Hai-Hui Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6780639/publications.pdf

Version: 2024-02-01

76326 69250 6,732 86 40 citations h-index papers

g-index 96 96 96 10012 docs citations times ranked citing authors all docs

77

#	Article	IF	Citations
1	TCF1 in T cell immunity: a broadened frontier. Nature Reviews Immunology, 2022, 22, 147-157.	22.7	100
2	Tcf1 preprograms the mobilization of glycolysis in central memory CD8+ T cells during recall responses. Nature Immunology, 2022, 23, 386-398.	14.5	26
3	Oncogenic and Tumor Suppressor Functions for Lymphoid Enhancer Factor 1 in E2a-/- T Acute Lymphoblastic Leukemia. Frontiers in Immunology, 2022, 13, 845488.	4.8	8
4	Ectopic Tcf1 expression instills a stem-like program in exhausted CD8+ T cells to enhance viral and tumor immunity. Cellular and Molecular Immunology, 2021, 18, 1262-1277.	10.5	49
5	Exploring the stage-specific roles of Tcf-1 in T cell development and malignancy at single-cell resolution. Cellular and Molecular Immunology, 2021, 18, 644-659.	10.5	18
6	The E protein-TCF1 axis controls γδTÂcell development and effector fate. Cell Reports, 2021, 34, 108716.	6.4	18
7	Protective function and durability of mouse lymph node-resident memory CD8+ T cells. ELife, 2021, 10, .	6.0	14
8	SRSF1 plays a critical role in invariant natural killer T cell development and function. Cellular and Molecular Immunology, 2021, 18, 2502-2515.	10.5	12
9	T _{FH} cells depend on Tcf1-intrinsic HDAC activity to suppress CTLA4 and guard B-cell help function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
10	Targeting Cbx3/HP1 \hat{I}^3 Induces LEF-1 and IL-21R to Promote Tumor-Infiltrating CD8 T-Cell Persistence. Frontiers in Immunology, 2021, 12, 738958.	4.8	2
11	Tcf1 and Lef1 provide constant supervision to matureÂCD8+ T cell identity and function by organizing genomic architecture. Nature Communications, 2021, 12, 5863.	12.8	41
12	Sepsis leads to lasting changes in phenotype and function of memory CD8 T cells. ELife, 2021, 10, .	6.0	19
13	Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas. Science Advances, 2021, 7, eabj0512.	10.3	6
14	Coactivation of NF-κB and Notch signaling is sufficient to induce B-cell transformation and enables B-myeloid conversion. Blood, 2020, 135, 108-120.	1.4	14
15	Infection-induced plasmablasts are a nutrient sink that impairs humoral immunity to malaria. Nature Immunology, 2020, 21, 790-801.	14.5	67
16	Peripherally induced brain tissue–resident memory CD8+ T cells mediate protection against CNS infection. Nature Immunology, 2020, 21, 938-949.	14.5	75
17	\hat{I}^2 -catenin and \hat{I}^3 -catenin are dispensable for T lymphocytes and AML leukemic stem cells. ELife, 2020, 9, .	6.0	16
18	The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nature Immunology, 2019, 20, 1150-1160.	14.5	81

#	Article	IF	CITATIONS
19	Cutting Edge: Tcf1 Instructs T Follicular Helper Cell Differentiation by Repressing Blimp1 in Response to Acute Viral Infection. Journal of Immunology, 2019, 203, 801-806.	0.8	27
20	Lrp5 and Lrp6 are required for maintaining selfâ€renewal and differentiation of hematopoietic stem cells. FASEB Journal, 2019, 33, 5615-5625.	0.5	20
21	TCF1 and LEF1 Control Treg Competitive Survival and Tfr Development to Prevent Autoimmune Diseases. Cell Reports, 2019, 27, 3629-3645.e6.	6.4	90
22	TCF-1 limits the formation of Tc17 cells via repression of the MAF–RORγt axis. Journal of Experimental Medicine, 2019, 216, 1682-1699.	8.5	48
23	Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. Journal of Experimental Medicine, 2019, 216, 847-866.	8.5	72
24	The transcription factor c-Myb regulates CD8+ T cell stemness and antitumor immunity. Nature Immunology, 2019, 20, 337-349.	14.5	113
25	Control of Lymphocyte Fate, Infection, and Tumor Immunity by TCF-1. Trends in Immunology, 2019, 40, 1149-1162.	6.8	70
26	Bystander responses impact accurate detection of murine and human antigen-specific CD8+ T cells. Journal of Clinical Investigation, 2019, 129, 3894-3908.	8.2	29
27	Stabilization of NF-κB-Inducing Kinase Suppresses MLL-AF9-Induced Acute Myeloid Leukemia. Cell Reports, 2018, 22, 350-358.	6.4	28
28	Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nature Communications, 2018, 9, 5452.	12.8	53
29	Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathogens, 2018, 14, e1007405.	4.7	46
30	Stage-specific epigenetic regulation of CD4 expression by coordinated enhancer elements during T cell development. Nature Communications, 2018, 9, 3594.	12.8	29
31	Tle corepressors are differentially partitioned to instruct CD8 ⁺ T cell lineage choice and identity. Journal of Experimental Medicine, 2018, 215, 2211-2226.	8.5	32
32	Tcfl., 2018,, 5327-5333.		1
33	Cutting Edge: β-Catenin–Interacting Tcf1 Isoforms Are Essential for Thymocyte Survival but Dispensable for Thymic Maturation Transitions. Journal of Immunology, 2017, 198, 3404-3409.	0.8	25
34	The transcription factor Runx3 guards cytotoxic CD8+ effector T cells against deviation towards follicular helper T cell lineage. Nature Immunology, 2017, 18, 931-939.	14.5	113
35	Tcf1 at the crossroads of CD4+ and CD8+ T cell identity. Frontiers in Biology, 2017, 12, 83-93.	0.7	9
36	CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. Journal of Experimental Medicine, 2017, 214, 39-47.	8.5	91

#	Article	IF	Citations
37	MLL4 keeps Foxp3 in the loop. Nature Immunology, 2017, 18, 957-958.	14.5	5
38	Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1. Cell Stem Cell, 2017, 21, 359-373.e5.	11.1	40
39	The differentiation of ROR- \hat{l}^3 t expressing iNKT17 cells is orchestrated by Runx1. Scientific Reports, 2017, 7, 7018.	3.3	25
40	Differential Requirements for Tcf1 Long Isoforms in CD8+ and CD4+ T Cell Responses to Acute Viral Infection. Journal of Immunology, 2017, 199, 911-919.	0.8	53
41	Time and Antigen-Stimulation History Influence Memory CD8 T Cell Bystander Responses. Frontiers in Immunology, 2017, 8, 634.	4.8	17
42	Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathogens, 2017, 13, e1006569.	4.7	47
43	Lef1-dependent hypothalamic neurogenesis inhibits anxiety. PLoS Biology, 2017, 15, e2002257.	5.6	31
44	CD8 + T Cells Utilize Highly Dynamic Enhancer Repertoires and Regulatory Circuitry in Response to Infections. Immunity, 2016, 45, 1341-1354.	14.3	79
45	Hematopoietic and Leukemic Stem Cells Have Distinct Dependence on Tcf1 and Lef1 Transcription Factors. Journal of Biological Chemistry, 2016, 291, 11148-11160.	3.4	33
46	Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity. Nature Immunology, 2016, 17, 695-703.	14.5	188
47	Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature, 2016, 537, 417-421.	27.8	1,371
48	CD8 + T Lymphocyte Self-Renewal during Effector Cell Determination. Cell Reports, 2016, 17, 1773-1782.	6.4	101
49	Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses. ELife, $2016, 5, .$	6.0	89
50	\hat{l}^2 -Catenin is required for the differentiation of iNKT2 and iNKT17 cells that augment IL-25-dependent lung inflammation. BMC Immunology, 2015, 16, 62.	2.2	17
51	LEF-1 and TCF-1 orchestrate TFH differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nature Immunology, 2015, 16, 980-990.	14.5	272
52	The transcription factor lymphoid enhancer factor 1 controls invariant natural killer T cell expansion and Th2-type effector differentiation. Journal of Experimental Medicine, 2015, 212, 793-807.	8.5	68
53	TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nature Immunology, 2015, 16, 1044-1050.	14.5	228
54	Cell-autonomous requirement for TCF1 and LEF1 in the development of Natural Killer T cells. Molecular Immunology, 2015, 68, 484-489.	2.2	33

#	Article	IF	CITATIONS
55	The Timing of Stimulation and IL-2 Signaling Regulate Secondary CD8 T Cell Responses. PLoS Pathogens, 2015, 11, e1005199.	4.7	14
56	Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection. PLoS Pathogens, 2015, 11, e1005219.	4.7	46
57	Sox2 modulates Lef-1 expression during airway submucosal gland development. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L645-L660.	2.9	22
58	From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunologic Research, 2014, 59, 45-55.	2.9	56
59	TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4+ T cell fate and interact with Runx3 to silence Cd4 in CD8+ T cells. Nature Immunology, 2014, 15, 646-656.	14.5	158
60	IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. Journal of Experimental Medicine, 2014, 211, 105-120.	8.5	131
61	Identification of hematopoietic-specific regulatory elements from the CD45 gene and use for lentiviral tracking of transplanted cells. Experimental Hematology, 2014, 42, 761-772.e10.	0.4	3
62	TCF-1 mediates repression of Notch pathway in T lineage–committed early thymocytes. Blood, 2013, 121, 4008-4009.	1.4	14
63	Cutting Edge: Generation of Memory Precursors and Functional Memory CD8+ T Cells Depends on T Cell Factor-1 and Lymphoid Enhancer-Binding Factor-1. Journal of Immunology, 2012, 189, 2722-2726.	0.8	90
64	The TCF-1 and LEF-1 Transcription Factors Have Cooperative and Opposing Roles in T Cell Development and Malignancy. Immunity, 2012, 37, 813-826.	14.3	173
65	Targeting Tetramer-Forming GABPβ Isoforms Impairs Self-Renewal of Hematopoietic and Leukemic Stem Cells. Cell Stem Cell, 2012, 11, 207-219.	11.1	29
66	Regulation of mature T cell responses by the Wnt signaling pathway. Annals of the New York Academy of Sciences, 2012, 1247, 16-33.	3.8	76
67	Fidelity of a BAC-EGFP transgene in reporting dynamic expression of IL-7Rα in T cells. Transgenic Research, 2012, 21, 201-215.	2.4	3
68	GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells. Blood, 2011, 117, 2166-2178.	1.4	69
69	Repetitive Antigen Stimulation Induces Stepwise Transcriptome Diversification but Preserves a Core Signature of Memory CD8+ T Cell Differentiation. Immunity, 2010, 33, 128-140.	14.3	224
70	Differentiation and Persistence of Memory CD8+ T Cells Depend on T Cell Factor 1. Immunity, 2010, 33, 229-240.	14.3	555
71	Critical Requirement of GABPα for Normal T Cell Development. Journal of Biological Chemistry, 2010, 285, 10179-10188.	3.4	25
72	Constitutive Activation of Wnt Signaling Favors Generation of Memory CD8 T Cells. Journal of Immunology, 2010, 184, 1191-1199.	0.8	157

#	Article	IF	CITATIONS
73	The IL-15 receptor α chain cytoplasmic domain is critical for normal IL-15Rα function but is not required for trans-presentation. Blood, 2008, 112, 4411-4419.	1.4	22
74	Targeting the GA Binding Protein \hat{I}^21L Isoform Does Not Perturb Lymphocyte Development and Function. Molecular and Cellular Biology, 2008, 28, 4300-4309.	2.3	15
75	GABPÎ ² 2 Is Dispensible for Normal Lymphocyte Development but Moderately Affects B Cell Responses. Journal of Biological Chemistry, 2008, 283, 24326-24333.	3.4	11
76	Constitutive Expression of IL-7 Receptor α Does Not Support Increased Expansion or Prevent Contraction of Antigen-Specific CD4 or CD8 T Cells following Listeria monocytogenes Infection. Journal of Immunology, 2008, 180, 2855-2862.	0.8	53
77	GAâ€binding protein regulates KIS gene expression, cell migration, and cell cycle progression. FASEB Journal, 2008, 22, 225-235.	0.5	20
78	The Transcription Factor GABP Is a Critical Regulator of B Lymphocyte Development. Immunity, 2007, 26, 421-431.	14.3	47
79	Maturation stage–specific regulation of megakaryopoiesis by pointed-domain Ets proteins. Blood, 2006, 108, 2198-2206.	1.4	73
80	Interleukin-21 Receptor Gene Induction in Human T Cells Is Mediated by T-Cell Receptor-Induced Sp1 Activity. Molecular and Cellular Biology, 2005, 25, 9741-9752.	2.3	46
81	GA binding protein regulates interleukin 7 receptor α-chain gene expression in T cells. Nature Immunology, 2004, 5, 1036-1044.	14.5	125
82	IL-2 negatively regulates IL-7 receptor chain expression in activated T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13759-13764.	7.1	161
83	Serine phosphorylation of Stat5 proteins in lymphocytes stimulated with IL-2. International Immunology, 2002, 14, 1263-1271.	4.0	22
84	Store Depletion by Caffeine/Ryanodine Activates Capacitative Ca2+ Entry in Nonexcitable A549 Cells. Journal of Biochemistry, 2000, 128, 329-336.	1.7	17
85	Flux of the l-Serine Metabolism in Rabbit, Human, and Dog Livers. Journal of Biological Chemistry, 1999, 274, 16028-16033.	3.4	49
86	Flux of the l-Serine Metabolism in Rat Liver. Journal of Biological Chemistry, 1999, 274, 16020-16027.	3.4	41