
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6779267/publications.pdf Version: 2024-02-01

ROBERTO ROLLI

#	Article	IF	CITATIONS
1	Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, The, 2011, 378, 1847-1857.	13.7	1,241
2	Molecular and Cellular Mechanisms of Myocardial Stunning. Physiological Reviews, 1999, 79, 609-634.	28.8	938
3	Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14068-14073.	7.1	925
4	Adult Bone Marrow–Derived Cells for Cardiac Repair. Archives of Internal Medicine, 2007, 167, 989.	3.8	810
5	The Late Phase of Preconditioning. Circulation Research, 2000, 87, 972-983.	4.5	670
6	Cardioprotective Function of Inducible Nitric Oxide Synthase and Role of Nitric Oxide in Myocardial Ischemia and Preconditioning: an Overview of a Decade of Research. Journal of Molecular and Cellular Cardiology, 2001, 33, 1897-1918.	1.9	541
7	Cell Therapy for Heart Failure. Circulation Research, 2013, 113, 810-834.	4.5	497
8	Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3766-3771.	7.1	458
9	Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9226-9231.	7.1	423
10	Ischemic Preconditioning Induces Selective Translocation of Protein Kinase C Isoforms Îμ and η in the Heart of Conscious Rabbits Without Subcellular Redistribution of Total Protein Kinase C Activity. Circulation Research, 1997, 81, 404-414.	4.5	423
11	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
12	Administration of Cardiac Stem Cells in Patients With Ischemic Cardiomyopathy: The SCIPIO Trial. Circulation, 2012, 126, S54-64.	1.6	409
13	Myocardial Protection at a Crossroads. Circulation Research, 2004, 95, 125-134.	4.5	404
14	The ubiquitous role of nitric oxide in cardioprotection. Journal of Molecular and Cellular Cardiology, 2006, 40, 16-23.	1.9	390
15	Guidelines for experimental models of myocardial ischemia and infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H812-H838.	3.2	372
16	Life and Death of Cardiac Stem Cells. Circulation, 2006, 113, 1451-1463.	1.6	360
17	Intracoronary Administration of Cardiac Progenitor Cells Alleviates Left Ventricular Dysfunction in Rats With a 30-Day-Old Infarction. Circulation, 2010, 121, 293-305.	1.6	359
18	Cells Expressing Early Cardiac Markers Reside in the Bone Marrow and Are Mobilized Into the Peripheral Blood After Myocardial Infarction. Circulation Research, 2004, 95, 1191-1199.	4.5	325

#	Article	IF	CITATIONS
19	Nuclear Factor-κB Plays an Essential Role in the Late Phase of Ischemic Preconditioning in Conscious Rabbits. Circulation Research, 1999, 84, 1095-1109.	4.5	297
20	The Protective Effect of Late Preconditioning Against Myocardial Stunning in Conscious Rabbits Is Mediated by Nitric Oxide Synthase. Circulation Research, 1997, 81, 1094-1107.	4.5	272
21	Local Activation or Implantation of Cardiac Progenitor Cells Rescues Scarred Infarcted Myocardium Improving Cardiac Function. Circulation Research, 2008, 103, 107-116.	4.5	266
22	Isoform-Selective Activation of Protein Kinase C by Nitric Oxide in the Heart of Conscious Rabbits. Circulation Research, 1999, 84, 587-604.	4.5	249
23	Nitric Oxide Synthase Is the Mediator of Late Preconditioning Against Myocardial Infarction in Conscious Rabbits. Circulation, 1998, 98, 441-449.	1.6	240
24	Transgenic Overexpression of Constitutively Active Protein Kinase C ε Causes Concentric Cardiac Hypertrophy. Circulation Research, 2000, 86, 1218-1223.	4.5	239
25	Nitric Oxide Donors Induce Late Preconditioning Against Myocardial Stunning and Infarction in Conscious Rabbits via an Antioxidant-Sensitive Mechanism. Circulation Research, 1998, 83, 73-84.	4.5	230
26	Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovascular Research, 2002, 55, 506-519.	3.8	220
27	Intracoronary Delivery of Autologous Cardiac Stem Cells Improves Cardiac Function in a Porcine Model of Chronic Ischemic Cardiomyopathy. Circulation, 2013, 128, 122-131.	1.6	214
28	Evidence That Late Preconditioning Against Myocardial Stunning in Conscious Rabbits Is Triggered by the Generation of Nitric Oxide. Circulation Research, 1997, 81, 42-52.	4.5	211
29	Preconditioning of Human Myocardium With Adenosine During Coronary Angioplasty. Circulation, 1997, 95, 2500-2507.	1.6	205
30	New Horizons in Cardioprotection. Circulation, 2011, 124, 1172-1179.	1.6	200
31	Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1649-H1653.	3.2	193
32	Vascular endothelial growth factor in heart failure. Nature Reviews Cardiology, 2013, 10, 519-530.	13.7	191
33	Role of the JAK–STAT Pathway in Protection Against Myocardial Ischemia/Reperfusion Injury. Trends in Cardiovascular Medicine, 2003, 13, 72-79.	4.9	189
34	IL-6 plays an obligatory role in late preconditioning via JAK?STAT signaling and upregulation of iNOS and COX-2. Cardiovascular Research, 2004, 64, 61-71.	3.8	183
35	Notch1 regulates the fate of cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15529-15534.	7.1	177
36	Preconditioning: a paradigm shift in the biology of myocardial ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H19-H27.	3.2	168

#	Article	IF	CITATIONS
37	The NHLBI-Sponsored Consortium for preclinicAl assESsment of cARdioprotective Therapies (CAESAR). Circulation Research, 2015, 116, 572-586.	4.5	164
38	Formation of large coronary arteries by cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1668-1673.	7.1	162
39	Demonstration of Selective Protein Kinase C–Dependent Activation of Src and Lck Tyrosine Kinases During Ischemic Preconditioning in Conscious Rabbits. Circulation Research, 1999, 85, 542-550.	4.5	161
40	Role of Nitric Oxide in Myocardial Preconditioning. Annals of the New York Academy of Sciences, 2002, 962, 18-41.	3.8	160
41	c-kit+ Cardiac Stem Cells Alleviate Post-Myocardial Infarction Left Ventricular Dysfunction Despite Poor Engraftment and Negligible Retention in the Recipient Heart. PLoS ONE, 2014, 9, e96725.	2.5	158
42	Delayed Preconditioning-Mimetic Action of Nitroglycerin in Patients Undergoing Coronary Angioplasty. Circulation, 2001, 103, 2935-2941.	1.6	157
43	Selective Activation of A 3 Adenosine Receptors With N 6 -(3-lodobenzyl)Adenosine-5â€2- N -Methyluronamide Protects Against Myocardial Stunning and Infarction Without Hemodynamic Changes in Conscious Rabbits. Circulation Research, 1997, 80, 800-809.	4.5	154
44	Inducible Nitric Oxide Synthase Modulates Cyclooxygenase-2 Activity in the Heart of Conscious Rabbits During the Late Phase of Ischemic Preconditioning. Circulation Research, 2002, 90, 602-608.	4.5	150
45	Long-Term Outcome of Administration of c-kit ^{POS} Cardiac Progenitor Cells After Acute Myocardial Infarction. Circulation Research, 2016, 118, 1091-1105.	4.5	144
46	Demonstration of an early and a late phase of ischemic preconditioning in mice. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1375-H1387.	3.2	141
47	Gene Therapy With Extracellular Superoxide Dismutase Protects Conscious Rabbits Against Myocardial Infarction. Circulation, 2001, 103, 1893-1898.	1.6	140
48	Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. American Heart Journal, 2008, 156, 216-226.e9.	2.7	140
49	Transplantation of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells Attenuates Left Ventricular Dysfunction and Remodeling After Myocardial Infarction. Stem Cells, 2008, 26, 1646-1655.	3.2	138
50	Administration of a CO-releasing molecule induces late preconditioning against myocardial infarction. Journal of Molecular and Cellular Cardiology, 2005, 38, 127-134.	1.9	137
51	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	2.2	133
52	Clinical Studies of Cell Therapy in Cardiovascular Medicine. Circulation Research, 2018, 123, 266-287.	4.5	129
53	PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1468-H1481.	3.2	128
54	A ₁ or A ₃ Adenosine Receptors Induce Late Preconditioning Against Infarction in Conscious Rabbits by Different Mechanisms. Circulation Research, 2001, 88, 520-528.	4.5	127

#	Article	IF	CITATIONS
55	Role of the Protein Kinase C-ε–Raf-1–MEK-1/2–p44/42 MAPK Signaling Cascade in the Activation of Signal Transducers and Activators of Transcription 1 and 3 and Induction of Cyclooxygenase-2 After Ischemic Preconditioning. Circulation, 2005, 112, 1971-1978.	1.6	126
56	Bradykinin-induced preconditioning in patients undergoing coronary angioplasty. Journal of the American College of Cardiology, 1999, 34, 639-650.	2.8	123
57	Aldose Reductase Is an Obligatory Mediator of the Late Phase of Ischemic Preconditioning. Circulation Research, 2002, 91, 240-246.	4.5	120
58	Biphasic response of cardiac NO synthase isoforms to ischemic preconditioning in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2360-H2371.	3.2	118
59	Basic and clinical aspects of myocardial stunning. Progress in Cardiovascular Diseases, 1998, 40, 477-516.	3.1	114
60	Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2348-H2355.	3.2	114
61	A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Research in Cardiology, 2013, 108, 346.	5.9	114
62	"String Theory―of c-kit ^{pos} Cardiac Cells. Circulation Research, 2015, 116, 1216-1230.	4.5	113
63	Cardiac Myocyte–Specific Expression of Inducible Nitric Oxide Synthase Protects Against Ischemia/Reperfusion Injury by Preventing Mitochondrial Permeability Transition. Circulation, 2008, 118, 1970-1978.	1.6	109
64	Concise Review: Review and Perspective of Cell Dosage and Routes of Administration From Preclinical and Clinical Studies of Stem Cell Therapy for Heart Disease. Stem Cells Translational Medicine, 2016, 5, 186-191.	3.3	109
65	Effects of anesthesia on echocardiographic assessment of left ventricular structure and function in rats. Basic Research in Cardiology, 2007, 102, 28-41.	5.9	107
66	PKCÎμ modulates NF-κB and AP-1 via mitogen-activated protein kinases in adult rabbit cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1679-H1689.	3.2	106
67	Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Research in Cardiology, 2011, 106, 849-864.	5.9	106
68	Adult bone marrow–derived cells: Regenerative potential, plasticity, and tissue commitment. Basic Research in Cardiology, 2005, 100, 494-503.	5.9	105
69	New Paradigms in Cell Therapy. Circulation Research, 2018, 123, 138-158.	4.5	105
70	Activation of the complement system by recombinant tissue plasminogen activator. Journal of the American College of Cardiology, 1987, 10, 627-632.	2.8	103
71	Repeated Administrations of Cardiac Progenitor Cells Are Markedly More Effective Than a Single Administration. Circulation Research, 2016, 119, 635-651.	4.5	103
72	Protein Kinase C ε–Src Modules Direct Signal Transduction in Nitric Oxide–Induced Cardioprotection. Circulation Research, 2001, 88, 1306-1313.	4.5	101

#	Article	IF	CITATIONS
73	Formation of protein kinase Cε-Lck signaling modules confers cardioprotection. Journal of Clinical Investigation, 2002, 109, 499-507.	8.2	101
74	Time Course of Late Preconditioning Against Myocardial Stunning in Conscious Pigs. Circulation Research, 1996, 79, 424-434.	4.5	99
75	Gene Therapy With Extracellular Superoxide Dismutase Attenuates Myocardial Stunning in Conscious Rabbits. Circulation, 1998, 98, 1438-1448.	1.6	98
76	Nitroglycerin Induces Late Preconditioning Against Myocardial Infarction in Conscious Rabbits Despite Development of Nitrate Tolerance. Circulation, 2001, 104, 694-699.	1.6	97
77	Cardiac stem cells and myocardial disease. Journal of Molecular and Cellular Cardiology, 2008, 45, 505-513.	1.9	97
78	Evidence for an essential role of cyclooxygenase-2 as a mediator of the late phase of ischemic preconditioning in mice. Basic Research in Cardiology, 2000, 95, 479-484.	5.9	94
79	Delayed Adaptation of the Heart to Stress: Late Preconditioning. Stroke, 2004, 35, 2676-2679.	2.0	94
80	Rationale and Design of the CONCERT-HF Trial (Combination of Mesenchymal and c-kit ⁺) Tj ETQq0	0 Q rgBT /	Overlock 10
81	Mechanism of cyclooxygenase-2 upregulation in late preconditioning. Journal of Molecular and Cellular Cardiology, 2003, 35, 525-537.	1.9	92
82	Human Cardiac Stem Cells Isolated from Atrial Appendages Stably Express c-kit. PLoS ONE, 2011, 6, e27719.	2.5	91
83	The Heme Oxygenase 1 Inducer (CoPP) Protects Human Cardiac Stem Cells against Apoptosis through Activation of the Extracellular Signal-regulated Kinase (ERK)/NRF2 Signaling Pathway and Cytokine Release. Journal of Biological Chemistry, 2012, 287, 33720-33732.	3.4	89
84	A Phase <scp>II</scp> study of autologous mesenchymal stromal cells and câ€kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the <scp>CCTRN CONCERTâ€HF</scp> trial. European Journal of Heart Failure, 2021, 23, 661-674.	7.1	89
85	A murine model of inducible, cardiac-specific deletion of STAT3: Its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 2011, 50, 589-597.	1.9	87
86	Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCε signaling and cardioprotection. Journal of Molecular and Cellular Cardiology, 2008, 44, 1016-1022.	1.9	86
87	Nitric oxide triggers late preconditioning against myocardial infarction in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2931-H2936.	3.2	83
88	PKCε activation induces dichotomous cardiac phenotypes and modulates PKCε-RACK interactions and RACK expression. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H946-H955.	3.2	82

89	Ischemic Preconditioning Upregulates Inducible Nitric Oxide Synthase in Cardiac Myocyte. Journal of Molecular and Cellular Cardiology, 2002, 34, 5-15.	1.9	82
	Postinfarct Cytobing Therapy Regenerates Cardiac Tissue and Improves Left Ventricular Function		

90Postinfarct Cytokine Therapy Regenerates Cardiac Tissue and Improves Left Ventricular Function.
Circulation Research, 2006, 98, 1098-1105.4.582

#	Article	lF	CITATIONS
91	Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. Journal of the American College of Cardiology, 2017, 70, 766-775.	2.8	82
92	Formation of protein kinase Cε-Lck signaling modules confers cardioprotection. Journal of Clinical Investigation, 2002, 109, 499-507.	8.2	79
93	Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium. Journal of Molecular and Cellular Cardiology, 2012, 52, 228-236.	1.9	78
94	Gene Dosage-Dependent Effects of Cardiac-Specific Overexpression of the A3Adenosine Receptor. Circulation Research, 2002, 91, 165-172.	4.5	77
95	Development of an NIH Consortium for PreclinicAl AssESsment of CARdioprotective Therapies (CAESAR): A Paradigm Shift in Studies of Infarct Size Limitation. Journal of Cardiovascular Pharmacology and Therapeutics, 2011, 16, 332-339.	2.0	77
96	Ischemic Preconditioning Increases iNOS Transcript Levels in Conscious Rabbits via a Nitric Oxide-dependent Mechanism. Journal of Molecular and Cellular Cardiology, 1999, 31, 1469-1481.	1.9	76
97	Gene Therapy With Inducible Nitric Oxide Synthase Protects Against Myocardial Infarction via a Cyclooxygenase-2–Dependent Mechanism. Circulation Research, 2003, 92, 741-748.	4.5	76
98	Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Research in Cardiology, 2017, 112, 18.	5.9	76
99	Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 2008, 44, 865-873.	1.9	75
100	Targeted Deletion of the A3Adenosine Receptor Confers Resistance to Myocardial Ischemic Injury and does not Prevent Early Preconditioning. Journal of Molecular and Cellular Cardiology, 2001, 33, 825-830.	1.9	74
101	Endothelial Nitric Oxide Synthase Plays an Obligatory Role in the Late Phase of Ischemic Preconditioning by Activating the Protein Kinase Cε–p44/42 Mitogen-Activated Protein Kinase–pSer-Signal Transducers and Activators of Transcription1/3 Pathway. Circulation, 2007, 116, 535-544.	1.6	73
102	Transplantation of expanded bone marrowâ€derived very small embryonicâ€like stem cells (VSELâ€6Cs) improves left ventricular function and remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 2011, 15, 1319-1328.	3.6	73
103	PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1771-H1785.	3.2	69
104	STAT3 Signaling in B Cells Is Critical for Germinal Center Maintenance and Contributes to the Pathogenesis of Murine Models of Lupus. Journal of Immunology, 2016, 196, 4477-4486.	0.8	69
105	Detailed Analysis of Bone Marrow From Patients With Ischemic Heart Disease and Left Ventricular Dysfunction. Circulation Research, 2014, 115, 867-874.	4.5	65
106	The Early and Late Phases of Ischemic Preconditioning. Circulation Research, 1997, 80, 730-742.	4.5	65
107	Enhanced PKCβII translocation and PKCβII-RACK1 interactions in PKCε-induced heart failure: a role for RACK1. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2500-H2510.	3.2	64
108	Tumor necrosis factor-? does not modulate ischemia/reperfusion injury in na�ve myocardium but is essential for the development of late preconditioning*1. Journal of Molecular and Cellular Cardiology, 2004, 37, 51-61.	1.9	64

#	Article	IF	CITATIONS
109	The late phase of preconditioning and its natural clinical application—gene therapy. Heart Failure Reviews, 2007, 12, 189-199.	3.9	64
110	HO-1 induction by HIF-1: a new mechanism for delayed cardioprotection?. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H522-H524.	3.2	63
111	Impact of Cell Therapy on Myocardial Perfusion and Cardiovascular Outcomes in Patients With Angina Refractory to Medical Therapy. Circulation Research, 2016, 118, 984-993.	4.5	63
112	Cardiac Progenitor Cells and Bone Marrow-Derived Very Small Embryonic-Like Stem Cells for Cardiac Repair After Myocardial Infarction. Circulation Journal, 2010, 74, 390-404.	1.6	62
113	Cardioprotection by postconditioning in conscious rats is limited to coronary occlusions <45 min. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2308-H2317.	3.2	60
114	Physiological Biomimetic Culture System for Pig and Human Heart Slices. Circulation Research, 2019, 125, 628-642.	4.5	60
115	Repeated Cell Therapy. Circulation Research, 2017, 120, 1072-1074.	4.5	57
116	Cardioprotection Afforded by Inducible Nitric Oxide Synthase Gene Therapy Is Mediated by Cyclooxygenase-2 via a Nuclear Factor-κB–Dependent Pathway. Circulation, 2007, 116, 1577-1584.	1.6	54
117	Protein <i>O</i> -GlcNAcylation Is a Novel Cytoprotective Signal in Cardiac Stem Cells. Stem Cells, 2013, 31, 765-775.	3.2	54
118	Differential role of KATP channels in late preconditioning against myocardial stunning and infarction in rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2350-H2359.	3.2	53
119	Cardioprotection During the Final Stage of the Late Phase of Ischemic Preconditioning Is Mediated by Neuronal NO Synthase in Concert With Cyclooxygenase-2. Circulation Research, 2004, 95, 84-91.	4.5	53
120	Cardiac-specific Abrogation of NF- κ B Activation in Mice by Transdominant Expression of a Mutant Iκ B α. Journal of Molecular and Cellular Cardiology, 2001, 33, 161-173.	1.9	52
121	Cell therapy in patients with heart failure: a comprehensive review and emerging concepts. Cardiovascular Research, 2022, 118, 951-976.	3.8	52
122	Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H281-H291.	3.2	51
123	Prostacyclin attenuates oxidative damage of myocytes by opening mitochondrial ATP-sensitive K+ channels via the EP3 receptor. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2093-H2101.	3.2	51
124	Increased Risk of Adverse Neurocognitive Outcomes With Proprotein Convertase Subtilisin-Kexin Type 9 Inhibitors. Circulation: Cardiovascular Quality and Outcomes, 2017, 10, .	2.2	51
125	Gene Transfer of Inducible Nitric Oxide Synthase Affords Cardioprotection by Upregulating Heme Oxygenase-1 Via a Nuclear Factor-κB-Dependent Pathway. Circulation, 2009, 120, 1222-1230.	1.6	50
126	Late preconditioning induced by NO donors, adenosine A1 receptor agonists, and δ1-opioid receptor agonists is mediated by iNOS. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2251-H2257.	3.2	48

#	Article	IF	CITATIONS
127	Translational Research in Cardiovascular Repair. Circulation Research, 2018, 122, 310-318.	4.5	48
128	C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways. PLoS ONE, 2015, 10, e0140798.	2.5	47
129	Repeated Administrations of Cardiac Progenitor Cells Are Superior to a Single Administration of an Equivalent Cumulative Dose. Journal of the American Heart Association, 2018, 7, .	3.7	47
130	Clutamine Regulates Cardiac Progenitor Cell Metabolism and Proliferation. Stem Cells, 2015, 33, 2613-2627.	3.2	46
131	Evaluation of Cell Therapy on Exercise Performance and Limb Perfusion in Peripheral Artery Disease. Circulation, 2017, 135, 1417-1428.	1.6	46
132	Bifunctional Role of Protein Tyrosine Kinases in Late Preconditioning Against Myocardial Stunning in Conscious Rabbits. Circulation Research, 1999, 85, 1154-1163.	4.5	45
133	COX-2-derived prostacyclin mediates opioid-induced late phase of preconditioning in isolated rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2534-H2543.	3.2	45
134	Delayed Preconditioning-Mimetic Actions of Nitroglycerin in Patients Undergoing Exercise Tolerance Tests. Circulation, 2005, 111, 2565-2571.	1.6	45
135	Gene therapy with iNOS provides long-term protection against myocardial infarction without adverse functional consequences. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H584-H589.	3.2	45
136	Bone Marrow Mononuclear Cell Therapy for Acute Myocardial Infarction. Circulation Research, 2014, 114, 1564-1568.	4.5	45
137	Myocardial Reparative Properties of Cardiac Mesenchymal Cells IsolatedÂonÂtheÂBasis of Adherence. Journal of the American College of Cardiology, 2017, 69, 1824-1838.	2.8	45
138	Genetic background, gender, age, body temperature, and arterial blood pH have a major impact on myocardial infarct size in the mouse and need to be carefully measured and/or taken into account: results of a comprehensive analysis of determinants of infarct size in 1,074 mice. Basic Research in Cardiology, 2012, 107, 288.	5.9	44
139	Nitroglycerin induces late preconditioning against myocardial stunning via a PKC-dependent pathway. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2488-H2494.	3.2	43
140	Hypercholesterolemia Abrogates Late Preconditioning via a Tetrahydrobiopterin-Dependent Mechanism in Conscious Rabbits. Circulation, 2005, 112, 2149-2156.	1.6	43
141	Cardiac Stem Cell Therapy for Cardiac Repair. Current Treatment Options in Cardiovascular Medicine, 2014, 16, 324.	0.9	43
142	Adenosine receptor subtypes in the heart: therapeutic opportunities and challenges. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1113-H1116.	3.2	42
143	The role of TNF-α receptors p55 and p75 in acute myocardial ischemia/reperfusion injury and late preconditioning. Journal of Molecular and Cellular Cardiology, 2008, 45, 735-741.	1.9	42
144	Basic and Translational Research in Cardiac Repair and Regeneration. Journal of the American College of Cardiology, 2021, 78, 2092-2105.	2.8	42

#	Article	IF	CITATIONS
145	The Promise and Challenge of InducedÂPluripotent Stem Cells forÂCardiovascular Applications. JACC Basic To Translational Science, 2016, 1, 510-523.	4.1	41
146	Cardiac mesenchymal cells from diabetic mice are ineffective for cell therapy-mediated myocardial repair. Basic Research in Cardiology, 2018, 113, 46.	5.9	41
147	Epigenetically modified cardiac mesenchymal stromal cells limit myocardial fibrosis and promote functional recovery in a model of chronic ischemic cardiomyopathy. Basic Research in Cardiology, 2019, 114, 3.	5.9	41
148	CRYAB and HSPB2 deficiency alters cardiac metabolism and paradoxically confers protection against myocardial ischemia in aging mice. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3201-H3209.	3.2	40
149	Hematopoietic cytokines for cardiac repair: mobilization of bone marrow cells and beyond. Basic Research in Cardiology, 2011, 106, 709-733.	5.9	40
150	Role of Cyclic Guanosine Monophosphate in Late Preconditioning in Conscious Rabbits. Circulation, 2002, 105, 3046-3052.	1.6	39
151	Cardiomyocyte-restricted overexpression of extracellular superoxide dismutase increases nitric oxide bioavailability and reduces infarct size after ischemia/reperfusion. Basic Research in Cardiology, 2012, 107, 305.	5.9	39
152	Preconditioning Human Cardiac Stem Cells with an HO-1 Inducer Exerts Beneficial Effects After Cell Transplantation in the Infarcted Murine Heart. Stem Cells, 2015, 33, 3596-3607.	3.2	39
153	An accurate, nontraumatic ultrasonic method to monitor myocardial wall thickening in patients undergoing cardiac surgery. Journal of the American College of Cardiology, 1990, 15, 1055-1065.	2.8	38
154	Effect of aspirin on late preconditioning against myocardial stunning in conscious rabbits. Journal of the American College of Cardiology, 2003, 41, 1183-1194.	2.8	36
155	Effects of Intracoronary Infusion of Escalating Doses of Cardiac Stem Cells in Rats With Acute Myocardial Infarction. Circulation: Heart Failure, 2015, 8, 757-765.	3.9	36
156	Cell therapy for cardiac repair: what is needed to move forward?. Nature Reviews Cardiology, 2017, 14, 257-258.	13.7	36
157	Nonelectrocardiographic evidence that both ischemic preconditioning and adenosine preconditioning exist in humans. Journal of the American College of Cardiology, 2003, 42, 437-445.	2.8	35
158	The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2557-H2564.	3.2	35
159	Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. Journal of Biological Chemistry, 2016, 291, 13634-13648.	3.4	35
160	Gene transfer as a strategy to achieve permanent cardioprotection II: rAAV-mediated gene therapy with heme oxygenase-1 limits infarct size 1Âyear later without adverse functional consequences. Basic Research in Cardiology, 2011, 106, 1367-1377.	5.9	34
161	Endoplasmic reticulum stress-dependent activation of ATF3 mediates the late phase of ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 2014, 76, 138-147.	1.9	34
162	Genetic Deficiency of Glutathione <i>S</i> -Transferase P Increases Myocardial Sensitivity to Ischemia–Reperfusion Injury. Circulation Research, 2015, 117, 437-449.	4.5	34

#	Article	IF	CITATIONS
163	Loss of ischaemic preconditioning in ovariectomized rat hearts: possible involvement of impaired protein kinase C Â phosphorylation. Cardiovascular Research, 2008, 79, 387-394.	3.8	33
164	A New Method to Stabilize C-Kit Expression in Reparative Cardiac Mesenchymal Cells. Frontiers in Cell and Developmental Biology, 2016, 4, 78.	3.7	33
165	Peripheral Blood Cytokine Levels After Acute Myocardial Infarction. Circulation Research, 2017, 120, 1947-1957.	4.5	33
166	Cell Therapy Needs RigorousÂTranslational Studies in LargeÂAnimal Models â^—. Journal of the American College of Cardiology, 2015, 66, 2000-2004.	2.8	32
167	Emerging Role of the JAK-STAT Pathway as a Mechanism of Protection Against Ischemia/Reperfusion Injury. Journal of Molecular and Cellular Cardiology, 2001, 33, 1893-1896.	1.9	31
168	Gender and aging do not impair opioid-induced late preconditioning in rats. Basic Research in Cardiology, 2004, 99, 46-55.	5.9	30
169	The COX-2/PGI2 Receptor Axis Plays an Obligatory Role in Mediating the Cardioprotection Conferred by the Late Phase of Ischemic Preconditioning. PLoS ONE, 2012, 7, e41178.	2.5	30
170	Cyclooxygenase-2 does not mediate late preconditioning induced by activation of adenosine A ₁ or A ₃ receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H959-H968.	3.2	29
171	New Initiatives to Improve the Rigor and Reproducibility of Articles Published in <i>Circulation Research</i> . Circulation Research, 2017, 121, 472-479.	4.5	29
172	Molecular and Cellular Mechanisms Associated with Effects of Molecular Hydrogen in Cardiovascular and Central Nervous Systems. Antioxidants, 2020, 9, 1281.	5.1	29
173	The New Circulation Research. Circulation Research, 2010, 106, 216-226.	4.5	28
174	Perspectives on Directions and Priorities for Future Preclinical Studies in Regenerative Medicine. Circulation Research, 2019, 124, 938-951.	4.5	28
175	A realistic appraisal of the use of embryonic stem cell-based therapies for cardiac repair. European Heart Journal, 2020, 41, 2397-2404.	2.2	28
176	Cardioprotection involves activation of NF-κB via PKC-dependent tyrosine and serine phosphorylation of IκB-α. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1753-H1758.	3.2	27
177	Transient Cell Cycle Induction in Cardiomyocytes to Treat Subacute Ischemic Heart Failure. Circulation, 2022, 145, 1339-1355.	1.6	27
178	Endothelial nitric oxide synthase is not necessary for the early phase of ischemic preconditioning in the mouse. Journal of Molecular and Cellular Cardiology, 2008, 44, 496-501.	1.9	26
179	Identification of inducible nitric oxide synthase in peripheral blood cells as a mediator of myocardial ischemia/reperfusion injury. Basic Research in Cardiology, 2012, 107, 253.	5.9	25
180	Reflections on the Irreproducibility of Scientific Papers. Circulation Research, 2015, 117, 665-666.	4.5	25

#	Article	IF	CITATIONS
181	Anthology of Images. Circulation Research, 2018, 122, 5-5.	4.5	25
182	After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Canadian Journal of Physiology and Pharmacology, 2021, 99, 129-139.	1.4	25
183	The late phase of ischemic preconditioning induces a prosurvival genetic program that results in marked attenuation of apoptosis. Journal of Molecular and Cellular Cardiology, 2007, 42, 1075-1085.	1.9	24
184	Allogeneic Mesenchymal Cell Therapy in Anthracycline-Induced Cardiomyopathy HeartÂFailure Patients. JACC: CardioOncology, 2020, 2, 581-595.	4.0	24
185	Hypercholesterolemia blunts NO donor-induced late preconditioning against myocardial infarction in conscious rabbits. Basic Research in Cardiology, 2004, 99, 395-403.	5.9	23
186	Co-Activation of Nuclear Factor-l̂ºB and Myocardin/Serum Response Factor Conveys the Hypertrophy Signal of High Insulin Levels in Cardiac Myoblasts. Journal of Biological Chemistry, 2014, 289, 19585-19598.	3.4	23
187	Pretreatment With Intracoronary Enalaprilat Protects Human Myocardium During Percutaneous Coronary Angioplasty. Journal of the American College of Cardiology, 2007, 49, 1607-1610.	2.8	22
188	Atorvastatin Therapy during the Peri-Infarct Period Attenuates Left Ventricular Dysfunction and Remodeling after Myocardial Infarction. PLoS ONE, 2011, 6, e25320.	2.5	22
189	Nicorandil induces late preconditioning against myocardial infarction in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1273-H1280.	3.2	21
190	Gene transfer as a strategy to achieve permanent cardioprotection I: rAAV-mediated gene therapy with inducible nitric oxide synthase limits infarct size 1Âyear later without adverse functional consequences. Basic Research in Cardiology, 2011, 106, 1355-1366.	5.9	21
191	Bone marrow for cardiac repair: the importance of characterizing the phenotype and function of injected cells. European Heart Journal, 2007, 28, 651-652.	2.2	20
192	Cell therapy for acute myocardial infarction: <i>Requiescat in Pace</i> . European Heart Journal, 2020, 41, 3711-3714.	2.2	20
193	Insights into therapeutic products, preclinical research models, and clinical trials in cardiac regenerative and reparative medicine: where are we now and the way ahead. Current opinion paper of the ESC Working Group on Cardiovascular Regenerative and Reparative Medicine. Cardiovascular Research. 2021, 117, 1428-1433.	3.8	20
194	Safety of Intracoronary Infusion of 20 Million C-Kit Positive Human Cardiac Stem Cells in Pigs. PLoS ONE, 2015, 10, e0124227.	2.5	20
195	Heart slice culture system reliably demonstrates clinical drug-related cardiotoxicity. Toxicology and Applied Pharmacology, 2020, 406, 115213.	2.8	19
196	Protection of IB-MECA against myocardial stunning in conscious rabbits is not mediated by the A1 adenosine receptor. Basic Research in Cardiology, 2001, 96, 487-496.	5.9	18
197	No Pain, No Gain. Circulation, 2005, 112, 3541-3543.	1.6	18
198	TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1189-H1201.	3.2	18

#	Article	IF	CITATIONS
199	Circulating Biomarkers to Identify Responders in Cardiac Cell therapy. Scientific Reports, 2017, 7, 4419.	3.3	18
200	Sodium Nitrite Fails to Limit Myocardial Infarct Size: Results from the CAESAR Cardioprotection Consortium (LB645). FASEB Journal, 2014, 28, LB645.	0.5	18
201	Stem Cell Therapy: Promising Treatment in Heart Failure?. Current Heart Failure Reports, 2013, 10, 73-80.	3.3	17
202	Rationale and Design of the SENECA (StEm cell iNjECtion in cAncer survivors) Trial. American Heart Journal, 2018, 201, 54-62.	2.7	17
203	The Epigenetic Regulator HDAC1 Modulates Transcription of a Core Cardiogenic Program in Human Cardiac Mesenchymal Stromal Cells Through a p53-Dependent Mechanism. Stem Cells, 2016, 34, 2916-2929.	3.2	16
204	Identification of cardiovascular risk factors associated with bone marrow cell subsets in patients with STEMI: a biorepository evaluation from the CCTRN TIME and LateTIME clinical trials. Basic Research in Cardiology, 2017, 112, 3.	5.9	16
205	Short and Long Noncoding RNAs Regulate the Epigenetic Status of Cells. Antioxidants and Redox Signaling, 2018, 29, 832-845.	5.4	16
206	Pro-Angiogenic Actions of CMC-Derived Extracellular Vesicles Rely on Selective Packaging of Angiopoietin 1 and 2, but Not FGF-2 and VEGF. Stem Cell Reviews and Reports, 2019, 15, 530-542.	5.6	16
207	Time to end the war on cell therapy. European Journal of Heart Failure, 2020, 22, 893-897.	7.1	16
208	Effect of Molecular Weight on Sonoporation-Mediated Uptake in Human Cells. Ultrasound in Medicine and Biology, 2018, 44, 2662-2672.	1.5	15
209	Administration of Sildenafil at Reperfusion Fails to Reduce Infarct Size: Results from the CAESAR Cardioprotection Consortium (LB650). FASEB Journal, 2014, 28, LB650.	0.5	15
210	Cell cycle induction in human cardiomyocytes is dependent on biosynthetic pathway activation. Redox Biology, 2021, 46, 102094.	9.0	14
211	Late preconditioning enhances recovery of myocardial function after infarction in conscious rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2372-H2381.	3.2	13
212	Role of Src protein tyrosine kinases in late preconditioning against myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H549-H556.	3.2	13
213	Effect of the stop-flow technique on cardiac retention of c-kit positive human cardiac stem cells after intracoronary infusion in a porcine model of chronic ischemic cardiomyopathy. Basic Research in Cardiology, 2015, 110, 503.	5.9	13
214	Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells. PLoS ONE, 2017, 12, e0174242.	2.5	13
215	Global Overview of the Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes (TACTICS) Recommendations. Circulation Research, 2018, 122, 199-201.	4.5	13
216	Inducible cardiac-specific overexpression of cyclooxygenase-2 (COX-2) confers resistance to ischemia/reperfusion injury. Basic Research in Cardiology, 2019, 114, 32.	5.9	13

#	Article	IF	CITATIONS
217	Reparative cell therapy for the heart: critical internal appraisal of the field in response to recent controversies. ESC Heart Failure, 2021, 8, 2306-2309.	3.1	13
218	Protein tyrosine kinase signaling is necessary for NO donor-induced late preconditioning against myocardial stunning. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1441-H1448.	3.2	12
219	Cardiac Preconditioning during Percutaneous Coronary Interventions. Cardiovascular Drugs and Therapy, 2005, 19, 211-217.	2.6	12
220	The beneficial effects of postinfarct cytokine combination therapy are sustained during long-term follow-up. Journal of Molecular and Cellular Cardiology, 2009, 47, 528-535.	1.9	12
221	William Harvey and the Discovery of the Circulation of the Blood. Circulation Research, 2019, 124, 1300-1302.	4.5	12
222	Potential Strategies for Clinical Translation of Repeated Cell Therapy. Circulation Research, 2019, 124, 690-692.	4.5	12
223	CAESAR's legacy: a new era of rigor in preclinical studies of cardioprotection. Basic Research in Cardiology, 2021, 116, 33.	5.9	12
224	Transcription Factor STAT3 Serves as a Negative Regulator Controlling IgE Class Switching in Mice. ImmunoHorizons, 2018, 2, 349-362.	1.8	12
225	Increasing Evidence That Estrogen Is an Important Modulator of Bone Marrow–Mediated Cardiac Repair After Acute Infarction. Circulation, 2006, 114, 2203-2205.	1.6	11
226	Exercise-induced late preconditioning in mice is triggered by eNOS-dependent generation of nitric oxide and activation of PKCε and is mediated by increased iNOS activity. International Journal of Cardiology, 2021, 340, 68-78.	1.7	11
227	Cardiac Stem Cells in Patients with Ischemic Cardiomyopathy: Discovery, Translation, and Clinical Investigation. Current Atherosclerosis Reports, 2012, 14, 491-503.	4.8	10
228	Targeting phosphatidylinositol 3-kinase-Akt through hepatocyte growth factor for cardioprotection. Journal of Cardiovascular Medicine, 2013, 14, 249-253.	1.5	10
229	Administration of cardiac mesenchymal cells modulates innate immunity in the acute phase of myocardial infarction in mice. Scientific Reports, 2020, 10, 14754.	3.3	10
230	Current status of cell therapy for non-ischaemic cardiomyopathy: a brief overview: Table 1. European Heart Journal, 2015, 36, 2905-2908.	2.2	9
231	Histone Deacetylase 1 Depletion Activates Human Cardiac Mesenchymal Stromal Cell Proangiogenic Paracrine Signaling Through a Mechanism Requiring Enhanced Basic Fibroblast Growth Factor Synthesis and Secretion. Journal of the American Heart Association, 2017, 6, .	3.7	9
232	Slicing and Culturing Pig Hearts under Physiological Conditions. Journal of Visualized Experiments, 2020, , .	0.3	9
233	Comparison of One and Three Intraventricular Injections of Cardiac Progenitor Cells in a Murine Model of Chronic Ischemic Cardiomyopathy. Stem Cell Reviews and Reports, 2021, 17, 604-615.	3.8	9
234	Toward a better understanding of the metabolic effects of ischemic preconditioning in humans. Journal of Cardiothoracic and Vascular Anesthesia, 2001, 15, 409-411.	1.3	8

#	Article	IF	CITATIONS
235	The Role of Sodium-Hydrogen Ion Exchange in Patients Undergoing Coronary Artery Bypass Grafting. Journal of Cardiac Surgery, 2003, 18, 21-26.	0.7	8
236	The Cornucopia of "Pleiotropic―Actions of Statins. Circulation Research, 2009, 104, 144-146.	4.5	8
237	Introduction to Cardiovascular Aging Compendium. Circulation Research, 2018, 123, 737-739.	4.5	8
238	Meta-analysis of short- and long-term efficacy of mononuclear cell transplantation in patients with myocardial infarction. American Heart Journal, 2020, 220, 155-175.	2.7	7
239	Dandum semper est tempus. Circulation Research, 2015, 117, 755-757.	4.5	6
240	O-GlcNAcylation Negatively Regulates Cardiomyogenic Fate in Adult Mouse Cardiac Mesenchymal Stromal Cells. PLoS ONE, 2015, 10, e0142939.	2.5	6
241	Recommendations for nomenclature and definition of cell products intended for human cardiovascular use. Cardiovascular Research, 2022, 118, 2428-2436.	3.8	6
242	Exercise-induced late preconditioning is triggered by generation of nitric oxide. Journal of Molecular and Cellular Cardiology, 2001, 33, A41.	1.9	5
243	Cardiac stem cells in patients with ischaemic cardiomyopathy – Authors' reply. Lancet, The, 2012, 379, 891-892.	13.7	5
244	Statistical Methods for Selecting Maximum Effective Dose and Evaluating Treatment Effect When Dose–Response is Monotonic. Statistics in Biopharmaceutical Research, 2014, 6, 16-29.	0.8	5
245	William Harvey and the Discovery of the Circulation of the Blood. Circulation Research, 2019, 124, 1169-1171.	4.5	5
246	Human Embryonic Stem Cell–Derived Cardiomyocytes. Circulation Research, 2019, 124, 1157-1159.	4.5	5
247	Paul Simpson and Scientific Rigor. Circulation Research, 2019, 124, 194-194.	4.5	5
248	Echocardiography-guided percutaneous left ventricular intracavitary injection as a cell delivery approach in infarcted mice. Molecular and Cellular Biochemistry, 2021, 476, 2135-2148.	3.1	5
249	Cell Therapy for Nonischemic Dilated Cardiomyopathy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Stem Cells Translational Medicine, 2021, 10, 1394-1405.	3.3	5
250	Does Lethal Myocardial Reperfusion Injury Exist? A Controversy that is Unlikely to Be Settled in our Lifetime. Journal of Thrombosis and Thrombolysis, 1997, 4, 109-110.	2.1	4
251	Actions Speak Much Louder Than Words. Circulation Research, 2014, 115, 962-966.	4.5	4
252	Announcing the "Meet the First Author―Page. Circulation Research, 2017, 120, 595-595.	4.5	4

#	Article	IF	CITATIONS
253	Ten Years at the Helm of <i>Circulation Research</i> . Circulation Research, 2019, 124, 1707-1717.	4.5	4
254	The Risk for Myocardial Infarction with Cyclooxygenase-2 Inhibitors. Annals of Internal Medicine, 2005, 143, 617.	3.9	4
255	Clinical trials of cell therapy for heart failure: recent results warrant continued research. Current Opinion in Cardiology, 2022, 37, 193-200.	1.8	4
256	Introducing Yet Another Addition to Our Portfolio. Circulation Research, 2016, 119, 1161-1161.	4.5	3
257	The Impact Factor of <i>Circulation Research</i> Reaches a New High. Circulation Research, 2017, 121, 199-199.	4.5	3
258	Trainees in the Spotlight. Circulation Research, 2017, 120, 1048-1049.	4.5	3
259	A Call to Make the Human Dimension of Science a Core Component of Scientific Journals. Circulation Research, 2018, 122, 907-910.	4.5	3
260	William Harvey and the Discovery of the Circulation of the Blood. Circulation Research, 2019, 124, 1428-1429.	4.5	3
261	Oxygen Administration Does Not Influence the Prognosis of Acute Myocardial Infarction: A Meta-Analysis. American Journal of Therapeutics, 2019, 26, e151-e160.	0.9	3
262	Single dose of synthetic microRNA-199a or microRNA-149 mimic does not improve cardiac function in a murine model of myocardial infarction. Molecular and Cellular Biochemistry, 2021, 476, 4093-4106.	3.1	3
263	Cell therapy for heart disease: current status and future directions. Minerva Cardiology and Angiology, 2018, 66, 273-291.	0.7	3
264	Effect of intravenous cell therapy in rats with old myocardial infarction. Molecular and Cellular Biochemistry, 2022, 477, 431-444.	3.1	3
265	The sad plight of cell therapy for heart failure: causes and consequences. , 2022, 2, .		3
266	<i>Circulation Research</i> Introduces Profiles in Cardiovascular Science. Circulation Research, 2010, 106, 419-419.	4.5	2
267	The Impact Factor of Circulation Research Rises 25%. Circulation Research, 2013, 113, 836-836.	4.5	2
268	Announcing "New Leaders in Cardiovascular Science― Circulation Research, 2013, 113, 1098-1098.	4.5	2
269	Reaching Out to Young Investigators. Circulation Research, 2014, 114, 930-930.	4.5	2
270	Comparison of Repeated Doses of C-kit-Positive Cardiac Cells versus a Single Equivalent Combined Dose in a Murine Model of Chronic Ischemic Cardiomyopathy. International Journal of Molecular Sciences, 2021, 22, 3145.	4.1	2

#	Article	IF	CITATIONS
271	Effects of Heme Oxygenase-1 on c-Kit-Positive Cardiac Cells. International Journal of Molecular Sciences, 2021, 22, 13448.	4.1	2
272	Functional Proteomic Analysis of Protein Kinase C Îμ Signaling Complexes in Preconditioning Circulation, 2000, 102, 2672-2672.	1.6	1
273	Cardioprotection. , 2012, , 369-388.		1
274	<i>Circulation Research</i> Launches a Clinical Track for Studies in Humans. Circulation Research, 2013, 113, 1266-1267.	4.5	1
275	Announcing Yet Another Article Category. Circulation Research, 2014, 114, 228-229.	4.5	1
276	Neurocognitive Risk With PCSK9 Inhibitors. Journal of the American College of Cardiology, 2017, 69, 2468-2469.	2.8	1
277	The Impact Factor of Circulation Research Reaches Another New High. Circulation Research, 2018, 123, 510-511.	4.5	1
278	Introduction to a Compendium on Regenerative Cardiology. Circulation Research, 2018, 123, 129-131.	4.5	1
279	Peripheral Blood Biomarkers Associated With Improved Functional Outcome in Patients With Chronic Left Ventricular Dysfunction: A Biorepository Evaluation of the FOCUS-CCTRN Trial. Frontiers in Cardiovascular Medicine, 2021, 8, 698088.	2.4	1
280	Protein Oâ€GlcNAcylation – A Novel Cell Survival Signal in Cardiac Stem Cells. FASEB Journal, 2012, 26, 693.1.	0.5	1
281	Cyclooxygenase-2 in myocardial ischemia. Journal of the American College of Cardiology, 2003, 42, 1714-1715.	2.8	0
282	Response to Letter Regarding Article, "Cell Therapy for Heart Failure: A Comprehensive Overview of Experimental and Clinical Studies, Current Challenges, and Future Directions― Circulation Research, 2014, 115, e33-4.	4.5	0
283	Therapy with c-kitPOS Cardiac Stem Cells for Ischemic Cardiomyopathy. , 2016, , 201-215.		ο
284	Editorsâ \in M Preamble to The Journal of Cardiovascular Aging. , 2021, 1, .		0
285	CXCR4+ CD45â^' Tissue-Committed Stem Cells (TCSC) for Myocardium Reside in the Bone Marrow, Are Mobilized into the Peripheral Blood during Myocardial Infarction, and "Home―to Infarcted Myocardium in CXCR4-SDF-1 and HGF/SF-c-Met Dependent Manner Blood, 2004, 104, 2131-2131.	1.4	ο
286	An obligatory role of STAT1 in the upregulation of cardioprotective proteins and delayed cardioprotection in ischemic preconditioning. FASEB Journal, 2007, 21, A1376.	0.5	0
287	An In Vivo Evidence That Murine Very Small Embryonic Like (VSEL) Stem Cells Are Mobilized into Peripheral Blood after Acute Myocardial Infarction (AMI) and Contribute to Myocardiac Regeneration Blood, 2007, 110, 3694-3694.	1.4	0
288	Cardioprotection in iNOS transgenic mice is independent of mitochondrial biogenesis FASEB Journal, 2008, 22, 835.2.	0.5	0

#	Article	IF	CITATIONS
289	Protein Oâ€GlcNAcylation Exerts Mitogenic Effects in Cardiac Progenitor Cells. FASEB Journal, 2011, 25, 1043.16.	0.5	0
290	Protein Oâ€GlcNAcylation Promotes Postâ€hypoxic Survival of Cardiac Progenitor Cells. FASEB Journal, 2011, 25, 861.12.	0.5	0
291	Ectopic Cardiogenic Transcription Factor Expression Augments the Antiâ€fibrogenic Activity of Administered Cardiac Mesenchymal Stromal Cells in a Model of Chronic Ischemic Cardiomyopathy. FASEB Journal, 2019, 33, lb476.	0.5	0