climate. , 2019, , 275-304.		4
34	lf Precipitation Extremes Are Increasing, Why Aren't Floods?. Water Resources Research, 2018, 54, 8545-8551.	4.2	299
35	Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia. Environmental Research Letters, 2018, 13, 074031.	5.2	66
36	Increase in flood risk resulting from climate change in a developed urban watershed – the role of storm temporal patterns. Hydrology and Earth System Sciences, 2018, 22, 2041-2056.	4.9	144

CONRAD WASKO

#	Article	IF	CITATIONS
37	Can Regional Climate Modeling Capture the Observed Changes in Spatial Organization of Extreme Storms at Higher Temperatures?. Geophysical Research Letters, 2018, 45, 4475-4484.	4.0	18
38	Continuous rainfall generation for a warmer climate using observed temperature sensitivities. Journal of Hydrology, 2017, 544, 575-590.	5.4	51
39	Global assessment of flood and storm extremes with increased temperatures. Scientific Reports, 2017, 7, 7945.	3.3	170
40	Reduced spatial extent of extreme storms at higher temperatures. Geophysical Research Letters, 2016, 43, 4026-4032.	4.0	129
41	A quasiâ€global assessment of changes in remotely sensed rainfall extremes with temperature. Geophysical Research Letters, 2016, 43, 12,659.	4.0	48
42	A comprehensive urban floodplain dataset for model benchmarking. International Journal of River Basin Management, 2016, 14, 345-356.	2.7	11
43	Representing lowâ€frequency variability in continuous rainfall simulations: A hierarchical random <scp>B</scp> artlett <scp>L</scp> ewis continuous rainfall generation model. Water Resources Research, 2015, 51, 9995-10007.	4.2	37
44	Does storm duration modulate the extreme precipitation-temperature scaling relationship?. Geophysical Research Letters, 2015, 42, 8783-8790.	4.0	100
45	Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nature Geoscience, 2015, 8, 527-529.	12.9	161
46	Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resources Research, 2014, 50, 3608-3614.	4.2	127
47	Improved spatial prediction: A combinatorial approach. Water Resources Research, 2013, 49, 3927-3935.	4.2	26
48	Correction to "Effect of solar variability on atmospheric moisture storage― Geophysical Research Letters, 2009, 36, n/a-n/a.	4.0	6
49	Effect of solar variability on atmospheric moisture storage. Geophysical Research Letters, 2009, 36, .	4.0	7