
Kent D Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/678187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ABT-378, a Highly Potent Inhibitor of the Human Immunodeficiency Virus Protease. Antimicrobial Agents and Chemotherapy, 1998, 42, 3218-3224.	3.2	468
2	Discovery ofN-(4-(3-Amino-1H-indazol-4-yl)phenyl)-Nâ€~-(2-fluoro-5-methylphenyl)urea (ABT-869), a 3-Aminoindazole-Based Orally Active Multitargeted Receptor Tyrosine Kinase Inhibitor. Journal of Medicinal Chemistry, 2007, 50, 1584-1597.	6.4	179
3	Mutations Conferring Resistance to a Potent Hepatitis C Virus Serine Protease Inhibitor In Vitro. Antimicrobial Agents and Chemotherapy, 2004, 48, 2260-2266.	3.2	165
4	Thienopyrimidine Ureas as Novel and Potent Multitargeted Receptor Tyrosine Kinase Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 6066-6083.	6.4	153
5	In Vitro Selection and Characterization of Human Immunodeficiency Virus Type 1 Variants with Increased Resistance to ABT-378, a Novel Protease Inhibitor. Journal of Virology, 1998, 72, 7532-7541.	3.4	152
6	Novel Transient Receptor Potential Vanilloid 1 Receptor Antagonists for the Treatment of Pain:Â Structureâ^'Activity Relationships for Ureas with Quinoline, Isoquinoline, Quinazoline, Phthalazine, Quinoxaline, and Cinnoline Moieties. Journal of Medicinal Chemistry, 2005, 48, 744-752.	6.4	149
7	Design, Synthesis, and Structural Analysis of Influenza Neuraminidase Inhibitors Containing Pyrrolidine Cores. Journal of Medicinal Chemistry, 2001, 44, 1192-1201.	6.4	136
8	Mutations Conferring Resistance to a Hepatitis C Virus (HCV) RNA-Dependent RNA Polymerase Inhibitor Alone or in Combination with an HCV Serine Protease Inhibitor In Vitro. Antimicrobial Agents and Chemotherapy, 2005, 49, 4305-4314.	3.2	124
9	Influenza Neuraminidase Inhibitors:Â Structure-Based Design of a Novel Inhibitor Series. Biochemistry, 2003, 42, 718-727.	2.5	113
10	Pharmacological and Functional Comparison of the Polo-like Kinase Family:  Insight into Inhibitor and Substrate Specificity. Biochemistry, 2007, 46, 9551-9563.	2.5	100
11	Drug Guru: A computer software program for drug design using medicinal chemistry rules. Bioorganic and Medicinal Chemistry, 2006, 14, 7011-7022.	3.0	97
12	X-ray crystallographic structure of ABT-378 (Lopinavir) bound to HIV-1 protease. Bioorganic and Medicinal Chemistry, 2002, 10, 2803-2806.	3.0	96
13	The 2.2 à structure of the rRNA methyltransferase ErmC′ and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. Journal of Molecular Biology, 1999, 289, 277-291.	4.2	94
14	Host-guest complexation. 42. Preorganization strongly enhances the tendancy of hemispherands to form hemispheraplexes. Journal of the American Chemical Society, 1987, 109, 3098-3107.	13.7	92
15	Discovery and Structureâ	6.4	83
16	Structure-Based Design, Synthesis, and Biological Evaluation of Potent and Selective Macrocyclic Checkpoint Kinase 1 Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 1514-1527.	6.4	79
17	Discovery of 3 <i>H</i> -Benzo[4,5]thieno[3,2- <i>d</i>]pyrimidin-4-ones as Potent, Highly Selective, and Orally Bioavailable Inhibitors of the Human Protooncogene Proviral Insertion Site in Moloney Murine Leukemia Virus (PIM) Kinases. Journal of Medicinal Chemistry, 2009, 52, 6621-6636.	6.4	77
18	Cheminformatic Tools for Medicinal Chemists. Journal of Medicinal Chemistry, 2010, 53, 4830-4841.	6.4	72

#	Article	IF	CITATIONS
19	Complementary solutes enter nonpolar preorganized cavities in lipophilic noncomplementary media. Journal of the American Chemical Society, 1985, 107, 2574-2575.	13.7	71
20	Identification of Novel Binding Interactions in the Development of Potent, Selective 2-Naphthamidine Inhibitors of Urokinase. Synthesis, Structural Analysis, and SAR of N-Phenyl Amide 6-Substitution. Journal of Medicinal Chemistry, 2004, 47, 303-324.	6.4	71
21	A Novel, Picomolar Inhibitor of Human Immunodeficiency Virus Type 1 Proteaseâ€. Journal of Medicinal Chemistry, 1996, 39, 392-397.	6.4	70
22	Discovery, Structureâ~Activity Relationship, and Pharmacological Evaluation of (5-Substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as Potent Dipeptidyl Peptidase IV Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 3520-3535.	6.4	62
23	Structure-Based Characterization and Optimization of Novel Hydrophobic Binding Interactions in a Series of Pyrrolidine Influenza Neuraminidase Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 3980-3990.	6.4	58
24	Structure-directed discovery of potent non-peptidic inhibitors of human urokinase that access a novel binding subsite. Structure, 2000, 8, 553-563.	3.3	56
25	Discovery of ((4R,5S)-5-Amino-4-(2,4,5- trifluorophenyl)cyclohex-1-enyl)-(3-) Tj ETQq1 1 0.784314 rgBT /Overlock Potent, Selective, Orally Efficacious, and Safe Dipeptidyl Peptidase IV Inhibitor for the Treatment of	10 Tf 50 5 6.4	512 Td ((trifl 55
	Type 2 Diabetes, Journal of Medicinal Chemistry, 2006, 49, 6439-6442.		
26	The effect of structural changes in a polyamine backbone on its DNA-binding properties. Biochemical and Biophysical Research Communications, 1988, 152, 1441-1446.	2.1	54
27	Isoxazolo[3,4-b]quinoline-3,4(1H,9H)-diones as unique, potent and selective inhibitors for Pim-1 and Pim-2 kinases: Chemistry, biological activities, and molecular modeling. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5206-5208.	2.2	54
28	Survey of the DNA binding properties of natural and synthetic polyamino compounds. Journal of Physical Organic Chemistry, 1992, 5, 461-466.	1.9	51
29	In Vitro Selection and Characterization of Influenza A (A/N9) Virus Variants Resistant to a Novel Neuraminidase Inhibitor, A-315675. Journal of Virology, 2002, 76, 5380-5386.	3.4	49
30	Imidazo[2,1-b]thiazoles: Multitargeted inhibitors of both the insulin-like growth factor receptor and members of the epidermal growth factor family of receptor tyrosine kinases. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2452-2455.	2.2	47
31	Molecular basis for potentiation of bleomycin-mediated degradation of DNA by polyamines. Experimental and molecular mechanical studies. Journal of Molecular Recognition, 1989, 2, 158-166.	2.1	46
32	7-Aminopyrazolo[1,5- <i>a</i>]pyrimidines as Potent Multitargeted Receptor Tyrosine Kinase Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 3777-3787.	6.4	46
33	Discovery of potent and selective thienopyrimidine inhibitors of Aurora kinases. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5620-5624.	2.2	45
34	Conserved residues in the coiled-coil pocket of human immunodeficiency virus type 1 gp41 are essential for viral replication and interhelical interaction. Virology, 2004, 329, 319-327.	2.4	41
35	Crystal Structures of DPP-IV (CD26) from Rat Kidney Exhibit Flexible Accommodation of Peptidase-Selective Inhibitors. Biochemistry, 2006, 45, 7474-7482.	2.5	41
36	Thienopyridine urea inhibitors of KDR kinase. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1246-1249.	2.2	41

#	Article	IF	CITATIONS
37	Discovery of 2-[4-{{2-(2S,5R)-2-Cyano-5-ethynyl-1-pyrrolidinyl]-2-oxoethyl]amino]- 4-methyl-1-piperidinyl]-4-pyridinecarboxylic Acid (ABT-279):  A Very Potent, Selective, Effective, and Well-Tolerated Inhibitor of Dipeptidyl Peptidase-IV, Useful for the Treatment of Diabetes. Journal of Medicinal Chemistry, 2006, 49, 6416-6420.	6.4	39
38	Identification and characterization of mutations conferring resistance to an HCV RNA-dependent RNA polymerase inhibitor in vitro. Antiviral Research, 2007, 76, 93-97.	4.1	39
39	Identification of aminopyrazolopyridine ureas as potent VEGFR/PDGFR multitargeted kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 386-390.	2.2	39
40	Design, Synthesis, and Biological Activity of 5,10-Dihydro-dibenzo[b,e][1,4]diazepin-11-one-Based Potent and Selective Chk-1 Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 4162-4176.	6.4	37
41	Synthesis and Biological Characterization of B-Ring Amino Analogues of Potent Benzothiadiazine Hepatitis C Virus Polymerase Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 3174-3183.	6.4	37
42	Discovery of 1,4-dihydroindeno[1,2-c]pyrazoles as a novel class of potent and selective checkpoint kinase 1 inhibitors. Bioorganic and Medicinal Chemistry, 2007, 15, 2759-2767.	3.0	36
43	Pyrrolidine-constrained phenethylamines: The design of potent, selective, and pharmacologically efficacious dipeptidyl peptidase IV (DPP4) inhibitors from a lead-like screening hit. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2005-2012.	2.2	34
44	Non-peptide entry inhibitors of HIV-1 that target the gp41 coiled coil pocket. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 612-617.	2.2	33
45	3-Amino-benzo[d]isoxazoles as Novel Multitargeted Inhibitors of Receptor Tyrosine Kinases. Journal of Medicinal Chemistry, 2008, 51, 1231-1241.	6.4	32
46	Isoindolinone ureas: a novel class of KDR kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4505-4509.	2.2	31
47	Scaffold oriented synthesis. Part 2: Design, synthesis and biological evaluation of pyrimido-diazepines as receptor tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2691-2695.	2.2	31
48	Species Specificity of Amidine-Based Urokinase Inhibitors. Biochemistry, 2001, 40, 9125-9131.	2.5	29
49	Characterization of resistant HIV variants generated by in vitro passage with lopinavir/ritonavir. Antiviral Research, 2003, 59, 173-180.	4.1	29
50	Design, synthesis, and structural analysis of inhibitors of influenza neuraminidase containing a 2,3-disubstituted tetrahydrofuran-5-carboxylic acid core. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 125-128.	2.2	27
51	Hit-to-lead optimization of 1,4-dihydroindeno[1,2-c]pyrazoles as a novel class of KDR kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4371-4375.	2.2	27
52	Discovery of a new cyclooxygenase-2 lead compound through 3-D database searching and combinatorial chemistry. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 529-534.	2.2	26
53	Discovery of 4â€2-(1,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-benzonitriles and 4â€2-(1,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-pyridine-2â€2-carbonitriles as potent checkpoint kinase 1 (Chk1) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5944-5951.	2.2	25
54	Azaindole-Based Inhibitors of Cdc7 Kinase: Impact of the Pre-DFG Residue, Val 195. ACS Medicinal Chemistry Letters, 2013, 4, 211-215.	2.8	25

#	Article	IF	CITATIONS
55	1,4-Dihydroindeno[1,2-c]pyrazoles as novel multitargeted receptor tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4266-4271.	2.2	24
56	Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3208-3212.	2.2	24
57	Naphthamidine urokinase plasminogen activator inhibitors with improved pharmacokinetic properties. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 93-98.	2.2	23
58	Synthesis and activity of N-acyl azacyclic urea HIV-1 protease inhibitors with high potency against multiple drug resistant viral strains. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5499-5503.	2.2	23
59	Establishment and Characterization of 7 New Monoclonal Antibodies to Tissue Inhibitor of Metalloproteinases-1. Tumor Biology, 2005, 26, 71-80.	1.8	23
60	Isothiazolopyrimidines and isoxazolopyrimidines as novel multi-targeted inhibitors of receptor tyrosine kinases. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4326-4330.	2.2	23
61	Synthesis of an Influenza Neuraminidase Inhibitor Intermediate via a Highly Diastereoselective Coupling Reaction. Organic Letters, 2002, 4, 1427-1430.	4.6	22
62	Design, synthesis, and neuraminidase inhibitory activity of GS-4071 analogues that utilize a novel hydrophobic paradigm. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3425-3429.	2.2	22
63	Interaction with the S1\$beta;-pocket of urokinase: 8-heterocycle substituted and 6,8-disubstituted 2-naphthamidine urokinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3063-3068.	2.2	21
64	Design and synthesis of tricyclic cores for kinase inhibition. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 693-698.	2.2	21
65	Xanthine mimetics as potent dipeptidyl peptidase IV inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6226-6230.	2.2	19
66	Hepatitis C NS5B polymerase inhibitors: 4,4-Dialkyl-1-hydroxy-3-oxo-3,4-dihydronaphthalene-3-yl benzothiadiazine derivatives. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3887-3890.	2.2	19
67	Synthesis and Biological Characterization of Aryl Uracil Inhibitors of Hepatitis C Virus NS5B Polymerase: Discovery of ABT-072, a trans-Stilbene Analog with Good Oral Bioavailability. Journal of Medicinal Chemistry, 2018, 61, 1153-1163.	6.4	17
68	Structure activity optimization of 6H-pyrrolo[2,3-e][1,2,4]triazolo[4,3-a]pyrazines as Jak1 kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4399-4404.	2.2	16
69	Synthesis and biological evaluation of 5-substituted 1,4-dihydroindeno[1,2-c]pyrazoles as multitargeted receptor tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3136-3140.	2.2	15
70	Interaction with the S1β-pocket of urokinase: 8-heterocycle substituted and 6,8-disubstituted 2-naphthamidine urokinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3063-3068.	2.2	14
71	Identification and Structural Characterization of I84C and I84A Mutations That Are Associated with High-Level Resistance to Human Immunodeficiency Virus Protease Inhibitors and Impair Viral Replication. Antimicrobial Agents and Chemotherapy, 2007, 51, 732-735.	3.2	14
72	Pyrazole diaminopyrimidines as dual inhibitors of KDR and Aurora B kinases. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4750-4755.	2.2	14

#	Article	IF	CITATIONS
73	The catalytic oxidation of dithiols by a semisynthetic enzyme. Journal of the American Chemical Society, 1986, 108, 3480-3483.	13.7	13
74	DOCKing ligands into receptors: The test case of α-chymotrypsin. Tetrahedron Computer Methodology, 1990, 3, 713-722.	0.2	12
75	1,4-Dihydroindeno[1,2-c]pyrazoles as potent checkpoint kinase 1 inhibitors: Extended exploration on phenyl ring substitutions and preliminary ADME/PK studies. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3618-3623.	2.2	12
76	Hit to Lead optimization of a novel class of squarate-containing polo-like kinases inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7615-7622.	2.2	12
77	Host-guest complexation. 40. Synthesis and complexation of macrocyclic hosts containing cyclic ureas, anisyls, and steric barriers. Journal of Organic Chemistry, 1986, 51, 4327-4337.	3.2	11
78	Hepatitis C NS5B polymerase inhibitors: Functional equivalents for the benzothiadiazine moiety. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1876-1879.	2.2	11
79	An intramolecular ionic hydrogen bond stabilizes acis amide bond rotamer of a ring-opened rapamycin-degradation product. Magnetic Resonance in Chemistry, 2005, 43, 41-46.	1.9	8
80	Aryl uracil inhibitors of hepatitis C virus NS5B polymerase: Synthesis and characterization of analogs with a fused 5,6-bicyclic ring motif. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3487-3490.	2.2	7
81	Design and characterization of an engineered gp41 protein from human immunodeficiency virus-1 as a tool for drug discovery. Journal of Computer-Aided Molecular Design, 2007, 21, 121-130.	2.9	6
82	Cyanopyridyl containing 1,4-dihydroindeno[1,2-c]pyrazoles as potent checkpoint kinase 1 inhibitors: Improving oral biovailability. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5665-5670.	2.2	5
83	Lack of stereospecificity in the binding of the P2 amino acid of ritonavir to HIV protease. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 699-704.	2.2	4
84	Exploration of diverse hinge-binding scaffolds for selective Aurora kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4528-4531.	2.2	4
85	New Shapes in HIV protease inhibitors. Protein Engineering, Design and Selection, 1990, 4, 1-2.	2.1	3
86	Formation, isolation and characterization of an AB-biaryl atropisomer of oritavancin. Tetrahedron, 2004, 60, 10611-10618.	1.9	3
87	An Unusual Intramolecular Hetero-Dielsâ^'Alder Cycloaddition. Journal of Organic Chemistry, 2005, 70, 3332-3335.	3.2	3
88	Investigation into the diastereomeric composition of a pyruvamide dimer. Journal of Heterocyclic Chemistry, 1993, 30, 1153-1154.	2.6	1
89	Corrigendum to â€~Design, Synthesis, and Neuraminidase Inhibitory Activity of GS-4071 Analogues that Utilize a Novel Hydrophobic Paradigm'. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1837.	2.2	1
90	Contribution of indazolinone tautomers to kinase activity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4502-4505.	2.2	1

#	Article	IF	CITATIONS
91	Computerized Probe Analysis of the Energetically Favored Binding Sites of an Aspartyl Protease. Annals of the New York Academy of Sciences, 1990, 616, 611-612.	3.8	Ο
92	An `Inside-the-Box' Approach to Drug Resistance. Chemistry and Biology, 2004, 11, 1327-1328.	6.0	0
93	Designed DNA Interactions. , 1990, , 75-80.		0