Bruce A. Pint

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6781397/publications.pdf Version: 2024-02-01

RDUCE A DINT

#	Article	IF	CITATIONS
1	Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxidation of Metals, 1996, 45, 1-37.	1.0	813
2	High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments. Journal of Nuclear Materials, 2013, 440, 420-427.	1.3	363
3	Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. Journal of Nuclear Materials, 2015, 467, 703-716.	1.3	349
4	Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels. Science, 2007, 316, 433-436.	6.0	337
5	Substrate and bond coat compositions: factors affecting alumina scale adhesion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 245, 201-211.	2.6	333
6	18O/SIMS characterization of the growth mechanism of doped and undoped ?-Al2O3. Oxidation of Metals, 1993, 39, 167-195.	1.0	242
7	Chromium Volatilization Rates from Cr2O3 Scales into Flowing Gases Containing Water Vapor. Oxidation of Metals, 2006, 66, 137-153.	1.0	226
8	Optimization of Reactiveâ€Element Additions to Improve Oxidation Performance of Aluminaâ€Forming Alloys. Journal of the American Ceramic Society, 2003, 86, 686-95.	1.9	222
9	The oxidation mechanism of Î,-Al2O3 scales. Solid State Ionics, 1995, 78, 99-107.	1.3	198
10	Silicon Carbide Oxidation in Steam up to 2ÂMPa. Journal of the American Ceramic Society, 2014, 97, 2331-2352.	1.9	197
11	Influence of Sulfur, Platinum, and Hafnium on the Oxidation Behavior of CVD NiAl Bond Coatings. Oxidation of Metals, 2002, 58, 513-544.	1.0	170
12	The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on β-NiAl. Oxidation of Metals, 1997, 47, 1-20.	1.0	169
13	On the formation of interfacial and internal voids inα-Al2O3 scales. Oxidation of Metals, 1997, 48, 303-328.	1.0	165
14	Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer. Oxidation of Metals, 2016, 86, 1-43.	1.0	164
15	The reactive element effect in commercial ODS FeCrAI alloys. Materials at High Temperatures, 1995, 13, 3-16.	0.5	158
16	Uniform corrosion of FeCrAl alloys in LWR coolant environments. Journal of Nuclear Materials, 2016, 479, 36-47.	1.3	158
17	Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure. Journal of Nuclear Materials, 2012, 427, 396-400.	1.3	145
18	Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2737-2746.	1.1	139

#	Article	IF	CITATIONS
19	Effect of Cr and Ni Contents on the Oxidation Behavior of Ferritic and Austenitic Model Alloys in Air with Water Vapor. Oxidation of Metals, 2004, 61, 463-483.	1.0	138
20	The development of alumina-forming austenitic stainless steels for high-temperature structural use. Jom, 2008, 60, 12-18.	0.9	136
21	Martensitic transformation in CVD NiAl and (Ni,Pt)Al bond coatings. Surface and Coatings Technology, 2003, 163-164, 19-24.	2.2	132
22	Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels. Scripta Materialia, 2007, 57, 1117-1120.	2.6	132
23	Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 922-931.	1.1	131
24	Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals. Surface and Coatings Technology, 2000, 133-134, 15-22.	2.2	125
25	Oxidation resistance: One barrier to moving beyond Ni-base superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 415, 255-263.	2.6	120
26	Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1727-1741.	1.1	117
27	The role of chemical composition on the oxidation performance of aluminide coatings. Surface and Coatings Technology, 2004, 188-189, 71-78.	2.2	116
28	Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure. Journal of Nuclear Materials, 2013, 438, 64-71.	1.3	114
29	Grain Boundary Segregation of Cation Dopants in α â€â€‰Al2 O 3 Scales. Journal of the Electrocl Society, 1998, 145, 1819-1829.	nemical 1.3	111
30	Comparison of thermal expansion and oxidation behavior of various high-temperature coating materials and superalloys. Materials at High Temperatures, 2004, 21, 87-94.	0.5	107
31	Effect of Quaternary Additions on the Oxidation Behavior of Hf-Doped NiAl. Oxidation of Metals, 2003, 59, 257-283.	1.0	106
32	The Oxidation Behavior of Oxide-Dispersed β-NiAl: I. Short-Term Performance at 1200°C. Oxidation of Metals, 1998, 49, 531-559.	1.0	101
33	Segregation of Y to Grain Boundaries in the Al2 O 3 Scale Formed on an ODS Alloy. Journal of the Electrochemical Society, 1987, 134, 3207-3208.	1.3	91
34	Effect of Hf and Y alloy additions on aluminide coating performance. Surface and Coatings Technology, 2010, 204, 3287-3293.	2.2	90
35	Comparison of the cyclic oxidation behavior of β-NiAl, β-NiPtAl and γ–γ′ NiPtAl coatings on various superalloys. Surface and Coatings Technology, 2007, 202, 730-734.	2.2	89
36	Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding. Journal of Nuclear Materials, 2018, 501, 59-71.	1.3	87

#	Article	IF	CITATIONS
37	Recent progress in the development of electrically insulating coatings for a liquid lithium blanket. Journal of Nuclear Materials, 2004, 329-333, 119-124.	1.3	85
38	Review of advances in development of vanadium alloys and MHD insulator coatings. Journal of Nuclear Materials, 2007, 367-370, 780-787.	1.3	85
39	Effect of steam on high temperature oxidation behaviour of alumina-forming alloys. Materials at High Temperatures, 2015, 32, 28-35.	0.5	82
40	Effects of sulfur impurity on the scale adhesion behavior of a desulfurized Ni-based superalloy aluminized by chemical vapor deposition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 833-841.	1.1	80
41	Limitations on the Use of Ion Implantation for the Study of the Reactive Element Effect in β â€â€‰NiAl. Jou of the Electrochemical Society, 1994, 141, 2443-2453.	rnal 1.3	79
42	Possible Role of the Oxygen Potential Gradient in Enhancing Diffusion of Foreign Ions on αâ€Al ₂ O ₃ Grain Boundaries. Journal of the American Ceramic Society, 1998, 81, 305-314.	1.9	79
43	Effect of Al and Cr Content on Air and Steam Oxidation of FeCrAl Alloys and Commercial APMT Alloy. Oxidation of Metals, 2017, 87, 431-441.	1.0	74
44	Recent research and development for the dual-coolant blanket concept in the US. Fusion Engineering and Design, 2008, 83, 920-927.	1.0	72
45	Effect of Cycle Frequency on High-Temperature Oxidation Behavior of Alumina-Forming Alloys. Oxidation of Metals, 2002, 58, 73-101.	1.0	70
46	High-temperature diffusion barriers for protective coatings. Surface and Coatings Technology, 2004, 188-189, 153-157.	2.2	68
47	The Effect of an Oxide Dispersion on the Critical Al Content in Fe-Al Alloys. Oxidation of Metals, 1999, 51, 181-197.	1.0	67
48	The use of two reactive elements to optimize oxidation performance of alumina-forming alloys. Materials at High Temperatures, 2003, 20, 375-386.	0.5	67
49	Critical questions in materials science and engineering for successful development of fusion power. Journal of Nuclear Materials, 2007, 367-370, 1-10.	1.3	67
50	Cladding burst behavior of Fe-based alloys under LOCA. Journal of Nuclear Materials, 2016, 470, 128-138.	1.3	65
51	Effect of cycle length on the oxidation performance of iron aluminide coatings. Surface and Coatings Technology, 2004, 188-189, 35-40.	2.2	63
52	Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coating system performance under cyclic oxidation conditions. Surface and Coatings Technology, 1999, 120-121, 68-76.	2.2	62
53	Oxidation of refractory metals in air and low pressure oxygen gas. International Journal of Refractory Metals and Hard Materials, 2000, 18, 237-243.	1.7	60
54	Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications. Jom, 2014, 66, 2458-2466.	0.9	60

#	Article	IF	CITATIONS
55	A platinum-enriched γ+γ′ two-phase bond coat on Ni-based superalloys. Surface and Coatings Technology, 2005, 200, 1259-1263.	2.2	59
56	Characterization of commercial EB-PVD TBC systems with CVD (Ni,Pt)Al bond coatings. Surface and Coatings Technology, 2001, 146-147, 140-146.	2.2	58
57	Characterization of alumina interfaces in TBC systems. Journal of Materials Science, 2009, 44, 1676-1686.	1.7	58
58	High-Temperature Oxidation Behavior of ODS–Fe3Al. Oxidation of Metals, 2001, 55, 333-357.	1.0	56
59	The effect of water vapor on the oxidation behavior of Ni–Pt–Al coatings and alloys. Surface and Coatings Technology, 2006, 201, 3852-3856.	2.2	55
60	Effect of pressure on supercritical CO ₂ compatibility of structural alloys at 750 °C. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 151-158.	0.8	55
61	The formation of ?-Al2O3 scales at 1500�C. Oxidation of Metals, 1994, 41, 203-233.	1.0	52
62	Characterization of the alumina scale formed on a commercial MCrAlYHfSi coating. Surface and Coatings Technology, 2010, 205, 1178-1182.	2.2	52
63	Liquid metal compatibility issues for test blanket modules. Fusion Engineering and Design, 2006, 81, 901-908.	1.0	50
64	The Use of Model Alloys to Develop Corrosion-Resistant Stainless Steels. Materials Science Forum, 2004, 461-464, 815-822.	0.3	49
65	Material Selection for Accident Tolerant Fuel Cladding. Metallurgical and Materials Transactions E, 2015, 2, 190-196.	0.5	49
66	Oxidation of ultrahigh temperature ceramics: kinetics, mechanisms, and applications. Journal of the European Ceramic Society, 2021, 41, 6130-6150.	2.8	49
67	The Oxidation Behavior of Y2O3-Dispersed \hat{I}^2 -NiAl. Oxidation of Metals, 2004, 61, 273-292.	1.0	48
68	Investigation of Pb–Li compatibility issues for the dual coolant blanket concept. Journal of Nuclear Materials, 2007, 367-370, 1150-1154.	1.3	47
69	Hot Corrosion of an EB-PVD Thermal-Barrier Coating System at 950°C. Oxidation of Metals, 2000, 54, 401-424.	1.0	46
70	Optimizing Scale Adhesion on Single Crystal Superalloys. Materials Science Forum, 2001, 369-372, 459-466.	0.3	46
71	Formation of aluminide coatings on Fe-based alloys by chemical vapor deposition. Surface and Coatings Technology, 2008, 202, 3839-3849.	2.2	46
72	The effect of Pt content on γ–γ′ NiPtAl coatings. Surface and Coatings Technology, 2008, 203, 413-416.	2.2	46

#	Article	IF	CITATIONS
73	Effect of superalloy substrate and bond coating on TBC lifetime. Surface and Coatings Technology, 2010, 205, 1236-1240.	2.2	46
74	Oxidation behavior of co-doped NiCrAl alloys in dry and wet air. Surface and Coatings Technology, 2013, 237, 8-15.	2.2	46
75	A microstructural study of the oxide scale formation on ODS Fe–13Cr steel. Journal of Nuclear Materials, 2000, 283-287, 1306-1310.	1.3	45
76	Progress in the development of insulator coating for liquid lithium blankets. Fusion Engineering and Design, 2010, 85, 1301-1306.	1.0	45
77	Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys. Journal of Materials Science, 2016, 51, 9190-9206.	1.7	45
78	Evaluation of iron-aluminide CVD coatings for high temperature corrosion protection. Materials at High Temperatures, 2001, 18, 185-192.	0.5	44
79	Initial Assessment of Ni-Base Alloy Performance in 0.1ÂMPa and Supercritical CO2. Jom, 2015, 67, 2615-2620.	0.9	44
80	Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic–martensitic steels. Surface and Coatings Technology, 2009, 204, 766-770.	2.2	43
81	Performance of Alâ€rich oxidation resistant coatings for Feâ€base alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 549-560.	0.8	43
82	Effect of water vapor on the 1100°C oxidation behavior of plasma-sprayed TBCs with HVOF NiCoCrAlX bond coatings. Surface and Coatings Technology, 2013, 215, 39-45.	2.2	43
83	High-Temperature Corrosion in Fossil Fuel Power Generation: Present and Future. Jom, 2013, 65, 1024-1032.	0.9	42
84	Title is missing!. Oxidation of Metals, 2001, 56, 119-145.	1.0	40
85	Oxidation behaviour of cast Ni–Cr alloys in steam at 800°C. Materials Science and Technology, 2013, 29, 822-827.	0.8	38
86	Long-term high temperature oxidation behavior of ODS ferritics. Journal of Nuclear Materials, 2002, 307-311, 763-768.	1.3	37
87	Role of bond coat processing methods on the durability of plasma sprayed thermal barrier systems. Surface and Coatings Technology, 2019, 375, 782-792.	2.2	37
88	Optimizing the Imperfect Oxidation Performance of Iron Aluminides. Materials Science Forum, 2001, 369-372, 411-418.	0.3	36
89	Effect of environment on the scale formed on oxide dispersion strengthened FeCrAl at 1050°C and 1100°C. Materials at High Temperatures, 2012, 29, 171-180.	0.5	36
90	Limitations on the Use of Surface Doping for Improving High-Temperature Oxidation Resistance. MRS Bulletin, 1994, 19, 26-30.	1.7	34

#	Article	IF	CITATIONS
91	Effect of nitrogen on the formation and oxidation behavior of iron aluminide coatings. Surface and Coatings Technology, 2005, 200, 1231-1235.	2.2	34
92	Stainless Steels With Improved Oxidation Resistance for Recuperators. Journal of Engineering for Gas Turbines and Power, 2006, 128, 370-376.	0.5	34
93	The effect of carbon and reactive element dopants on oxidation lifetime of FeAl. Scripta Materialia, 2005, 52, 1199-1204.	2.6	33
94	Transformation of Al2O3 to LiAlO2 in Pb–17Li at 800°C. Journal of Nuclear Materials, 2008, 376, 108-113.	1.3	33
95	Predicting Oxidation-Limited Lifetime of Thin-Walled Components of NiCrW Alloy 230. Oxidation of Metals, 2017, 87, 11-38.	1.0	33
96	The Effect of Water Vapor on the Oxidation Behavior of CVD Iron-Aluminide Coatings. Oxidation of Metals, 2004, 62, 103-120.	1.0	32
97	Long-term performance of aluminide coatings on Fe-base alloys. Surface and Coatings Technology, 2007, 202, 637-642.	2.2	32
98	Comparison of the oxidation behavior of β and γ-γ′ NiPtAl coatings. Surface and Coatings Technology, 2009, 204, 816-819.	2.2	32
99	Performance of chromia- and alumina-forming Fe- and Ni-base alloys exposed to metal dusting environments: The effect of water vapor and temperature. Corrosion Science, 2015, 92, 58-68.	3.0	32
100	Temperature limits on the compatibility of insulating ceramics in lithium. Journal of Nuclear Materials, 2002, 307-311, 1344-1350.	1.3	31
101	The Oxidation Behavior of Fe-Al Alloys. Materials Science Forum, 2004, 461-464, 799-806.	0.3	31
102	Interdiffusion behavior of Pt-diffused γ+γ′ coatings on Ni-based superalloys. Surface and Coatings Technology, 2008, 203, 417-421.	2.2	31
103	On the Loss of Protective Scale Formation in Creep-Resistant, Alumina-Forming Austenitic Stainless Steels at 900°C in Air. Materials Science Forum, 0, 595-598, 725-732.	0.3	31
104	Effect of pressure and impurities on oxidation in supercritical CO ₂ . Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1400-1409.	0.8	31
105	Characterization of the breakaway al content in alumina-forming alloys. Materials at High Temperatures, 2004, 21, 175-185.	0.5	30
106	Comparison of Oxidation Behavior and Electrical Properties of Doped NiO- and Cr2O3-Forming Alloys for Solid-Oxide, Fuel-Cell Metallic Interconnects. Oxidation of Metals, 2006, 65, 237-261.	1.0	30
107	Synthesis and oxidation performance of Al-enriched γ+γ′ coatings on Ni-based superalloys via secondary aluminizing. Surface and Coatings Technology, 2007, 202, 632-636.	2.2	30
108	Advanced alloys for compact, high-efficiency, high-temperature heat-exchangers. International Journal of Hydrogen Energy, 2007, 32, 3622-3630.	3.8	30

#	Article	IF	CITATIONS
109	Effect of increased water vapor levels on TBC lifetime with Pt-containing bond coatings. Surface and Coatings Technology, 2011, 206, 1566-1570.	2.2	30
110	Microstructure and environmental resistance of low Cr ODS FeCrAl. Materials at High Temperatures, 2015, 32, 123-132.	0.5	30
111	Growth stressâ€â€"â€microstructure relationships for alumina scales. Materials at High Temperatures, 2003, 20, 303-309.	0.5	30
112	Characterization of thermally cycled alumina scales. Materials at High Temperatures, 2000, 17, 165-171.	0.5	29
113	Interdiffusional degradation of oxidationâ€resistant aluminide coatings on Feâ€base alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2007, 58, 751-761.	0.8	29
114	Effect of water vapor on thermally grown alumina scales on bond coatings. Surface and Coatings Technology, 2013, 215, 30-38.	2.2	29
115	Steam oxidation of ytterbium disilicate environmental barrier coatings with and without a silicon bond coat. Journal of the American Ceramic Society, 2021, 104, 2285-2300.	1.9	29
116	Evaluation of Thermal Barrier Coating Systems on Novel Substrates. Journal of Thermal Spray Technology, 2000, 9, 198-203.	1.6	28
117	Characterization of the alumina scale formed on coated and uncoated doped superalloys. Surface and Coatings Technology, 2011, 206, 1522-1528.	2.2	27
118	Critical Exploration of Liquid Metal Plasma-Facing Components in a Fusion Nuclear Science Facility. Fusion Science and Technology, 2019, 75, 886-917.	0.6	27
119	Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2. Oxidation of Metals, 2020, 94, 505-526.	1.0	26
120	Performance of FeCrAl for accident-tolerant fuel cladding in high-temperature steam. Corrosion Reviews, 2017, 35, 167-175.	1.0	26
121	Effects of oxygen and hydrogen at low pressure on the mechanical properties of V–Cr–Ti alloys. Journal of Nuclear Materials, 2000, 283-287, 841-845.	1.3	25
122	Corrosion behaviour of AlN for self-cooled Li/V blanket application. Fusion Engineering and Design, 2003, 69, 397-401.	1.0	25
123	Creep and corrosion testing of aluminide coatings on ferritic–martensitic substrates. Surface and Coatings Technology, 2006, 201, 3880-3884.	2.2	24
124	Deformation and phase transformations during the cyclic oxidation of Niâ^'Al and Niâ^'Ptâ^'Al. Jom, 2006, 58, 47.	0.9	24
125	The Role of Oxygen Uptake and Scale Formation on the Embrittlement of Vanadium Alloys. Oxidation of Metals, 2005, 63, 33-55.	1.0	23
126	Effects of prior surface damage on high-temperature oxidation of Fe-, Ni-, and Co-based alloys. Wear, 2009, 267, 380-386.	1.5	23

#	Article	IF	CITATIONS
127	Material compatibility with isothermal Pb–Li. Materials at High Temperatures, 2012, 29, 129-135.	0.5	23
128	Effect of H2O and CO2 on the Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl. Oxidation of Metals, 2013, 79, 627-638.	1.0	23
129	APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings. Surface and Coatings Technology, 2015, 284, 9-13.	2.2	23
130	The Effect of CO2 Pressure on Chromia Scale Microstructure at 750°C. Jom, 2018, 70, 1511-1519.	0.9	23
131	Reâ€establishing the paradigm for evaluating halide salt compatibility to study commercial chloride salts at 600°C–800°C. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1439-1449.	0.8	23
132	Strength and rupture geometry of un-irradiated C26M FeCrAl under LOCA burst testing conditions. Journal of Nuclear Materials, 2021, 557, 153242.	1.3	23
133	Study of the Reactive Element Effect in ODS Iron-Base Alumina Formers. Materials Science Forum, 1997, 251-254, 397-404.	0.3	22
134	Synthesis and oxidation behavior of platinum-enriched γ+γ′ bond coatings on Ni-based superalloys. Surface and Coatings Technology, 2006, 201, 3857-3861.	2.2	22
135	Initial characterization of V–4Cr–4Ti and MHD coatings exposed to flowing Li. Journal of Nuclear Materials, 2009, 386-388, 712-715.	1.3	22
136	Impact of superalloy composition, bond coat roughness and water vapor on TBC lifetime with HVOF NiCoCrAlYHfSi bond coatings. Surface and Coatings Technology, 2013, 237, 65-70.	2.2	22
137	Fabrication of Oxide Dispersion Strengthened Bond Coats with Low Al2O3 Content. Journal of Thermal Spray Technology, 2017, 26, 868-879.	1.6	22
138	Invited Review Paper in Commemoration of Over 50 Years of Oxidation of Metals: Addressing the Role of Water Vapor on Long-Term Stainless Steel Oxidation Behavior. Oxidation of Metals, 2021, 95, 335-357.	1.0	22
139	First steps toward predicting corrosion behavior of structural materials in molten salts. Journal of Nuclear Materials, 2021, 546, 152755.	1.3	22
140	Title is missing!. Oxidation of Metals, 2000, 54, 255-276.	1.0	21
141	Effect of environment on the oxidation of ingot-processed iron aluminides. Intermetallics, 2001, 9, 735-739.	1.8	21
142	Long-term stability of ceramics in liquid lithium. Journal of Nuclear Materials, 2001, 289, 52-56.	1.3	21
143	The effect of coatings on the compatibility of Fe–Cr steels with Pb–Li. Journal of Nuclear Materials, 2011, 417, 1195-1199.	1.3	21
144	Mechanistic-Based Lifetime Predictions for High-Temperature Alloys and Coatings. Jom, 2012, 64, 1454-1460.	0.9	21

#	Article	IF	CITATIONS
145	Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic–martensitic alloy. Surface and Coatings Technology, 2014, 240, 32-39.	2.2	21
146	Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels. Journal of Nuclear Materials, 2017, 492, 128-133.	1.3	21
147	Development of 1100°C Capable Alumina-Forming Austenitic Alloys. Oxidation of Metals, 2017, 87, 1-10.	1.0	21
148	Characterization of chromia scales formed in supercritical carbon dioxide. Materials at High Temperatures, 2018, 35, 39-49.	0.5	21
149	Long-term oxidation performance of ingot-produced Fe ₃ Al alloys. Materials at High Temperatures, 1999, 16, 1-13.	0.5	20
150	Compatibility of multi-layer, electrically insulating coatings for vanadium–lithium blankets. Journal of Nuclear Materials, 2007, 367-370, 1165-1169.	1.3	20
151	Creep behavior of commercial FeCrAl foils: Beneficial and detrimental effects of oxidation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 10-18.	2.6	20
152	Effect of oxyâ€firing on corrosion rates at 600–650 °C. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 132-140.	0.8	20
153	Evaluation of iron-aluminide CVD coatings for high temperature corrosion protection. Materials at High Temperatures, 2001, 18, 185-192.	0.5	20
154	Bond coating issues in thermal barrier coatings for industrial gas turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2005, 219, 101-107.	0.8	19
155	The Effect of Water Vapor on Cr Depletion in Advanced Recuperator Alloys. , 2005, , 927.		19
156	lonic segregation on grain boundaries in thermally grown alumina scales. Materials at High Temperatures, 2012, 29, 257-263.	0.5	19
157	Effect of water vapor on thermally-grown alumina scales on Pt-modified and simple aluminide bond coatings. Surface and Coatings Technology, 2013, 237, 2-7.	2.2	19
158	Compatibility of FeCrAlMo with flowing PbLi at 500°-650†°C. Journal of Nuclear Materials, 2020, 528, 151847.	1.3	19
159	Evaluating steam oxidation kinetics of environmental barrier coatings. Journal of the American Ceramic Society, 2022, 105, 590-605.	1.9	19
160	Oxidation behavior of platinum–aluminum alloys and the effect of Zr doping. Journal of Materials Research, 1999, 14, 4531-4540.	1.2	18
161	Effects of Platinum Additions on the Adherence of Alumina Scales to CVD Aluminide Bond Coatings. Materials Science Forum, 2001, 369-372, 679-686.	0.3	18
162	Influence of Aluminum Depletion Effects on the Calculation of the Oxidation Lifetimes of FeCrAl Alloys. Materials Science Forum, 2004, 461-464, 579-590.	0.3	18

#	Article	IF	CITATIONS
163	High-temperature oxidation-resistant alloys: Recent developments in science and applications. Jom, 2009, 61, 42-43.	0.9	18
164	High Temperature Corrosion of Alumina-forming Iron, Nickel and Cobalt-base Alloys. , 2010, , 606-645.		18
165	The effect of cycle frequency, H2O and CO2 on TBC lifetime with NiCoCrAlYHfSi bond coatings. Surface and Coatings Technology, 2014, 260, 107-112.	2.2	18
166	Design and Evaluation of Nuclear System for ARIES-ACT2 Power Plant with DCLL Blanket. Fusion Science and Technology, 2017, 72, 17-40.	0.6	18
167	STEM and APT characterization of scale formation on a La,Hf,Ti-doped NiCrAl model alloy. Micron, 2018, 109, 41-52.	1.1	18
168	Materials Selection for High Temperature (750°–1000°C) Metallic Recuperators for Improved Efficiency Microturbines. , 2001, , .		17
169	Pb–Li compatibility issues for DEMO. Journal of Nuclear Materials, 2013, 442, S572-S575.	1.3	17
170	Alloying and coating strategies for improved Pb–Li compatibility in DEMO-type fusion reactors. Journal of Nuclear Materials, 2014, 455, 330-334.	1.3	17
171	Steam Oxidation Evaluation of Fe–Cr Alloys for Accident Tolerant Nuclear Fuel Cladding. Oxidation of Metals, 2017, 87, 515-526.	1.0	17
172	High-temperature behavior of oxide dispersion strengthening CoNiCrAlY. Materials at High Temperatures, 2018, 35, 108-119.	0.5	17
173	Recent Progress Addressing Compatibility Issues Relevant to Fusion Environments. Fusion Science and Technology, 2005, 47, 851-855.	0.6	16
174	Oxidation Behavior of ODS Fe?Cr Alloys. Oxidation of Metals, 2005, 63, 193-213.	1.0	16
175	Cyclic oxidation behavior of HVOF bond coatings deposited on La- and Y-doped superalloys. Surface and Coatings Technology, 2011, 206, 1600-1604.	2.2	16
176	Effect of Thermal Cycling on Compatibility in CO2 for Concentrated Solar Power Applications. Oxidation of Metals, 2017, 87, 631-642.	1.0	16
177	Comparison of thermal expansion and oxidation behavior of various high-temperature coating materials and superalloys. Materials at High Temperatures, 2004, 21, 87-94.	0.5	16
178	The Effect of Water Vapor on Oxidation Performance of Alloys Used in Recuperators. , 2002, , 1045.		15
179	The effects of temperature and substrate curvature on TBC lifetime and residual stress in alumina scales beneath APS YSZ. Surface and Coatings Technology, 2016, 308, 19-23.	2.2	15
180	Influences of Superalloy Composition and Pt Content on the Oxidation Behavior of Gamma–Gamma Prime NiPtAl Bond Coatings. Oxidation of Metals, 2016, 86, 453-481.	1.0	15

#	Article	IF	CITATIONS
181	Performance of vacuum plasma spray and HVOF bond coatings at 900° and 1100 °C. Surface and Coatings Technology, 2018, 337, 136-140.	2.2	15
182	The effect of bond coating surface modification on the performance of atmospheric plasma spray thermal barrier coatings. Surface and Coatings Technology, 2019, 378, 125042.	2.2	15
183	The Impact of Impurities on Alloy Behavior in Supercritical CO2 at 700°C. Oxidation of Metals, 2020, 94, 95-111.	1.0	15
184	Compositional Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats. , 2000, , .		15
185	Effects of applied stress and grain size on creep-rupture lifetime prediction for Haynes 282 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142785.	2.6	15
186	Screening and Evaluation of Materials for Microturbine Recuperators. , 2004, , 145.		14
187	Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat Exchangers. Journal of Turbomachinery, 2006, 128, 814-819.	0.9	14
188	Overview of Coating and Compatibility Research for Fusion Energy in the U.S Materials Science Forum, 0, 595-598, 549-558.	0.3	14
189	High-growth rate YSZ thermal barrier coatings deposited by MOCVD demonstrate high thermal cycling lifetime. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 978-985.	2.6	14
190	Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators. Journal of Engineering for Gas Turbines and Power, 2011, 133, .	0.5	14
191	Effect of boron on the oxidation behavior of NiCrAlYHfTi in H2O and CO2 environments. Surface and Coatings Technology, 2014, 260, 17-22.	2.2	14
192	Interfaces in Oxides Formed on NiAlCr Doped with Y, Hf, Ti, and B. Microscopy and Microanalysis, 2017, 23, 396-403.	0.2	14
193	Burst behavior of nuclear grade FeCrAl and Zircaloy-2 fuel cladding under simulated cyclic dryout conditions. Journal of Nuclear Materials, 2020, 539, 152256.	1.3	14
194	The use of two reactive elements to optimize oxidation performance of alumina-forming alloys. Materials at High Temperatures, 2003, 20, 375-386.	0.5	14
195	Dry air cyclic oxidation of mixed Y/Yb disilicate environmental barrier coatings and bare silica formers. Journal of the European Ceramic Society, 2022, 42, 3345-3350.	2.8	14
196	The Effect of Yttrium Ion Implantation on the High Temperature Oxidation Properties of NiAl. Materials Research Society Symposia Proceedings, 1990, 213, 981.	0.1	13
197	The Effect of Thermal Expansion on Spallation Behavior of Fe-Base Alumina-Forming Alloys. Materials Science Forum, 0, 595-598, 1083-1092.	0.3	13
198	Determination of the ductile to brittle temperature transition of aluminide coatings and its influence on the mechanical behavior of coated specimens. Surface and Coatings Technology, 2010, 205, 1195-1199.	2.2	13

#	Article	IF	CITATIONS
199	Grain Boundary Chemistry and Transport Through Alumina Scales on NiAl Alloys. Oxidation of Metals, 2017, 88, 469-479.	1.0	13
200	Corrosion of 316H stainless steel in flowing FLiNaK salt. Journal of Nuclear Materials, 2022, 561, 153551.	1.3	13
201	Microdefects in Al2O3 films and interfaces revealed by positron lifetime spectroscopy. Applied Physics Letters, 1997, 71, 3165-3167.	1.5	12
202	Internal Oxidation–Nitridation of Ferritic Fe(Al) Alloys in Air. Oxidation of Metals, 2008, 69, 211-231.	1.0	12
203	The Future of Alumina-Forming Alloys: Challenges and Applications for Power Generation. Materials Science Forum, 0, 696, 57-62.	0.3	12
204	The Effect of Shot Peening on Steam Oxidation of 304H Stainless Steel. Oxidation of Metals, 2020, 93, 159-174.	1.0	12
205	Characterization of the high temperature oxidation of TBC-coated oxide-dispersed β-NiAl substrates. Materials at High Temperatures, 1997, 14, 403-412.	0.5	11
206	Oxygen embrittlement of vanadium alloys with and without surface oxide formation. Journal of Nuclear Materials, 2002, 307-311, 560-565.	1.3	11
207	Selection, Development and Testing of Stainless Steels and Alloys for High-Temperature Recuperator Applications. , 2003, , 763.		11
208	Progress on DCLL Blanket Concept. Fusion Science and Technology, 2013, 64, 623-630.	0.6	11
209	Effect of Specimen Thickness on Microstructural Changes During Oxidation of the NiCrW Alloy 230 at 950–1050°C. Jom, 2015, 67, 2573-2588.	0.9	11
210	The Effect of HVOF Bond Coating with APS Flash Coating on TBC Performance. Oxidation of Metals, 2019, 91, 691-704.	1.0	11
211	Oxidation Behavior of Candidate NiCr Alloys for Engine Exhaust Valves: Part I—Effect of Minor Alloying Elements. Oxidation of Metals, 2021, 95, 157-187.	1.0	11
212	Test Facility for Screening and Evaluating Candidate Materials for Advanced Microturbine Recuperators. , 2002, , 1135.		10
213	High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel. Journal of Engineering for Gas Turbines and Power, 2011, 133, .	O.5	10
214	Performance of advanced turbocharger alloys and coatings at 850–950°C in air with water vapor. Surface and Coatings Technology, 2013, 215, 90-95.	2.2	10
215	High-Temperature Oxidation Life Characteristics of ODS-Fe ₃ Al. Materials Science Forum, 1997, 251-254, 195-202.	0.3	9
216	Growth stress – microstructure relationships for alumina scales. Materials at High Temperatures, 2003, 20, 303-310.	0.5	9

#	Article	IF	CITATIONS
217	Factors Affecting Corrosion Resistance of Recuperator Alloys. , 2003, , 755.		9
218	Austenitic Stainless Steels and Alloys With Improved High-Temperature Performance for Advanced Microturbine Recuperators. , 2004, , 131.		9
219	Comment on "Oxidation of alloys containing aluminum and diffusion in Al2O3―[J. Appl. Phys. 95, 3217 (2004)]. Journal of Applied Physics, 2005, 97, 116111.	1.1	9
220	Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats. Surface and Coatings Technology, 2014, 258, 608-614.	2.2	9
221	The Effect of Environment on Thermal Barrier Coating Lifetime. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	0.5	9
222	Long-Term Oxidation Testing and Lifetime Modeling of Cast and ODS FeCrAl Alloys. Oxidation of Metals, 2017, 87, 215-248.	1.0	9
223	Effect of APS flash bond coatings and curvature on TBC performance on rod specimens. Surface and Coatings Technology, 2019, 378, 124940.	2.2	9
224	A Domestic Program for Liquid Metal PFC Research in Fusion. Journal of Fusion Energy, 2020, 39, 441-447.	0.5	9
225	Long-term oxidation performance of ingot-produced Fe3Al alloys. Materials at High Temperatures, 1999, 16, 1-13.	0.5	9
226	Oxidation of Superalloys in Extreme Environments. , 2010, , .		9
227	Microstructure of thermally grown and deposited alumina films probed with positrons. Physical Review B, 1999, 59, 6675-6688.	1.1	8
228	Compatibility Issues for a High Temperature Dual Coolant Blanket. Fusion Science and Technology, 2007, 52, 829-833.	0.6	8
229	Factors affecting aluminum depletion during cyclic oxidation of Fe-base alumina-forming alloys. Materials at High Temperatures, 2009, 26, 211-216.	0.5	8
230	Effect of water vapour content on thermal barrier coating lifetime. Materials Science and Technology, 2013, 29, 828-834.	0.8	8
231	Materials Considerations for Supercritical CO2 Turbine Cycles. , 2013, , .		8
232	High-temperature materials. , 2017, , 67-104.		8
233	The Effect of Coating Composition and Geometry on Thermal Barrier Coatings Lifetime. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	0.5	8
234	Effect of Water Vapor on Lifetime of 625 and 120 Foils During Oxidation Between 650 and 800 °C. Oxidation of Metals, 2021, 96, 589-612.	1.0	8

IF # ARTICLE CITATIONS Steam Oxidation Behavior of FeCrAl Cladding. Minerals, Metals and Materials Series, 2019, , 1451-1460. Stainless Steels With Improved Oxidation Resistance for Recuperators., 2004, , . 236 8 Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat-Exchangers., 2005, 1011. Evaluation and Characterization of Iron- and Nickel-Based Alloys for Microturbine Recuperators., 7 238 2005, , 945. Effect of Fe–Al substrate mechanical properties on alumina scale morphology. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 497, 2.6 224-230. Comparison of Recuperator Alloy Degradation in Laboratory and Engine Testing. Journal of 240 0.5 7 Engineering for Gas Turbines and Power, 2008, 130, . Interdiffusion behavior of Alâ \in rich oxidation resistant coatings on ferriticâ \in martensitic alloys. 241 0.8 Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 909-920. 3D Microscopy to Assess the Effect of High Temperature Cyclic Oxidation on the Deformation of Cast 242 1.0 7 and ODS FeCrAlY Alloys. Oxidation of Metals, 2019, 91, 327-347. The Cyclic Oxidation behavior of Oxide-Dispersed Î²-NiAl. Materials Research Society Symposia 0.1 Proceedings, 1994, 364, 987. An Analysis of the Potential for Deposition, Erosion, or Corrosion in Gas Turbines Fueled by the 244 6 Products of Biomass Gasification or Combustion., 2000, , . Hot Corrosion of Nickel-Base Alloys by Alkali-Containing Sulfate Deposits. Materials Science Forum, 0.3 2001, 369-372, 571-578. High Temperature Compatibility Issues for Fusion Reactor Structural Materials. Fusion Science and 246 0.6 6 Technology, 2003, 44, 433-440. Morphology, microstructure, and residual stress in EBPVD erbia coatings. Journal of Materials 247 Science, 2007, 42, 5722-5727. Critical Assessment 4: Challenges in developing high temperature materials. Materials Science and 248 0.8 6 Technology, 2014, 30, 1387-1391. Field and Laboratory Evaluations of Commercial and Next-Generation Alumina-Forming Austenitic Foil for Advanced Recuperators. Journal of Engineering for Gas Turbines and Power, 2016, 138, . Development of Creep-Resistant, Alumina-Forming Ferrous Alloys for High-Temperature Structural 250 6 Use., 2018,,. Steam oxidation behavior of Ni-base superalloys 690, 725 and X-750 at 600 and 650â€Â°C. Corrosion 3.0 Science, 2019, 157, 487-497. Steam oxidation of chromium corrosion barrier coatings for sic-based accident tolerant fuel 252 1.36

BRUCE A. PINT

cladding. Journal of Nuclear Materials, 2021, 543, 152561.

#	Article	IF	CITATIONS
253	Compatibility of SiC with ODS FeCrAl in flowing Pb-Li at 600°–700 °C. Fusion Engineering and Design, 2021, 166, 112389.	1.0	6
254	Data analytics approach to predict high-temperature cyclic oxidation kinetics of NiCr-based Alloys. Npj Materials Degradation, 2021, 5, .	2.6	6
255	The effect of Y and Ti on FeCrAl oxidation at 1400 °C. European Physical Journal Special Topics, 1993, 03, C9-247-C9-255.	0.2	6
256	High Temperature Oxidation Lifetime Modeling of Thin-Walled Components. , 2019, , .		6
257	The Performance of Pt-Modified Alumina-Forming Coatings and Model Alloys. , 2008, , .		6
258	Burst and oxidation behavior of Cr-coated Zirlo during simulated LOCA testing. Journal of Nuclear Materials, 2022, 564, 153679.	1.3	6
259	Oxidation-Sulfidation Behavior of Multiphase Mo-Si-B Alloys. Materials Science Forum, 2004, 461-464, 1063-1072.	0.3	5
260	Comparison of Recuperator Alloy Degradation in Laboratory and Engine Testing. , 2006, , 217.		5
261	Alumina-Forming Austenitic Alloys for Advanced Recuperators. , 2007, , .		5
262	Effect of exposure in steam or argon on the creep properties of Ni-based alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2012, 63, 889-895.	0.8	5
263	Lessons Learned in Employing Data Analytics to Predict Oxidation Kinetics and Spallation Behavior of High-Temperature NiCr-Based Alloys. Oxidation of Metals, 2022, 97, 51-76.	1.0	5
264	Characterization of the breakaway al content in alumina-forming alloys. Materials at High Temperatures, 2004, 21, 175-185.	0.5	5
265	Compatibility of Alumina-Forming Austenitic Steels in Static and Flowing Pb. Jom, 2021, 73, 4016-4022.	0.9	5
266	Comprehensive insights into competitive oxidation/sulfidation reactions on binary ferritic alloys at high temperatures. Corrosion Science, 2022, , 110236.	3.0	5
267	The Effect of Various Oxide Dispersions on the Oxidation Resistance of Fe3Al. Materials Research Society Symposia Proceedings, 1994, 364, 1315.	0.1	4
268	The Oxidation Behaviour of ODS Iron Aluminides. , 0, , 183-202.		4
269	Oxide Defects and Damage Processes in Iron-Based Alumina-Formers. Materials Science Forum, 2001, 369-372, 337-344.	0.3	4
270	Design strategies for new oxidation-resistant high temperature alloys. , 2008, , 398-432.		4

#	Article	IF	CITATIONS
271	Inhibited aluminization of an ODS FeCr alloy. Surface and Coatings Technology, 2012, 206, 5036-5041.	2.2	4
272	Characterization of specimens exposed in a Li loop. Journal of Nuclear Materials, 2013, 442, S580-S584.	1.3	4
273	Special Issue on Corrosion–Mechanical Loading Interactions. Oxidation of Metals, 2017, 88, 1-2.	1.0	4
274	Performance of Wrought Superalloys in Extreme Environments. Minerals, Metals and Materials Series, 2018, , 165-178.	0.3	4
275	Compatibility of FeCrAlMo in Flowing Pb-Li at 600°C to 700°C. Fusion Science and Technology, 2021, 77, 761-765.	0.6	4
276	Computational Methods to Accelerate Development of Corrosion Resistant Coatings for Industrial Gas Turbines. Minerals, Metals and Materials Series, 2020, , 824-833.	0.3	4
277	Effect of Air Plasma Sprayed Flash Bond Coatings on Furnace Cycle Lifetime of Disks and Rods. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	0.5	4
278	Development of Alumina-Forming Austenitic Alloys for Advanced Recuperators. , 2009, , .		3
279	Evaluation of Commercial and Next Generation Alumina-Forming Austenitic Foil for Advanced Recuperators. , 2013, , .		3
280	Oxidation, Creep and Fatigue Properties of Bare and Coated 31V Alloy. Jom, 2015, 67, 68-76.	0.9	3
281	A Tracer Study on sCO2 Corrosion with Multiple Oxygen-Bearing Impurities. Oxidation of Metals, 2021, 96, 571-587.	1.0	3
282	Pre-Oxidation to Improve Liquid Metal Compatibility. Oxidation of Metals, 2021, 96, 231-240.	1.0	3
283	The Role of Oxidation Resistance in High Temperature Alloy Selection for a Future with Green Hydrogen. Jom, 2021, 73, 3988-3997.	0.9	3
284	Accelerated oxidation during 1350°C cycling of ytterbium silicate environmental barrier coatings. Journal of the American Ceramic Society, 0, , .	1.9	3
285	An Oxygen Potential Gradient as a Possible Diffusion Driving Force. Materials Research Society Symposia Proceedings, 1998, 527, 497.	0.1	2
286	Evaluation of Commercial Alumina-Forming Austenitic Foil for Advanced Recuperators. , 2011, , .		2
287	Alloy Development for High Temperature Corrosion and Protection. Oxidation of Metals, 2013, 80, 1-1.	1.0	2
288	Effect of Pressure and Thermal Cycling on Compatibility in CO2 for Concentrated Solar Power Applications. , 2017, , .		2

#	Article	IF	CITATIONS
289	Accident Tolerant FeCrAl Fuel Cladding: Current Status Towards Commercialization. Minerals, Metals and Materials Series, 2018, , 165-173.	0.3	2
290	Lifetime modeling for a supercritical CO2-molten salt CSP power block. AIP Conference Proceedings, 2019, , .	0.3	2
291	Effect of Environment on the High Temperature Oxidation Behavior of 718 and 718Plus. , 2014, , .		2
292	Steam Oxidation Behavior of FeCrAl Cladding. Minerals, Metals and Materials Series, 2018, , 235-244.	0.3	2
293	Performance of alloy 600 in flowing commercial Cl salt at 600°-750°C. AlP Conference Proceedings, 2022, , .	0.3	2
294	Environmental Resistance in the Mars Atmosphere. AIP Conference Proceedings, 2005, , .	0.3	1
295	High Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel. , 2010, , .		1
296	Water Vapor Effects in High Temperature Oxidation. Oxidation of Metals, 2013, 79, 443-444.	1.0	1
297	Evaluation of NiCrAl Foil for a Concentrated Solar Power Application. , 2013, , .		1
298	High Temperature Coatings. Oxidation of Metals, 2014, 81, 1-1.	1.0	1
299	Conceptual Design of HFIR Irradiation Experiment for Material Compatibility Study on Liquid Sn Divertor. Plasma and Fusion Research, 2021, 16, 2405040-2405040.	0.3	1
300	The effect of time and temperature on the segregation of foreign ions to grain boundaries in growing α-Al ₂ O ₃ scales. Proceedings Annual Meeting Electron Microscopy Society of America, 1993, 51, 950-951.	0.0	1
301	Characterization of the oxidation-sulfidation of a preoxidized ODS FeCrAl alloy. Proceedings Annual Meeting Electron Microscopy Society of America, 1993, 51, 1146-1147.	0.0	1
302	Effect of environment on the scale formed on oxide dispersion strengthened FeCrAl at 1050°C and 1100°C. Materials at High Temperatures, 2012, 29, 171-180.	0.5	1
303	Ionic segregation on grain boundaries in thermally grown alumina scales. Materials at High Temperatures, 2012, 29, 257-263.	0.5	1
304	Effect of APS Flash Bond Coatings on Furnace Cycle Lifetime of Disks and Rods. , 2019, , .		1
305	Principles of Corrosion in Nuclear Systems: Theory and Analytical Methods. , 2020, , 1-32.		1
306	Interfacial Segregation in Oxide Scales on Nicrai-Based Alloys. Microscopy and Microanalysis, 1997, 3, 785-786.	0.2	0

#	Article	IF	CITATIONS
307	Engineering the Interfacial Chemistry in Metal/Oxide Systems. Materials Research Society Symposia Proceedings, 1999, 586, 133.	0.1	0
308	Enhancing Oxidation Performance by Control of Interfacial Segregation and Microstructural Design. Materials Research Society Symposia Proceedings, 1999, 586, 301.	0.1	0
309	Microstructure and Chemistry of the Oxide Scale and Pt-containing Coatings Deposited on Superalloy N5. Microscopy and Microanalysis, 2012, 18, 1676-1677.	0.2	0
310	Effect of Humidity Level on the Creep Properties of Alloy 903 at 650ŰC. , 2012, , .		0
311	Hot Corrosion and Degradation in Complex Atmospheres. Oxidation of Metals, 2013, 80, 453-454.	1.0	Ο
312	Advanced Characterization Techniques in High-Temperature Oxidation and Corrosion Studies. Oxidation of Metals, 2013, 79, 225-226.	1.0	0
313	High Temperature Corrosion and Protection of Ceramics, Composites and Silicides. Oxidation of Metals, 2013, 80, 205-205.	1.0	Ο
314	Fundamentals and Numerical Simulations in High Temperature Corrosion and Protection. Oxidation of Metals, 2013, 79, 1-1.	1.0	0
315	New Creep-Resistant Cast Alloys with Improved Oxidation Resistance in Water Vapor at 650–800°C. Frontiers in Materials, 2015, 2, .	1.2	Ο
316	Field and Laboratory Evaluations of Commercial and Next Generation Alumina-Forming Austenitic Foil for Advanced Recuperators. , 2015, , .		0
317	The Effect of Environment on TBC Lifetime. , 2015, , .		Ο
318	Special Issue on Oxidation in Water Vapor. Oxidation of Metals, 2017, 87, 403-404.	1.0	0
319	Special Issue on the High-Temperature Corrosion in Mixed Oxidant Environments. Oxidation of Metals, 2017, 87, 679-680.	1.0	Ο
320	Oxidation of New Materials and Composites. Oxidation of Metals, 2017, 88, 235-236.	1.0	0
321	Special Issue on Advances in Relevant Characterization Techniques. Oxidation of Metals, 2017, 88, 421-422.	1.0	Ο
322	High-Temperature Protective Coatings. Oxidation of Metals, 2017, 88, 71-71.	1.0	0
323	Special Issue on Carburization and Metal Dusting. Oxidation of Metals, 2017, 87, 603-604.	1.0	0
324	The Effect of Coating Composition and Geometry on TBC Lifetime. , 2017, , .		0

#	Article	IF	CITATIONS
325	Special Issue on "Fundamentals and Numerical Simulations in High-Temperature Corrosion and Protection Focus Issueâ€: Oxidation of Metals, 2017, 87, 271-272.	1.0	0
326	Quantifying adherence of oxide scales on steels exposed to high temperature and pressure steam. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 1315-1327.	0.8	0
327	Editorial on this Focus Issue on Key Corrosion Topics. Oxidation of Metals, 2021, 96, 1-2.	1.0	0
328	Focus Issue on Unique Materials, Techniques, and Environments. Oxidation of Metals, 2021, 96, 183-184.	1.0	0
329	Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators. , 2010, , .		0
330	Characterization of Pre- and Post-Service Grain Boundary Phases in a Cast Austenitic Steel. , 2011, , .		0
331	The effect of reactive elements on the segregation behavior and microstructure of α-Al ₂ O ₃ scales on β-NiAl. Proceedings Annual Meeting Electron Microscopy Society of America, 1994, 52, 670-671.	0.0	0
332	Factors Affecting TBC Furnace Cycle Lifetime: Temperature, Environment, Structure and Composition. , 2016, , .		0
333	Validation of Lifetime Models for Recuperator Foils Through Long-Term Laboratory and Engine Testing. , 2019, , .		0
334	Characterization of the Benefit of APS Flash Coatings in Improving TBC Lifetime. Minerals, Metals and Materials Series, 2020, , 739-746.	0.3	0
335	Effect of annealing and supercritical CO 2 exposure at 750°C on the tensile properties of stainless steel and Niâ€based structural alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 0, , .	0.8	0
336	The Oxidation of the HiSiMo Cast Irons Alloyed with Cr/Al at 800°C. Oxidation of Metals, 2022, 97, 441-449.	1.0	0
337	Hydrothermal corrosion and steam oxidation behavior comparison of UAM and conventional Zry-4. Journal of Nuclear Materials, 2022, 567, 153806.	1.3	0