
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6782067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses. Journal of Alloys and Compounds, 2018, 765, 451-458.	5.5	141
2	Investigations of radiation shielding using Monte Carlo method and elastic properties of PbO-SiO2-B2O3-Na2O glasses. Current Applied Physics, 2018, 18, 717-727.	2.4	118
3	Gamma ray shielding properties of PbO-B2O3-P2O5 doped with WO3. Journal of Alloys and Compounds, 2017, 708, 294-300.	5.5	114
4	Radiation shielding and mechanical properties of Al2O3-Na2O-B2O3-Bi2O3 glasses using MCNPX Monte Carlo code. Materials Chemistry and Physics, 2019, 223, 209-219.	4.0	101
5	Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiation Physics and Chemistry, 2016, 120, 33-37.	2.8	99
6	Alteration of optical, structural, mechanical durability and nuclear radiation attenuation properties of barium borosilicate glasses through BaO reinforcement: Experimental and numerical analyses. Ceramics International, 2021, 47, 5587-5596.	4.8	95
7	Radiation shielding features using MCNPX code and mechanical properties of the PbO Na2O B2O3CaO Al2O3SiO2 glass systems. Composites Part B: Engineering, 2019, 167, 231-240.	12.0	89
8	Gamma-ray shielding properties of zinc oxide soda lime silica glasses. Journal of Materials Science: Materials in Electronics, 2017, 28, 4064-4074.	2.2	79
9	Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: An experimental investigation. Radiation Physics and Chemistry, 2021, 180, 109281.	2.8	73
10	Effect of gamma irradiation on structural, electrical and optical properties of nanostructure thin films of nickel phthalocyanine. Synthetic Metals, 2016, 215, 200-206.	3.9	72
11	Effect of Bi2O3 in borate-tellurite-silicate glass system for development of gamma-rays shielding materials. Journal of Alloys and Compounds, 2017, 695, 302-310.	5.5	68
12	Structural, mechanical and radiation shielding properties of newly developed tungsten lithium borate glasses: An experimental study. Journal of Non-Crystalline Solids, 2020, 532, 119882.	3.1	68
13	Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: An experimental and simulation study. Optical Materials, 2021, 114, 110942.	3.6	68
14	Optical and nuclear radiation shielding properties of zinc borate glasses doped with lanthanum oxide. Journal of Non-Crystalline Solids, 2020, 543, 120151.	3.1	68
15	Binary B2O3–Bi2O3 glasses: scrutinization of directly and indirectly ionizing radiations shielding abilities. Journal of Materials Research and Technology, 2020, 9, 14549-14567.	5.8	63
16	Effect of ErCl 3 in gamma and neutron parameters for different concentration of ErCl 3 -SiO 2 (EDFA) for the signal protection from nuclear radiation. Journal of Alloys and Compounds, 2017, 698, 234-240.	5.5	61
17	Study of gamma radiation shielding properties of \$\$mathbf{ZnO {-}{} mathbf TeO }_mathbf{2}\$\$ ZnO - T eO 2. Bulletin of Materials Science, 2017, 40, 841-857.	1.7	57
18	Newly developed tellurium oxide glasses for nuclear shielding applications: An extended investigation. Journal of Non-Crystalline Solids, 2020, 528, 119763.	3.1	56

#	Article	IF	CITATIONS
19	Assessment of radio-protective properties of some anti-inflammatory drugs. Progress in Nuclear Energy, 2017, 100, 297-308.	2.9	55
20	Investigation of Gamma Radiation Shielding Properties of Some Zinc Tellurite Glasses. Journal of Physical Science, 2016, 27, 97-119.	0.9	54
21	Multi-objective optimization strategies for radiation shielding performance of BZBB glasses using Bi2O3: A FLUKA Monte Carlo code calculations. Journal of Materials Research and Technology, 2020, 9, 12335-12345.	5.8	53
22	Ytterbium (III) oxide reinforced novel TeO2–B2O3–V2O5 glass system: Synthesis and optical, structural, physical and thermal properties. Ceramics International, 2021, 47, 18517-18531.	4.8	52
23	The evolution of gamma-rays sensing properties of pure and doped phthalocyanine. Progress in Nuclear Energy, 2017, 100, 276-282.	2.9	46
24	Fabrication, FTIR, physical characteristics and photon shielding efficacy of CeO2 /sand reinforced borate glasses: Experimental and simulation studies. Radiation Physics and Chemistry, 2022, 191, 109837.	2.8	46
25	A detailed investigation on highly dense CuZr bulk metallic glasses for shielding purposes. Open Chemistry, 2022, 20, 69-80.	1.9	45
26	A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: Synthesis, optical, physical and nuclear radiation shielding properties. Ceramics International, 2021, 47, 2572-2583.	4.8	44
27	PbO–Sb2O3–B2O3–CuO glassy system: Evaluation of optical, gamma and neutron shielding properties. Materials Chemistry and Physics, 2021, 258, 123937.	4.0	43
28	The impact of samarium (III) oxide on structural, optical and radiation shielding properties of thallium-borate glasses: Experimental and numerical investigation. Optical Materials, 2021, 114, 110948.	3.6	40
29	Control optical characterizations of Ta+5–doped B2O3–Si2O–CaO–BaO glasses by irradiation dose. Optical Materials, 2021, 112, 110613.	3.6	39
30	Gamma, neutron, and heavy charged ion shielding properties of Er ³⁺ -doped and Sm ³⁺ -doped zinc borate glasses. Open Chemistry, 2022, 20, 130-145.	1.9	38
31	Lithium-fluoro borotellurite glasses: Nonlinear optical, mechanical characteristics and gamma radiation protection characteristics. Radiation Physics and Chemistry, 2022, 190, 109819.	2.8	37
32	Glass fabrication using ceramic and porcelain recycled waste and lithium niobate: physical, structural, optical and nuclear radiation attenuation properties. Journal of Materials Research and Technology, 2021, 15, 4074-4085.	5.8	36
33	Experimental investigations on elastic and radiation shielding parameters of WO3-B2O3-TeO2 glasses. Journal of Non-Crystalline Solids, 2020, 544, 120207.	3.1	35
34	Physical, thermal, optical, structural and nuclear radiation shielding properties of Sm2O3 reinforced borotellurite glasses. Ceramics International, 2021, 47, 6154-6168.	4.8	35
35	An extended assessment of natural radioactivity in the sediments of the mid-region of the Egyptian Red Sea coast. Marine Pollution Bulletin, 2021, 171, 112658.	5.0	35
36	Fabrication, physical characteristic, and gamma-photon attenuation parameters of newly developed molybdenum reinforced bismuth borate glasses. Physica Scripta, 2020, 95, 115703.	2.5	34

#	Article	IF	CITATIONS
37	Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites. Journal of Materials Science: Materials in Electronics, 2020, 31, 20210-20222.	2.2	33
38	Optical, structural and gamma ray shielding properties of dolomite doped lithium borate glasses for radiation shielding applications. Journal of Non-Crystalline Solids, 2020, 539, 120049.	3.1	33
39	An experimental evaluation of CdO/PbO-B2O3 glasses containing neodymium oxide: Structure, electrical conductivity, and gamma-ray resistance. Materials Research Bulletin, 2022, 151, 111828.	5.2	33
40	Enhancement of Gamma-ray Shielding Properties in Cobalt-Doped Heavy Metal Borate Glasses: The Role of Lanthanum Oxide Reinforcement. Materials, 2021, 14, 7703.	2.9	33
41	A Systematical Characterization of TeO2–V2O5 Glass System Using Boron (III) Oxide and Neodymium (III) Oxide Substitution: Resistance Behaviors against Ionizing Radiation. Applied Sciences (Switzerland), 2021, 11, 3035.	2.5	32
42	Fabrication, structural, optical, physical and radiation shielding characterization of indium (III) oxide reinforced 85TeO2-(15–x)ZnO-xln2O3 glass system. Ceramics International, 2021, 47, 27305-27315.	4.8	32
43	Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2–B2O3–(20-x)Li2O-xGd2O3 glass system. Journal of Alloys and Compounds, 2021, 877, 160302.	5.5	32
44	A closer-look on Copper(II) oxide reinforced Calcium-Borate glasses: Fabrication and multiple experimental assessment on optical, structural, physical, and experimental neutron/gamma shielding properties. Ceramics International, 2022, 48, 6780-6791.	4.8	32
45	Nb2O5-Li2O-Bi2O3-B2O3 novel glassy system: evaluation of optical, mechanical, and gamma shielding parameters. Journal of Materials Science: Materials in Electronics, 2020, 31, 22039-22056.	2.2	31
46	Prediction of mechanical and radiation parameters of glasses with high Bi2O3 concentration. Results in Physics, 2021, 21, 103839.	4.1	31
47	Material characterization of WO3/Bi2O3 substituted calcium-borosilicate glasses: Structural, physical, mechanical properties and gamma-ray resistance competencies. Journal of Alloys and Compounds, 2021, 888, 161419.	5.5	31
48	Experimental and FLUKA evaluation on structure and optical properties and Î ³ -radiation shielding capacity of bismuth borophosphate glasses. Progress in Nuclear Energy, 2022, 148, 104219.	2.9	31
49	Probing of nuclear radiation attenuation and mechanical features for lithium bismuth borate glasses with improving Bi2O3 content for B2O3Â+ÂLi2O amounts. Results in Physics, 2021, 25, 104246.	4.1	30
50	In-depth survey of nuclear radiation attenuation efficacies for high density bismuth lead borate glass system. Results in Physics, 2021, 23, 104030.	4.1	27
51	Cerium (IV) oxide reinforced Lithium-Borotellurite glasses: A characterization study through physical, optical, structural and radiation shielding properties. Ceramics International, 2022, 48, 1152-1165.	4.8	27
52	Shielding features, to non-ionizing and ionizing photons, of FeCr-based composites. Applied Radiation and Isotopes, 2021, 167, 109470.	1.5	26
53	Illustration of distinct nuclear radiation transmission factors combined with physical and elastic characteristics of barium boro-bismuthate glasses. Results in Physics, 2021, 31, 105067.	4.1	26
54	Gamma, Fast Neutron, Proton, and Alpha Shielding Properties of Borate Glasses: A Closer Look on Lead (II) Oxide and Bismuth (III) Oxide Reinforcement. Applied Sciences (Switzerland), 2021, 11, 6837.	2.5	25

#	Article	IF	CITATIONS
55	Heavy metal oxide (HMO) glasses as an effective member of glass shield family: A comprehensive characterization on gamma ray shielding properties of various structures. Journal of Materials Research and Technology, 2022, 18, 231-244.	5.8	23
56	Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study. Materials, 2021, 14, 6668.	2.9	22
57	Tailoring variations in the linear optical and radiation shielding parameters of PVA polymeric composite films doped with rare-earth elements. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	22
58	Investigations of mechanical and radiation shielding properties of BaTiO3-modified cadmium alkali borate glass. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	22
59	Exploring the FTIR, Optical and Nuclear Radiation Shielding Properties of Samarium-Borate Glass: A Characterization through Experimental and Simulation Methods. Nanomaterials, 2021, 11, 1713.	4.1	21
60	Iron (III) oxide doped lithium borate glasses: structural and charged particles/photon shielding properties. Journal of Non-Crystalline Solids, 2020, 546, 120281.	3.1	20
61	The effect of composition and ^ĵ -irradiation on the Vickers hardness, structural and optical properties of xLiNbO3-25CaO-35PbO-(40-x) waste systems. Ceramics International, 2021, 47, 18751-18760.	4.8	20
62	Novel Cu/Zn Reinforced Polymer Composites: Experimental Characterization for Radiation Protection Efficiency (RPE) and Shielding Properties for Alpha, Proton, Neutron, and Gamma Radiations. Polymers, 2021, 13, 3157.	4.5	19
63	Characterization of optical and radiation shielding behaviors of ferric oxide reinforced bismuth borate glass. Physica Scripta, 2021, 96, 075801.	2.5	18
64	Erbium (III)- and Terbium (III)-containing silicate-based bioactive glass powders: physical, structural and nuclear radiation shielding characteristics. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	18
65	Natural Radioactivity, Radiological Hazard and Petrographical Studies on Aswan Granites Used as Building Materials in Egypt. Applied Sciences (Switzerland), 2021, 11, 6471.	2.5	18
66	Cadmium oxide reinforced 46V2O5–46P2O5–(8â^'x)B2O3–xCdO semiconducting oxide glasses and resistance behaviors against ionizing gamma rays. Journal of Materials Research and Technology, 2021, 13, 2336-2349.	5.8	18
67	B2O3-Bi2O3-Li2O3-Cr2O3 glasses: fabrication, structure, mechanical, and gamma radiation shielding qualities. Journal of the Australian Ceramic Society, 2021, 57, 1057-1069.	1.9	17
68	Novel HMO-Glasses with Sb2O3 and TeO2 for Nuclear Radiation Shielding Purposes: A Comparative Analysis with Traditional and Novel Shields. Materials, 2021, 14, 4330.	2.9	17
69	Exploration of material characteristics of tantalum borosilicate glasses by experimental, simulation, and theoretical methods. Journal of Physics and Chemistry of Solids, 2021, 159, 110282.	4.0	17
70	Mechanical properties, elastic moduli, transmission factors, and gamma-ray-shielding performances of Bi ₂ O ₃ –P ₂ O ₅ –B ₂ O ₃ –V <su quaternary glass system. Open Chemistry, 2022, 20, 314-329.</su 	b> 1 %/sub>	•O ¹⁷ sub>5
71	WS2/bioactive glass composites: Fabrication, structural, mechanical and radiation attenuation properties. Ceramics International, 2021, 47, 29739-29747.	4.8	16
72	Natural radionuclide concentrations in granite rocks in Aswan and Central-Southern Eastern Desert, Egypt and their radiological implications. Radiation Protection Dosimetry, 2012, 150, 488-495.	0.8	15

#	Article	IF	CITATIONS
73	Radiometric assessment of natural radioactivity levels of agricultural soil samples collected in Dakahlia, Egypt. Radiation Protection Dosimetry, 2013, 156, 59-67.	0.8	15
74	Newly Developed Vanadium-Based Glasses and Their Potential for Nuclear Radiation Shielding Aims: A Monte Carlo Study on Gamma Ray Attenuation Parameters. Materials, 2021, 14, 3897.	2.9	15
75	Analysis of physical and mechanical traits and nuclear radiation transmission aspects of Gallium(III) trioxide constituting Bi2O3-B2O3 glasses. Results in Physics, 2021, 30, 104899.	4.1	15
76	Transmission Factor (TF) Behavior of Bi2O3–TeO2–Na2O–TiO2–ZnO Glass System: A Monte Carlo Simulation Study. Sustainability, 2022, 14, 2893.	3.2	15
77	Synthesis and characterization of vanadium(V) oxide reinforced calcium-borate glasses: Experimental assessments on Al2O3/BaO2/ZnO contributions. Journal of Non-Crystalline Solids, 2022, 580, 121397.	3.1	14
78	Gallium (III) oxide reinforced novel heavy metal oxide (HMO) glasses: A focusing study on synthesis, optical and gamma-ray shielding properties. Ceramics International, 2022, 48, 14261-14272.	4.8	14
79	Measurement of natural radioactivity in granites and its quartz-bearing gold at El-Fawakhir area (Central Eastern Desert), Egypt. Journal of Radiation Research and Applied Sciences, 2015, 8, 393-398.	1.2	13
80	Electrical and mechanical properties of Li2O–BaO–B2O3 glass system. Journal of Non-Crystalline Solids, 2015, 429, 148-152.	3.1	13
81	Mechanical Properties, Elastic Moduli, and Gamma Radiation Shielding Properties of Some Zinc Sodium Tetraborate Glasses: A Closer Look at ZnO/CaO Substitution. Journal of Electronic Materials, 2021, 50, 6844-6853.	2.2	13
82	A Closer Look on Nuclear Radiation Shielding Properties of Eu3+ Doped Heavy Metal Oxide Glasses: Impact of Al2O3/PbO Substitution. Materials, 2021, 14, 5334.	2.9	12
83	Statistical analysis on the radiological assessment and geochemical studies of granite rocks in the north of Um Taghir area, Eastern Desert, Egypt. Open Chemistry, 2022, 20, 254-266.	1.9	12
84	Synthesis and structural, electrical, optical, and gamma-ray attenuation properties of ZnO-multi-walled carbon nanotubes (MWCNT) composite separately incorporated with CdO, TiO2, and Fe2O3. Ceramics International, 2022, 48, 16251-16262.	4.8	12
85	Nuclear shielding performances of borate/sodium/potassium glasses doped with Sm3+ ions. Journal of Materials Research and Technology, 2022, 18, 1424-1435.	5.8	12
86	Effect of PbO on the elastic and radiation shielding properties of B2O3–Bi2O3–Al2O3–CuO glasses. Radiation Physics and Chemistry, 2022, 196, 110129.	2.8	12
87	A comparative study of the radiological hazard in sediments samples from drinking water purification plants supplied from different sources. Journal of Radiation Research and Applied Sciences, 2014, 7, 80-94.	1.2	11
88	Radiological impacts of natural radioactivity in phosphate rocks from El-Sibaiya and Red Sea coast mines, Egypt. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 53-61.	1.5	11
89	Variation in the structure and optical properties of gamma-irradiated Vanadyl 2,3-naphthalocyanine (VONc) nanostructure films. Radiation Physics and Chemistry, 2018, 148, 100-105.	2.8	11
90	Effect of Ag2O substituted in bioactive glasses: a synergistic relationship between antibacterial zone and radiation attenuation properties. Journal of Materials Research and Technology, 2021, 13, 2194-2201.	5.8	11

#	Article	IF	CITATIONS
91	Optical and physical behaviours of newly developed germanium-tellurium (GeTe) glasses: a comprehensive experimental and in-silico study with commercial glasses and ordinary shields. Journal of Materials Science: Materials in Electronics, 2021, 32, 22953-22973.	2.2	11
92	Fabrication, physical, structural, and optical investigation of cadmium lead-borate glasses doped with Nd3+ ions: AnAexperimental study. Journal of Materials Science: Materials in Electronics, 2022, 33, 1877-1887.	2.2	11
93	A thorough examination of gadolinium (III)-containing silicate bioactive glasses: synthesis, physical, mechanical, elastic and radiation attenuation properties. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	11
94	Proton-induced production of residual radionuclides in natRe up to 2590MeV. Nuclear Instruments & Methods in Physics Research B, 2013, 298, 19-32.	1.4	10
95	An experimental investigation on structural, mechanical and physical properties of Strontium–Silicon Borate glass system through Bismuth-Aluminum substitution. Optical Materials, 2021, 117, 111124.	3.6	10
96	The Impact of PbF2-Based Glasses on Radiation Shielding and Mechanical Concepts: An Extensive Theoretical and Monte Carlo Simulation Study. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3934-3942.	3.7	10
97	An in-depth investigation from mechanical durability to structural and nuclear radiation attenuation properties: B ₂ O ₃ –Na ₂ O–Bi ₂ O ₃ –Nb ₂ C glasses experience. Physica Scripta. 2020. 95. 105701.)<รัซอ>5 </td <td>sub></td>	sub>
98	Mechanical, structural and nuclear radiation shielding competencies of some tellurite glasses reinforced with molybdenum trioxide. Physica Scripta, 2021, 96, 045702.	2.5	9
99	Multiple characterization of some glassy-alloys as photon and neutron shields: In-silico Monte Carlo investigation. Materials Research Express, 2021, 8, 035202.	1.6	9
100	In-Silico Monte Carlo Simulation Trials for Investigation of V2O5 Reinforcement Effect on Ternary Zinc Borate Glasses: Nuclear Radiation Shielding Dynamics. Materials, 2021, 14, 1158.	2.9	9
101	Developed selenium dioxide-based ceramics for advanced shielding applications: Au2O3 impact on nuclear radiation attenuation. Results in Physics, 2021, 24, 104099.	4.1	9
102	Fast Neutron and Gamma-Ray Attenuation Properties of Some HMO Tellurite-Tungstate-Antimonate Glasses: Impact of Sm3+ Ions. Applied Sciences (Switzerland), 2021, 11, 10168.	2.5	9
103	Fabrication of newly developed tungsten III-oxide glass family: Physical, structural, mechanical, radiation shielding effectiveness. Optik, 2022, 259, 169025.	2.9	9
104	Fabrications a new family of samarium lead phosphate glasses, determination electrical, structural and optical properties under effect of different gamma doses. Optik, 2022, 249, 168266.	2.9	8
105	Structural characterization and gamma-ray attenuation properties of rice-like α-TeO2 crystalline microstructures (CMS) grown rapidly on free surface of tellurite-based glasses. Journal of Materials Research and Technology, 2022, 16, 1179-1189.	5.8	8
106	Evaluating the optical and gamma-ray protection properties of bismo-tellurite sodium titanium zinc glasses. Journal of the Australian Ceramic Society, 2022, 58, 851-866.	1.9	8
107	Structural, optical, mechanical and simulating the gamma-ray shielding competencies of novel cadmium bismo-borate glasses: The impact of bismuth oxide. Journal of Materials Science: Materials in Electronics, 2021, 32, 24381-24393.	2.2	7
108	Impact of Eye and Breast Shielding on Organ Doses During Cervical Spine Radiography: Design and Validation of MIRD Computational Phantom. Frontiers in Public Health, 2021, 9, 751577.	2.7	7

#	Article	IF	CITATIONS
109	Dielectric, structural, optical and radiation shielding properties of newly synthesized CaO–SiO2–Na2O–Al2O3 glasses: experimental and theoretical investigations on impact of Tungsten(III) oxide. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	7
110	Multiple Assessments on the Gamma-Ray Protection Properties of Niobium-Doped Borotellurite Glasses: A Wide Range Investigation Using Monte Carlo Simulations. Science and Technology of Nuclear Installations, 2022, 2022, 1-17.	0.8	7
111	Characterization of synthesized xBaO-(40-x)Li2O-60B2O3 glass system: a multi-dimensional research on optical and physical properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 16990-17008.	2.2	6
112	Thermal and Optical Characteristics of Synthesized Sand/CeO2 Glasses: Experimental Approach. Journal of Electronic Materials, 2022, 51, 2070-2076.	2.2	6
113	Molecular Polar Surface Area, Total Solvent Accessible Surface Area (SASA), Heat of Formation, and Gamma-Ray Attenuation Properties of Some Flavonoids. Frontiers in Physics, 2022, 10, .	2.1	6
114	Surface hardness, thermal, optical, and photon attenuation coefficients assessment for dysprosium-doped tellurite glasses. Journal of Rare Earths, 2023, 41, 1083-1090.	4.8	6
115	Effects of Nd2O3 substitution on the mechanical and radiation shielding properties of alumino-borobismuthate glasses. European Physical Journal Plus, 2021, 136, 1.	2.6	5
116	Investigation of the elastic moduli, optical characteristics, and ionizing radiation attenuation capacity of specific strontium borosilicateÂglasses. Journal of the Australian Ceramic Society, 2022, 58, 495-510.	1.9	5
117	Radio-protective properties of some sunblock agents against ionizing radiation. Progress in Nuclear Energy, 2018, 107, 184-192.	2.9	4
118	Structural, surface morphology and radiation shielding properties of barium ferrite powder. Physica Scripta, 2021, 96, 095805.	2.5	4
119	Municipal waste slag for dyes photocatalytic and metal recovery applications through structural analysis and experimental characterization. International Journal of Energy Research, 2021, 45, 17691-17708.	4.5	4
120	Tailoring the structuralism in xBaO·(30–x)Li ₂ O·70B ₂ O ₃ glasses for highly efficient shields of Gamma radiation and neutrons attenuators. Physica Scripta, 2021, 96, 125308.	2.5	4
121	Assessment of absorbed dose for Zr-89, Sm-153 and Lu-177 medical radioisotopes: IDAC-Dose2.1 and OLINDA experience. Applied Radiation and Isotopes, 2021, 176, 109841.	1.5	4
122	Trace elements assessment and natural radioactivity levels of infant formulas consumed in Egypt. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330, 1127-1136.	1.5	4
123	Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Classes: A Comparative Investigation for Al, Y, Nd, Sm, Eu. Materials, 2021, 14, 5894.	2.9	4
124	Influence of Sintering Duration on Crystal Phase and Optical Band Gap of Mn3+ -Doped Willemite-Based Glass-Ceramics. Journal of Electronic Materials, 2022, 51, 1163-1168.	2.2	4
125	Analysis of the Radiological, Mineralogical and Long-Term Sustainability of Several Commercial Aswan Granites Used as Building Materials. Sustainability, 2022, 14, 3553.	3.2	4
126	The impact of Nd3+ ions on linear/nonlinear and the ionizing radiation attenuation parameters of TeO2-PbO-Y2O3 glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 17200-17219.	2.2	3

#	Article	IF	CITATIONS
127	Distribution of Natural Radionuclide and Radiation Hazards of Building Materials Used in Assiut, Egypt. International Journal of Bio-Science and Bio-Technology, 2015, 7, 115-130.	0.2	3
128	On B2O3/Bi2O3/Na2O/Gd2O3 glasses: synthesis, structure, physical characteristics, and gamma-ray attenuation competence. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
129	The Influence of CoO/P2O5 Substitutions on the Structural, Mechanical, and Radiation Shielding of Boro-Phosphate Glasses. Materials, 2021, 14, 6632.	2.9	3
130	MnCl2 incorporated PVA polymers: A closer-look on behavioural changes as a function of reinforcement. Optical Materials, 2022, 125, 112142.	3.6	3
131	Binary contributions of Dy3+ ions on the mechanical and radiation resistance properties of oxyfluoroborotellurite Dyx-glasses. Journal of Materials Research and Technology, 2022, 18, 820-829.	5.8	3
132	The production of residual nuclides via 211, 1,000, 1,400 and 2,530ÂMeV protons irradiation of natural uranium. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305, 345-354.	1.5	2
133	The status of natural radioactivity and heavy metals pollution on soil at Assiut Zone in Central Upper-Egypt. Radiation Protection and Environment, 2013, 36, 20.	0.2	1
134	Comparative study on application of 177Lu-labeled rituximab, tetulomab, cetuximab and huA33 monoclonal antibodies to targeted radionuclide therapy. Biomedical Physics and Engineering Express, 2021, 7, 015015.	1.2	1
135	Modelling and calculation of risk due to radon concentration in residential houses, Nicosia, Cyprus. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 1335-1341.	1.5	1
136	A Comprehensive Evaluation of the Attenuation Characteristics of Some Sliding Bearing Alloys under 0.015–15 MeV Gamma-Ray Exposure. Materials, 2022, 15, 2464.	2.9	1
137	Corrigendum to "Statistical analysis on the radiological assessment and geochemical studies of granite rocks in the north of Um Taghir area, Eastern Desert, Egypt― Open Chemistry, 2022, 20, 330-330.	1.9	1
138	Towards better understanding of structural, physical and radiation attenuation properties of the granites in Aegean region of Turkey: İzmir and Kütahya Provinces. Physica Scripta, 0, , .	2.5	0