Jean-Francois Carpentier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6779231/publications.pdf

Version: 2024-02-01

365 papers 17,655 citations

14124 69 h-index 29333 108 g-index

398 all docs

398 docs citations

398 times ranked

7794 citing authors

#	Article	IF	Citations
1	Asymmetric Hydroformylation. Chemical Reviews, 1995, 95, 2485-2506.	23.0	459
2	Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Transactions, 2010, 39, 8363.	1.6	449
3	Ring-Opening Polymerization of Lactide with Group 3 Metal Complexes Supported by Dianionic Alkoxy-Amino-Bisphenolate Ligands: Combining High Activity, Productivity, and Selectivity. Chemistry - A European Journal, 2006, 12, 169-179.	1.7	388
4	Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation of Carbonyl Compounds with 2-Propanol and Ephedrine-Type Ligands. Advanced Synthesis and Catalysis, 2003, 345, 67-77.	2.1	298
5	Group 3 metal catalysts for ethylene and \hat{l}_{\pm} -olefin polymerization. Coordination Chemistry Reviews, 2004, 248, 397-410.	9.5	281
6	Highly Active, Productive, and Syndiospecific Yttrium Initiators for the Polymerization of Racemic β-Butyrolactone. Angewandte Chemie - International Edition, 2006, 45, 2782-2784.	7.2	265
7	Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides. Chemical Reviews, 2015, 115, 3564-3614.	23.0	244
8	Stereoselective ring-opening polymerization of racemic lactide using alkoxy-amino-bis(phenolate) group 3 metal complexes. Chemical Communications, 2004, , 330.	2.2	243
9	Beyond Stereoselectivity, Switchable Catalysis: Some of the Last Frontier Challenges in Ringâ€Opening Polymerization of Cyclic Esters. Chemistry - A European Journal, 2015, 21, 7988-8003.	1.7	218
10	Versatile catalytic systems based on complexes of zinc, magnesium and calcium supported by a bulky bis (morpholinomethyl) phenoxy ligand for the large-scale immortal ring-opening polymerisation of cyclic esters. Dalton Transactions, 2009, , 9820.	1.6	208
11	Discrete, Solvent-Free Alkaline-Earth Metal Cations: Metal···Fluorine Interactions and ROP Catalytic Activity. Journal of the American Chemical Society, 2011, 133, 9069-9087.	6.6	202
12	Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation of Carbonyl Compounds with 2-Propanol and Ephedrine-Type Ligands ChemInform, 2003, 34, no.	0.1	193
13	Exploring Electronic versus Steric Effects in Stereoselective Ringâ€Opening Polymerization of Lactide and βâ€Butyrolactone with Aminoâ€alkoxyâ€bis(phenolate)–Yttrium Complexes. Chemistry - A European Journal, 2011, 17, 1872-1883.	1.7	193
14	Gallium and indium complexes for ring-opening polymerization of cyclic ethers, esters and carbonates. Coordination Chemistry Reviews, 2013, 257, 1869-1886.	9.5	190
15	Yttrium Complexes as Catalysts for Living and Immortal Polymerization of Lactide to Highly Heterotactic PLA. Macromolecular Rapid Communications, 2007, 28, 693-697.	2.0	186
16	Discrete Metal Catalysts for Stereoselective Ringâ€Opening Polymerization of Chiral Racemic βâ€Lactones. Macromolecular Rapid Communications, 2010, 31, 1696-1705.	2.0	165
17	Bis(guanidinate) Alkoxide Complexes of Lanthanides: Synthesis, Structures and Use in Immortal and Stereoselective Ringâ€Opening Polymerization of Cyclic Esters. Chemistry - A European Journal, 2008, 14, 5440-5448.	1.7	158
18	When Bigger Is Better: Intermolecular Hydrofunctionalizations of Activated Alkenes Catalyzed by Heteroleptic Alkaline Earth Complexes. Angewandte Chemie - International Edition, 2012, 51, 4943-4946.	7.2	157

#	Article	lF	Citations
19	Rare-Earth Complexes Supported by Tripodal Tetradentate Bis(phenolate) Ligands: A Privileged Class of Catalysts for Ring-Opening Polymerization of Cyclic Esters. Organometallics, 2015, 34, 4175-4189.	1.1	154
20	Syndiotactic-Enriched Poly(3-hydroxybutyrate)s via Stereoselective Ring-Opening Polymerization of Racemic \hat{l}^2 -Butyrolactone with Discrete Yttrium Catalysts. Macromolecules, 2009, 42, 987-993.	2.2	150
21	Chemo- and Enantioselective Hydrosilylation of Carbonyl and Imino Groups. An Emphasis on Non-Traditional Catalyst Systems. Current Organic Chemistry, 2002, 6, 913-936.	0.9	144
22	Highly Syndiospecific Polymerization of Styrene Catalyzed by Allyl Lanthanide Complexes. Journal of the American Chemical Society, 2004, 126, 12240-12241.	6.6	143
23	Controlled ring-opening polymerization of lactide by group 3 metal complexes. Pure and Applied Chemistry, 2007, 79, 2013-2030.	0.9	142
24	Nickel Complexes Based on Tridentate Pyrazolyl Ligands for Highly Efficient Dimerization of Ethylene to 1-Butene. Organometallics, 2006, 25, 1213-1216.	1.1	132
25	{Phenoxy-imine}aluminum versus -indium Complexes for the Immortal ROP of Lactide: Different Stereocontrol, Different Mechanisms. Organometallics, 2013, 32, 1694-1709.	1.1	131
26	Aluminum and Yttrium Complexes of an Unsymmetrical Mixed Fluorous Alkoxy/Phenoxy-Diimino Ligand: Synthesis, Structure, and Ring-Opening Polymerization Catalysis. Organometallics, 2009, 28, 1469-1475.	1.1	129
27	Aluminum Complexes of Fluorinated Dialkoxy-Diimino Salen-like Ligands: Syntheses, Structures, and Use in Ring-Opening Polymerization of Cyclic Esters. Organometallics, 2008, 27, 5815-5825.	1.1	118
28	Organocatalysts for the Controlled "Immortal―Ringâ€Opening Polymerization of Sixâ€Memberedâ€Ring Cyclic Carbonates: A Metalâ€Free, Green Process. Chemistry - A European Journal, 2010, 16, 13805-13813.	1.7	113
29	Yttrium Complexes Supported by Linked Bis(amide) Ligand: Synthesis, Structure, and Catalytic Activity in the Ring-Opening Polymerization of Cyclic Esters. Inorganic Chemistry, 2009, 48, 4258-4266.	1.9	112
30	Zinc and magnesium complexes supported by bulky multidentate amino-ether phenolate ligands: potent pre-catalysts for the immortalring-opening polymerisation of cyclic esters. Dalton Transactions, 2011, 40, 523-534.	1.6	111
31	Aluminum and Zinc Complexes Based on an Amino-Bis(pyrazolyl) Ligand:Â Synthesis, Structures, and Use in MMA and Lactide Polymerization. Inorganic Chemistry, 2007, 46, 328-340.	1.9	110
32	Heteroleptic Alkyl and Amide Iminoanilide Alkaline Earth and Divalent Rare Earth Complexes for the Catalysis of Hydrophosphination and (Cyclo)Hydroamination Reactions. Chemistry - A European Journal, 2013, 19, 13445-13462.	1.7	109
33	Bis(dimethylsilyl)amide Complexes of the Alkaline-Earth Metals Stabilized by β-Siâ^'H Agostic Interactions: Synthesis, Characterization, and Catalytic Activity. Organometallics, 2010, 29, 6569-6577.	1.1	108
34	[Zinc-Diamine]-Catalyzed Hydrosilylation of Ketones in Methanol. New Developments and Mechanistic Insights. Advanced Synthesis and Catalysis, 2005, 347, 289-302.	2.1	106
35	Poly(carbonate-urethane): an isocyanate-free procedure from $\hat{l}\pm, \hat{l}\%$ -di(cyclic carbonate) telechelic poly(trimethylene carbonate)s. Green Chemistry, 2011, 13, 266-271.	4.6	104
36	Group 3 and 4 single-site catalysts for stereospecific polymerization of styrene. Coordination Chemistry Reviews, 2008, 252, 2115-2136.	9.5	100

#	Article	IF	CITATIONS
37	Discrete, Base-Free, Cationic Alkaline-Earth Complexes - Access and Catalytic Activity in the Polymerization of Lactide. European Journal of Inorganic Chemistry, 2010, 2010, 3423-3428.	1.0	98
38	The aminophosphine-phosphinites and related ligands: synthesis, coordination chemistry and enantioselective catalysis1Dedicated to the memory of Professor Francis Petit1. Coordination Chemistry Reviews, 1998, 178-180, 1615-1645.	9.5	96
39	Recent advances in metallo/organo-catalyzed immortal ring-opening polymerization of cyclic carbonates. Catalysis Science and Technology, 2012, 2, 898.	2.1	96
40	Enantiopure Isotactic PCHC Synthesized by Ring-Opening Polymerization of Cyclohexene Carbonate. Macromolecules, 2014, 47, 4230-4235.	2.2	95
41	New developments in zinc-catalyzed asymmetric hydrosilylation of ketones with PMHS. Tetrahedron, 2004, 60, 2837-2842.	1.0	94
42	\hat{l}_{\pm} , \hat{l}_{∞} -Di(glycerol carbonate) telechelic polyesters and polyolefins as precursors to polyhydroxyurethanes: an isocyanate-free approach. Green Chemistry, 2014, 16, 1947-1956.	4.6	93
43	Recent Advances in Metalâ€Mediated Stereoselective Ringâ€Opening Polymerization of Functional Cyclic Esters towards Wellâ€Defined Poly(hydroxy acid)s: From Stereoselectivity to Sequenceâ€Control. Chemistry - A European Journal, 2020, 26, 128-138.	1.7	92
44	Neodymium Alkoxides: Synthesis, Characterization and Their Combinations with Dialkylmagnesiums as Unique Systems for Polymerization and Block Copolymerization of Ethylene and Methyl Methacrylate. Chemistry - A European Journal, 2002, 8, 3773.	1.7	89
45	Chiral (1,2)â€Diphenylethyleneâ€Salen Complexes of Triel Metals: Coordination Patterns and Mechanistic Considerations in the Isoselective ROP of Lactide. Chemistry - A European Journal, 2014, 20, 6131-6147.	1.7	89
46	Synthesis, structure and reactivity of new yttrium bis(dimethylsilyl)amido and bis(trimethylsilyl)methyl complexes of a tetradentate bis(phenoxide) ligand. Journal of Organometallic Chemistry, 2003, 683, 131-136.	0.8	87
47	Indium Complexes of Fluorinated Dialkoxy-Diimino Salen-like Ligands for Ring-Opening Polymerization of <i>rac</i> -Lactide: How Does Indium Compare to Aluminum?. Organometallics, 2012, 31, 1448-1457.	1.1	87
48	A novel and convenient method for palladium-catalysed alkoxycarbonylation of aryl and vinyl halides using HCO2R/NaOR system. Tetrahedron Letters, 1991, 32, 4705-4708.	0.7	85
49	dOMetal Olefin Complexes. Synthesis, Structures, and Dynamic Properties of (C5R5)2Zr(OCMe2CH2CH2CHCH2)+Complexes:Â Models for the Elusive (C5R5)2Zr(R)(Olefin)+Intermediates in Metallocene-Based Olefin Polymerization Catalysis. Journal of the American Chemical Society, 2000, 122, 7750-7767.	6.6	82
50	Ultraproductive, Zincâ€Mediated, Immortal Ringâ€Opening Polymerization of Trimethylene Carbonate. Chemistry - A European Journal, 2008, 14, 8772-8775.	1.7	82
51	Heteroleptic Silylamido Phenolate Complexes of Calcium and the Larger Alkaline Earth Metals: βâ€Agostic Aeâ‹â‹SiïŁ¿H Stabilization and Activity in the Ringâ€Opening Polymerization of <scp>L</scp> â€Lactide. Cl - A European Journal, 2012, 18, 6289-6301.	h em istry	81
52	Enhancement of Catalytic Activity for Hydroformylation of Methyl Acrylate by Using Biphasic and"Supported Aqueous Phase―Systems. Angewandte Chemie International Edition in English, 1995, 34, 1474-1476.	4.4	79
53	(Î ² -Amino alcohol)(arene)ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation of Functionalized Ketones â° Scope, Isolation of the Catalytic Intermediates, and Deactivation Processes. European Journal of Organic Chemistry, 2001, 2001, 275-291.	1.2	79
54	Aluminum Complexes of Fluorinated \hat{l}^2 -Diketonate Ligands: Syntheses, Structures, Intramolecular Reduction, and Use in Ring-Opening Polymerization of Lactide. Organometallics, 2010, 29, 491-500.	1.1	79

#	Article	IF	CITATIONS
55	Mixed Aluminum-Magnesium-Rare Earth Allyl Catalysts for Controlled Isoprene Polymerization: Modulation of Stereocontrol. Macromolecular Rapid Communications, 2006, 27, 338-343.	2.0	78
56	Asymmetric hydrogenation of \hat{l}_{\pm} -keto acid derivatives by rhodium-}amidophosphine-phosphinite{ catalysts. Tetrahedron: Asymmetry, 1997, 8, 1083-1099.	1.8	77
57	Palladium-catalyzed carbonylative coupling of pyridine halides with aryl boronic acids. Tetrahedron, 2003, 59, 2793-2799.	1.0	77
58	Allylansa-Lanthanidocenes: Single-Component, Single-Site Catalysts for Controlled Syndiospecific Styrene and Styrene–Ethylene (Co)Polymerization. Chemistry - A European Journal, 2007, 13, 5548-5565.	1.7	77
59	From Syndiotactic Homopolymers to Chemically Tunable Alternating Copolymers: Highly Active Yttrium Complexes for Stereoselective Ringâ€Opening Polymerization of βâ€Malolactonates. Angewandte Chemie - International Edition, 2014, 53, 2687-2691.	7.2	77
60	Chiral aminophosphine phosphinite ligands and related auxiliaries Recent advances in their design, coordination chemistry, and use in enantioselective catalysis. Coordination Chemistry Reviews, 2003, 242, 145-158.	9.5	76
61	Zinc and enolato-magnesium complexes based on bi-, tri- and tetradentate aminophenolate ligands. New Journal of Chemistry, 2008, 32, 2279.	1.4	76
62	An Aluminum Complex Supported by a Fluorous Diamino-Dialkoxide Ligand for the Highly Productive Ring-Opening Polymerization of $\hat{l}\mu$ -Caprolactone. Organometallics, 2005, 24, 6279-6282.	1.1	75
63	Yttrium– and Aluminum–Bis(phenolate)pyridine Complexes: Catalysts and Model Compounds of the Intermediates for the Stereoselective Ring-Opening Polymerization of Racemic Lactide and β-Butyrolactone. Organometallics, 2014, 33, 309-321.	1.1	75
64	Groups 3 and 4 single-site catalysts for styrene–ethylene and styrene–α-olefin copolymerization. Coordination Chemistry Reviews, 2008, 252, 2137-2154.	9.5	74
65	Synthetic and Mechanistic Aspects of the Immortal Ringâ€Opening Polymerization of Lactide and Trimethylene Carbonate with New Homo―and Heteroleptic Tin(II)â€Phenolate Catalysts. Chemistry - A European Journal, 2012, 18, 2998-3013.	1.7	74
66	Dinuclear vs. mononuclear complexes: accelerated, metal-dependent ring-opening polymerization of lactide. Chemical Communications, 2013, 49, 11692.	2.2	74
67	Nickel vs. palladium catalysts for coupling reactions of allyl alcohol with soft nucleophiles: activities and deactivation processes. Journal of Molecular Catalysis A, 1998, 136, 243-251.	4.8	73
68	Direct Zn–diamine promoted reduction of Cî€O and Cî€N bonds by polymethylhydrosiloxane in methanol. Chemical Communications, 2003, , 332-333.	2.2	72
69	Calcium, Strontium and Barium Homogeneous Catalysts for Fine Chemicals Synthesis. Chemical Record, 2016, 16, 2482-2505.	2.9	71
70	Palladium-catalyzed carbonylative cross-coupling reactions of pyridine halides and aryl boronic acids: a convenient access to î±-pyridyl ketones. Tetrahedron Letters, 2001, 42, 3689-3691.	0.7	69
71	Aluminum Complexes of Bidentate Fluorinated Alkoxy-Imino Ligands: Syntheses, Structures, and Use in Ring-Opening Polymerization of Cyclic Esters. Organometallics, 2012, 31, 1458-1466.	1.1	69
72	Discrete Divalent Rareâ€Earth Cationic ROP Catalysts: Ligandâ€Dependent Redox Behavior and Discrepancies with Alkalineâ€Earth Analogues in a Ligandâ€Assisted Activated Monomer Mechanism. Chemistry - A European Journal, 2013, 19, 3986-3994.	1.7	69

#	Article	IF	Citations
73	Copper(II) Triflate as a Source of Triflic Acid: Effective, Green Catalysis of Hydroalkoxylation Reactions. Advanced Synthesis and Catalysis, 2009, 351, 2496-2504.	2.1	68
74	Alkali aminoether-phenolate complexes: synthesis, structural characterization and evidence for an activated monomer ROP mechanism. Dalton Transactions, 2013, 42, 9361.	1.6	68
75	Stereoselective synthesis of 3-substituted phtalides via asymmetric transfer hydrogenation using well-defined ruthenium catalysts under neutral conditions. Tetrahedron Letters, 2001, 42, 1899-1901.	0.7	67
76	Group 3 metal complexes based on a chiral tetradentate diamine-diamide ligand: Synthesis and use in polymerization of (d,l)-lactide and intramolecular alkene hydroamination catalysis. Journal of Molecular Catalysis A, 2007, 268, 163-168.	4.8	66
77	Group 3 metal complexes supported by tridentate pyridine- and thiophene-linked bis(naphtholate) ligands: synthesis, structure, and use in stereoselective ring-opening polymerization of racemic lactide and \hat{I}^2 -butyrolactone. Dalton Transactions, 2010, 39, 6739.	1.6	66
78	A dual organic/organometallic approach for catalytic ring-opening polymerization. Chemical Communications, 2011, 47, 9828.	2.2	66
79	Pentacoordinated Carboxylate Ï€â€Allyl Nickel Complexes as Key Intermediates for the Niâ€Catalyzed Direct Amination of Allylic Alcohols. Chemistry - A European Journal, 2015, 21, 14571-14578.	1.7	66
80	Amidophosphineâ^'Phosphinites:  Synthesis and Use in Rhodium-Based Asymmetric Hydrogenation of Activated Keto Compounds. Crystal Structure of Bis[(Î⅓-chloro)((S)-2-((diphenylphosphino)oxy)-2-phenyl-) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 452 Td (N-(diph	enylphosp	ohino)-N-methy
81	Highly selective nickel catalysts for ethylene oligomerization based on tridentate pyrazolyl ligands. Journal of Molecular Catalysis A, 2008, 288, 58-62.	4.8	65
82	Aluminum, Indium, and Mixed Yttrium–Lithium Complexes Supported by a Chiral Binap-Based Fluorinated Dialkoxide: Structural Features and Heteroselective ROP of Lactide. Organometallics, 2014, 33, 5740-5748.	1.1	65
83	Bariumâ€Mediated Crossâ€Dehydrocoupling of Hydrosilanes with Amines: A Theoretical and Experimental Approach. Angewandte Chemie - International Edition, 2015, 54, 7679-7683.	7.2	65
84	New Chiral 1,2-Diamines and Their Use in Zinc-Catalyzed Asymmetric Hydrosilylation of Acetophenone. European Journal of Organic Chemistry, 2004, 2004, 3040-3045.	1.2	63
85	Highly Isospecific Styrene Polymerization Catalyzed by Singleâ€Component Bridged Bis(indenyl) Allyl Yttrium and Neodymium Complexes. Angewandte Chemie - International Edition, 2007, 46, 7240-7243.	7.2	63
86	Rare-Earth Complexes with Multidentate Tethered Phenoxy-Amidinate Ligands: Synthesis, Structure, and Activity in Ring-Opening Polymerization of Lactide. Organometallics, 2011, 30, 5509-5523.	1.1	63
87	Lewis Acid/Hexafluoroisopropanol: A Promoter System for Selective <i>ortho</i> -C-Alkylation of Anilines with Deactivated Styrene Derivatives and Unactivated Alkenes. ACS Catalysis, 2020, 10, 10794-10802.	5.5	63
88	Divalent Heteroleptic Ytterbium Complexes – Effective Catalysts for Intermolecular Styrene Hydrophosphination and Hydroamination. Inorganic Chemistry, 2014, 53, 1654-1661.	1.9	62
89	Bis[bis(oxazolinato)] Complexes of Yttrium and Lanthanum: Molecular Structure and Use in Polymerization of dl-Lactide and dl- \hat{l}^2 -Butyrolactone. European Journal of Inorganic Chemistry, 2006, 2006, 3652-3658.	1.0	61
90	Chromium Catalysts Based on Tridentate Pyrazolyl Ligands for Ethylene Oligomerization. Organometallics, 2007, 26, 4010-4014.	1.1	61

#	Article	IF	CITATIONS
91	Group 3 Metal Complexes of Salen-like Fluorous Dialkoxy⠒Diimino Ligands: Synthesis, Structure, and Application in Ring-Opening Polymerization of <i>rac</i> -Lactide and <i>rac</i> -β-Butyrolactone. Organometallics, 2008, 27, 5691-5698.	1.1	61
92	Cyclohydroamination of Aminoalkenes Catalyzed by Disilazide Alkalineâ€Earth Metal Complexes: Reactivity Patterns and Deactivation Pathways. Chemistry - A European Journal, 2013, 19, 2784-2802.	1.7	61
93	Are Solvent and Dispersion Effects Crucial in Olefin Polymerization DFT Calculations? Some Insights from Propylene Coordination and Insertion Reactions with Group 3 and 4 Metallocenes. ACS Catalysis, 2015, 5, 416-425.	5.5	61
94	Controlled ROP of βâ€Butyrolactone Simply Mediated by Amidine, Guanidine, and Phosphazene Organocatalysts. Macromolecular Rapid Communications, 2012, 33, 1938-1944.	2.0	60
95	Polycarbonates Derived from Green Acids: Ring-Opening Polymerization of Seven-Membered Cyclic Carbonates. Macromolecules, 2010, 43, 8007-8017.	2.2	59
96	Macromolecular engineering viaring-opening polymerization (1): <scp>l</scp> -lactide/trimethylene carbonate block copolymers as thermoplastic elastomers. Polymer Chemistry, 2013, 4, 1095-1106.	1.9	59
97	Steric <i>vs.</i> electronic stereocontrol in syndio- or iso-selective ROP of functional chiral \hat{l}^2 -lactones mediated by achiral yttrium-bisphenolate complexes. Chemical Communications, 2018, 54, 8024-8031.	2.2	59
98	Lanthanide Borohydride Complexes of Bulky Guanidinate Ligands [(Me3Si)2NC(N-Cy)2]2Ln(μ-BH4)2Li(THF)2 (Ln = Nd, Sm, Yb): Synthesis, Structure and Catalytic Activity in Lactide Polymerization. European Journal of Inorganic Chemistry, 2007, 2007, 3260-3267.	1.0	58
99	Zinc complexes of fluorous alkoxide-imino ligands: Synthesis, structure, and use in ring-opening polymerization of lactide and \hat{l}^2 -butyrolactone. Dalton Transactions, 2009, , 9010.	1.6	58
100	Discrete Cationic Zinc and Magnesium Complexes for Dual Organic/Organometallicâ€Catalyzed Ringâ€Opening Polymerization of Trimethylene Carbonate. Chemistry - A European Journal, 2012, 18, 9360-9370.	1.7	58
101	Poly(hydroxyalkanoate) Block or Random Copolymers of β-Butyrolactone and Benzyl β-Malolactone: A Matter of Catalytic Tuning. Macromolecules, 2013, 46, 6765-6776.	2.2	58
102	Chromium(III) Complexes of Sterically Crowded Bidentante {ON ^R } and Tridentate {ONN ^R } Naphthoxy-Imine Ligands: Syntheses, Structures, and Use in Ethylene Oligomerization. Organometallics, 2009, 28, 2401-2409.	1.1	56
103	Heteroleptic Tin(II) Initiators for the Ringâ€Opening (Co)Polymerization of Lactide and Trimethylene Carbonate: Mechanistic Insights from Experiments and Computations. Chemistry - A European Journal, 2013, 19, 13463-13478.	1.7	56
104	Bis (aminophosphine)-nickel complexes as efficient catalysts for alkylation of allylic acetates with stabilized nucleophiles. Tetrahedron Letters, 1996, 37, 6105-6108.	0.7	55
105	"Constrained Geometry―Group 3 Metal Complexes of the Fluorenyl-Based Ligands [(3,6-tBu2Flu)SiR2NtBu]: Synthesis, Structural Characterization, and Polymerization Activity. Organometallics, 2003, 22, 4467-4479.	1.1	55
106	Solution Structures and Dynamic Properties of Chelated d0Metal Olefin Complexes {î·5:Âî·1-C5R4SiMe2NtBu}Ti(OCMe2CH2CH2CHCH2)+(R = H, Me): Models for the {î·5:Âî·1-C5R4SiMe2NtBu}Ti(Râ€~)(olefin)+Intermediates in "Constrained Geometry―Catalysts. Journal of the American Chemical Society, 2001, 123, 898-909.	6.6	54
107	Groups 2 and 3 metal complexes incorporating fluorenyl ligands. Coordination Chemistry Reviews, 2005, 249, 1221-1248.	9.5	54
108	Poly(trimethylene carbonate) from Biometalsâ€Based Initiators/Catalysts: Highly Efficient Immortal Ringâ€Opening Polymerization Processes. Advanced Synthesis and Catalysis, 2009, 351, 1312-1324.	2.1	54

#	Article	IF	CITATIONS
109	C2-Symmetric Fluorous Diamino-Dialkoxide Complexes of Early Transition Metals. Organometallics, 2004, 23, 5450-5458.	1.1	53
110	Diamido-Ether Actinide Complexes as Initiators for Lactide Ring-Opening Polymerization. Organometallics, 2013, 32, 1183-1192.	1.1	53
111	Palladium-catalyzed carbonâ€"carbon bond formation from (η6-chloroarene)Cr(CO)3 complexes an example of bimetallic activation in homogeneous catalysis. Journal of Molecular Catalysis, 1993, 81, 1-15.	1.2	50
112	Neodymium alk(aryl)oxides–dialkylmagnesium systems for butadiene polymerization and copolymerization with styrene and glycidyl methacrylate. Journal of Organometallic Chemistry, 2003, 683, 44-55.	0.8	50
113	Immortal ring-opening polymerization of \hat{l}^2 -butyrolactone with zinc catalysts: Catalytic approach to poly(3-hydroxyalkanoate). Polymer, 2009, 50, 5909-5917.	1.8	50
114	Metal Triflates as Highly Stable and Active Catalysts for the "Immortal―Ringâ€Opening Polymerization of Trimethylene Carbonate. ChemCatChem, 2010, 2, 306-313.	1.8	50
115	Expanded Scope of Supported Aqueous Phase Catalysis: Efficient Rhodium-Catalyzed Hydroformylation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Esters. Journal of Catalysis, 1996, 162, 339-348.	3.1	49
116	Highly Effective and Green Catalytic Approach Toward <i>α</i> , <i>ï>%</i> â€Dihydroxyâ€Telechelic Poly(trimethylenecarbonate). Macromolecular Rapid Communications, 2009, 30, 2128-2135.	2.0	49
117	Stable divalent germanium, tin and lead amino(ether)-phenolate monomeric complexes: structural features, inclusion heterobimetallic complexes, and ROP catalysis. Dalton Transactions, 2014, 43, 4268-4286.	1.6	49
118	Alkalineâ€Earthâ€Catalysed Crossâ€Dehydrocoupling of Amines and Hydrosilanes: Reactivity Trends, Scope and Mechanism. Chemistry - A European Journal, 2016, 22, 4564-4583.	1.7	49
119	Highly Syndiotactic or Isotactic Polyhydroxyalkanoates by Ligandâ€Controlled Yttriumâ€Catalyzed Stereoselective Ringâ€Opening Polymerization of Functional Racemic βâ€Lactones. Angewandte Chemie - International Edition, 2017, 56, 10388-10393.	7.2	49
120	Homogeneous and Biphasic Nickel-Catalyzed Isomerization of Allylic Alcohols. European Journal of Inorganic Chemistry, 1998, 1998, 1739-1744.	1.0	48
121	Discrete <i>versus In Situ</i> à€Generated Aluminumâ€Salen Catalysts in Enantioselective Cyanosilylation of Ketones: Role of Achiral Ligands. Advanced Synthesis and Catalysis, 2008, 350, 731-740.	2.1	48
122	Alkaliâ€Metalâ€Catalyzed Crossâ€Dehydrogenative Couplings of Hydrosilanes with Amines. ChemCatChem, 2016, 8, 1373-1378.	1.8	48
123	Stereocontrolled styrene–isoprene copolymerization and styrene–ethylene–isoprene terpolymerization with a single-component allyl ansa-neodymocene catalyst. Polymer, 2008, 49, 2039-2045.	1.8	47
124	Functional syndiotactic poly(βâ€hydroxyalkanoate)s via stereoselective ringâ€opening copolymerization of <i>rac</i> â€Î²â€butyrolactone and <i>rac</i> â€allylâ€Î²â€butyrolactone. Journal of Polymer Science Part A, 2009, 47, 3177-3189.	, 2.5	47
125	Chain Growth Polymerization of Isoprene and Stereoselective Isoprene–Styrene Copolymerization Promoted by an ⟨i⟩ansa⟨ i⟩-Bis(indenyl)allyl–Yttrium Complex. Macromolecules, 2011, 44, 7158-7166.	2.2	47
126	Highly Effective Alkaline Earth Catalysts for the Sterically Governed Hydrophosphonylation of Aldehydes and Nonactivated Ketones. Chemistry - A European Journal, 2012, 18, 13259-13264.	1.7	46

#	Article	IF	Citations
127	Synthesis of Bridged Tetrahydrobenzo[<i>b</i>)azepines and Derivatives through an Azaâ€Piancatelli Cyclization/Michael Addition Sequence. Angewandte Chemie - International Edition, 2020, 59, 1134-1138.	7.2	45
128	Kinetic Analysis of the Immortal Ring-Opening Polymerization of Cyclic Esters: A Case Study with Tin(II) Catalysts. Macromolecules, 2014, 47, 2574-2584.	2.2	44
129	Chiral Fluorous Dialkoxy-Diamino Zirconium Complexes: Synthesis and Use in Stereospecific Polymerization of 1-Hexene. Chemistry - A European Journal, 2007, 13, 923-935.	1.7	43
130	Metal- and Organo-Catalyzed Ring-Opening Polymerization of $\hat{l}\pm$ -Methyl-Trimethylene Carbonate: Insights into the Microstructure of the Polycarbonate. Macromolecules, 2011, 44, 5127-5135.	2.2	43
131	Organocatalyzed controlled ROP of \hat{l}^2 -lactones towards poly(hydroxyalkanoate)s: from \hat{l}^2 -butyrolactone to benzyl \hat{l}^2 -malolactone polymers. Polymer Chemistry, 2013, 4, 3837.	1.9	43
132	Discrete <i>O</i> -Lactate and β-Alkoxybutyrate Aluminum Pyridine–Bis(naphtholate) Complexes: Models for Mechanistic Investigations in the Ring-Opening Polymerization of Lactides and β-Lactones. Organometallics, 2014, 33, 5693-5707.	1.1	43
133	Potassium and Well-Defined Neutral and Cationic Calcium Fluoroalkoxide Complexes: Structural Features and Reactivity. Organometallics, 2014, 33, 5630-5642.	1.1	43
134	Tailored Cyclic and Linear Polycarbosilazanes by Bariumâ€Catalyzed Nâ^'H/Hâ^'Si Dehydrocoupling Reactions. Angewandte Chemie - International Edition, 2016, 55, 3744-3748.	7.2	43
135	Nickel-catalysed substitution reactions of allylic compounds with soft nucleophiles: an efficient alternative to palladium catalysis. Journal of the Chemical Society Chemical Communications, 1995, , 1863.	2.0	42
136	Synthesis, Structure, and Polymerization Activity of Neutral Halide, Alkyl, and Hydrido Yttrium Complexes of Isopropylidene-Bridged Cyclopentadienyl-Fluorenyl Ligands. Organometallics, 2004, 23, 2768-2777.	1.1	42
137	On the Initiation Mechanism of Syndiospecific Styrene Polymerization Catalyzed by Singleâ€Component <i>ansa</i> â€Lanthanidocenes. Chemistry - A European Journal, 2009, 15, 3773-3783.	1.7	42
138	Structure vs ¹¹⁹ Sn NMR Chemical Shift in Three-Coordinated Tin(II) Complexes: Experimental Data and Predictive DFT Computations. Organometallics, 2015, 34, 2139-2150.	1.1	42
139	Platinum(II) Aminophosphine- and Amidophosphine-Phosphinite Complexes: Synthesis, Structure, and Use in Catalytic Asymmetric Hydroformylation of Styrene. Crystal Structure of [(S)-1-(Diphenylphosphino)-2-(((diphenylphosphino)oxy)methyl)pyrrolidine]dichloroplatinum(II). Organometallics. 1995. 14. 401-406.	1.1	41
140	Multidentate fluorinated alkoxide ligand platforms for oxophilic metal centers: from MOCVD source reagents to polymerizationcatalysts. Dalton Transactions, 2010, 39, 37-48.	1.6	41
141	A Discrete Five-Coordinated Cationic Aluminum Complex Supported by a Fluorinated Dialkoxy-Diimino Salen-like Ligand: Synthesis, Structure, and Use in Polymerization Catalysis. Organometallics, 2010, 29, 1865-1868.	1.1	41
142	Ring-opening metathesis polymerization of cyclooctene derivatives with chain transfer agents derived from glycerol carbonate. Polymer Chemistry, 2014, 5, 2583.	1.9	41
143	Quantification of active sites in single-site group 4 metal olefin polymerization catalysis. Coordination Chemistry Reviews, 2019, 386, 50-68.	9.5	41
144	Palladium-Catalysed Alkoxycarbonylation of Tricarbonyl (Î-6- mono and dichloroarene) chromium Complexes under Mild Conditions using HCO2R / MOR System. Tetrahedron Letters, 1992, 33, 2001-2004.	0.7	40

#	Article	IF	Citations
145	Highly Efficient Asymmetric Hydrogenation of Activated and Unactivated Ketones Catalyzed by Rhodium(I) Aminophosphine- and Amidophosphine-Phosphinite Complexes. Beneficial Effect of the Non Chiral Ligand. Synlett, 1995, 1995, 358-360.	1.0	40
146	Functionalized polycarbonates from dihydroxyacetone: insights into the immortal ring-opening polymerization of 2,2-dimethoxytrimethylene carbonate. Polymer Chemistry, 2011, 2, 2789.	1.9	40
147	Isoselective Styrene Polymerization Catalyzed by <i>ansa</i> Bis(indenyl) Allyl Rare Earth Complexes. Stereochemical and Mechanistic Aspects. Macromolecules, 2011, 44, 3312-3322.	2.2	40
148	Scandium versus yttrium{amino-alkoxy-bis(phenolate)} complexes for the stereoselective ring-opening polymerization of racemic lactide and l²-butyrolactone. Dalton Transactions, 2014, 43, 14322-14333.	1.6	40
149	Highly Active, Chemo―and Regioselective Yb ^{II} and Sm ^{II} Catalysts for the Hydrophosphination of Styrene with Phenylphosphine. Chemistry - A European Journal, 2015, 21, 6033-6036.	1.7	40
150	Synthetic and kinetic aspects of nickel-catalysed amination of allylic alcohol derivatives. Tetrahedron, 1998, 54, 1073-1084.	1.0	39
151	Neodymium(III) Complexes with Bulkyansa-Bis(cyclopentadienyl) Ligands:Â Synthesis and Use in Olefin Oligomerization. Organometallics, 2001, 20, 199-205.	1.1	39
152	Macromolecular engineering via ring-opening polymerization (2): l-lactide/trimethylene carbonate copolymerization – kinetic and microstructural control via catalytic tuning. Polymer Chemistry, 2013, 4, 3686.	1.9	39
153	Unusual product distribution in ethylene oligomerization promoted by in situ ansa-chloroneodymocene–dialkylmagnesium systems. Journal of Molecular Catalysis A, 2002, 190, 207-214.	4.8	38
154	Neodymium borohydride complexes supported by diamino-bis(phenoxide) ligands: diversity of synthetic and structural chemistry, and catalytic activity in ring-opening polymerization of cyclic esters. New Journal of Chemistry, 2011, 35, 204-212.	1.4	38
155	Neutral Rhodium(I) Aminophosphine-Phosphinite Complexes: Synthesis, Structure, and Use in Catalytic Asymmetric Hydrogenation of Activated Keto Compounds. Crystal Structure of [(S)-1-(Dicyclohexyl-) Tj ETQq1 I Organometallics, 1995, 14, 2480-2489.	1 0.784314	4 rgBT /Over <mark>lo</mark>
156	Chlorolanthanocene-dialkylmagnesium systems for styrene bulk polymerization and styrene-ethylene block copolymerization. Macromolecular Chemistry and Physics, 2000, 201, 1813-1822.	1.1	37
157	Highly Fluorinated Tris(indazolyl)borate Silylamido Complexes of the Heavier Alkaline Earth Metals: Synthesis, Characterization, and Efficient Catalytic Intramolecular Hydroamination. Chemistry - A European Journal, 2015, 21, 4115-4125.	1.7	37
158	Discrete Ionic Complexes of Highly Isoselective Zirconocenes. Solution Dynamics, Trimethylaluminum Adducts, and Implications in Propylene Polymerization. Organometallics, 2016, 35, 258-276.	1.1	37
159	Heterobi―and â€trimetallic Ion Pairs of Zirconoceneâ€Based Isoselective Olefin Polymerization Catalysts with AlMe ₃ . Angewandte Chemie - International Edition, 2015, 54, 6343-6346.	7.2	36
160	Alkaline Earth–Olefin Complexes with Secondary Interactions. Chemistry - A European Journal, 2016, 22, 6505-6509.	1.7	36
161	Amino Ether–Phenolato Precatalysts of Divalent Rare Earths and Alkaline Earths for the Single and Double Hydrophosphination of Activated Alkenes. Organometallics, 2016, 35, 3261-3271.	1.1	36
162	Ruthenium catalyzed asymmetric transfer hydrogenation of \hat{l}^2 -ketoesters. Tetrahedron: Asymmetry, 1998, 9, 2971-2974.	1.8	35

#	Article	IF	CITATIONS
163	Group 4 Post-metallocene Complexes Incorporating Tridentate Silyl-Substituted Bis(naphthoxy)pyridine and Bis(naphthoxy)thiophene Ligands: Probing Systems for "Oscillating―Olefin Polymerization Catalysis. Organometallics, 2009, 28, 5036-5051.	1.1	35
164	Block and Random Copolymers of 1,2-Cyclohexyl Cyclocarbonate and <scp>l</scp> -Lactide or Trimethylene Carbonate Synthesized by Ring-Opening Polymerization. Macromolecules, 2015, 48, 3247-3256.	2.2	35
165	Further developments in metal-catalysed Cî—,C bond cleavage in allylic dimethyl malonate derivatives. Tetrahedron Letters, 1997, 38, 1053-1056.	0.7	34
166	[(Cpâ^'CMe2â^'Flu)2Ln]-[Li(ether)n]+(Ln = Y, La):Â Complexes with Unusual Coordination Modes of the Fluorenyl Ligand and the First Examples of Bis-Ansa Lanthanidocenes. Organometallics, 2003, 22, 4038-4046.	1.1	34
167	Generation of Cationic[Zr-{tert-Butyl Enolate}] Reactive Species: Methyl Abstraction versus Hydride Abstraction. Chemistry - A European Journal, 2004, 10, 4301-4307.	1.7	34
168	Magnesium complexes based on an amido-bis(pyrazolyl) ligand: Synthesis, crystal structures, and use in lactide polymerization. Polyhedron, 2007, 26, 3817-3824.	1.0	34
169	DFT Investigation of the Tacticity Control during Styrene Polymerization Catalyzed by Single-Component Allyl <i>ansa</i> -Lanthanidocenes		

#	Article	IF	CITATIONS
181	Asymmetric Allylic Alkylation of β-Ketoesters via C–N Bond Cleavage of <i>N</i> -Allyl- <i>N</i> -methylaniline Derivatives Catalyzed by a Nickel–Diphosphine System. ACS Catalysis, 2020, 10, 5828-5839.	5.5	32
182	Amine Elimination Reactions between Homoleptic Silylamide Lanthanide Complexes and an Isopropylidene-Bridged Cyclopentadieneâ^'Fluorene System. Organometallics, 2002, 21, 3238-3249.	1.1	31
183	βâ€Diketiminato–Alkaline Earth Cationic Complexes: Synthesis, Structures, Lactide Polymerization and Unusual Oxidative Reactivity of the Ancillary Ligand. European Journal of Inorganic Chemistry, 2012, 2012, 3023-3031.	1.0	31
184	Rhodiumâ€Catalyzed Tandem Isomerization/Hydroformylation of the Bioâ€Sourced 10â€Undecenenitrile: Selective and Productive Catalysts for Production of Polyamideâ€12 Precursor. Advanced Synthesis and Catalysis, 2013, 355, 3191-3204.	2.1	31
185	Carboxylic acid derivatives via catalytic carboxylation of unsaturated hydrocarbons: whether the nature of a reductant may determine the mechanism of CO ₂ incorporation?. Dalton Transactions, 2015, 44, 16212-16223.	1.6	31
186	Synthesis of pyridylglyoxylic acid derivatives via a palladium-catalysed double carbonylation of iodopyridines. Tetrahedron Letters, 1999, 40, 3717-3718.	0.7	30
187	Synthesis, Structures, Dynamics, and Ethylene Polymerization Activity of Nickel Complexes Containing an ortho-Methoxy-aryl Diphosphine Ligand. Organometallics, 2008, 27, 2107-2117.	1.1	30
188	Multidimensional Characterization of $\hat{l}\pm$,i‰-Telechelic Poly($\hat{l}\mu$ -caprolactone)s via Online Coupling of 2D Chromatographic Methods (LC/SEC) and ESI-TOF/MALDI-TOF-MS. Macromolecules, 2012, 45, 9779-9790.	2.2	30
189	Alkaline-Earth Metal Complexes in Homogeneous Polymerization Catalysis. Topics in Organometallic Chemistry, 2013, , 141-189.	0.7	30
190	On the coordination chemistry of organochalcogenolates R ^{NMe2} ^E ^{â^'} and R ^{NMe2} ^E^O ^{â^'} (E = S, Se) onto lead(<scp>ii</scp>) and lighter divalent tetrel elements. Dalton Transactions, 2014, 43, 16459-16474.	1.6	30
191	New one pot synthesis of a chiral \hat{l} ±-hydroxy- \hat{l} 3-butyrolactone via sequential asymmetric hydrogenation of an \hat{l} ±, \hat{l} 3-diketoester. Tetrahedron: Asymmetry, 1998, 9, 2765-2768.	1.8	29
192	N-Benzyl-norephedrine derivatives as new, efficient ligands for ruthenium-catalyzed asymmetric transfer hydrogenation of functionalized ketones. Tetrahedron: Asymmetry, 1999, 10, 4083-4086.	1.8	29
193	One-Pot and Sequential Asymmetric Hydrogenation of \hat{l}^2 , \hat{l}^2 -Diketoesters into Functionalized 1,3-Diols: Fromanti- tosyn-Stereoselectivity. European Journal of Organic Chemistry, 1999, 1999, 3421-3427.	1.2	29
194	Synthesis, Stereochemistry, and Reactivity of Group 4 Metal Complexes That Contain a Chiral Tetradentate Diamine-Diamide Ligand. Organometallics, 2003, 22, 4999-5010.	1.1	29
195	Syndiotactic Polystyrene/Organoclay Nanocomposites: Synthesis via In Situ Coordination-Insertion Polymerization and Preliminary Characterization. Macromolecular Materials and Engineering, 2005, 290, 1106-1114.	1.7	29
196	Synthesis of new dipyridinylamine and dipyridinylmethane ligands and their coordination chemistry with Mg(ii) and Zn(ii). New Journal of Chemistry, 2008, 32, 2150.	1.4	28
197	Syndioselective ring-opening polymerization and copolymerization of trans-1,4-cyclohexadiene carbonate mediated by achiral metal- and organo-catalysts. Polymer Chemistry, 2015, 6, 1961-1971.	1.9	28
198	Tuning the properties of \hat{l}_{\pm} , l	1.9	28

#	Article	IF	CITATIONS
199	Aluminum, calcium and zinc complexes supported by potentially tridentate iminophenolate ligands: synthesis and use in the ringâ€opening polymerization of lactide. Applied Organometallic Chemistry, 2012, 26, 681-688.	1.7	27
200	Lowâ€Coordinate Barium Boryloxides: Synthesis and Dehydrocoupling Catalysis for the Production of Borasiloxanes. Angewandte Chemie - International Edition, 2018, 57, 11747-11751.	7.2	27
201	Ring-opening (co)polymerization of six-membered substituted $\hat{\Gamma}$ -valerolactones with alkali metal alkoxides. European Polymer Journal, 2020, 134, 109858.	2.6	27
202	Selective palladium-catalysed carbonylations of dichloroquinoline and simple dichloropyridines. Tetrahedron Letters, 1999, 40, 3719-3722.	0.7	26
203	Rare earth alkoxides as inorganic precursors for olefin polymerization: an alternative to traditional lanthanocene chemistry. Chemical Communications, 2000, , 2183-2184.	2.2	26
204	$[\hat{i}\cdot 5:\hat{i}\cdot 1-(3,6\text{-tBu}2Flu)SiMe}2NtBu]Y(\hat{i}\cdot 1-NC5H6)(py)2: A 1,4-Hydride-Addition Product to Pyridine that Provides Evidence for the First Fluorenyl(hydrido)metal (Group 3) Complex. European Journal of Inorganic Chemistry, 2004, 2004, 943-945.$	1.0	26
205	Group 4 Metal Complexes of Nitrogen-Bridged Dialkoxide Ligands:  Synthesis, Structure, and Polymerization Activity Studies. Organometallics, 2005, 24, 5620-5633.	1.1	26
206	"Constrained Geometry―Titanium Complexes:  Exceptionally Robust Systems for Living Polymerization of Methacrylates at High Temperature and Model Studies toward Chain Transfer Polymerization with Thiols. Organometallics, 2007, 26, 187-195.	1.1	26
207	Binary ansa-lanthanidocenes/dialkylmagnesium systems versus single-component catalyst: Controlled synthesis of end-capped syndiotactic oligostyrenes. Journal of Molecular Catalysis A, 2007, 273, 87-91.	4.8	26
208	Tacticity Control of Cyclic Poly(3â€Thiobutyrate) Prepared by Ringâ€Opening Polymerization of Racemic βâ€Thiobutyrolactone. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
209	Rhodium(I) bis(aminophosphane) complexes as catalysts for asymmetric hydrogenation of activated ketones. Tetrahedron: Asymmetry, 1996, 7, 379-382.	1.8	25
210	Electron-Deficient Group 4 Metal Complexes of Sulfur-Bridged Dialkoxide Ligands:  Synthesis, Structure, and Polymerization Activity Studies. Organometallics, 2005, 24, 5604-5619.	1.1	25
211	Indium(iii) halides as exceptionally active, water-tolerant catalysts for cationic polymerization of styrenics. Polymer Chemistry, 2011, 2, 1638.	1.9	25
212	α-Trialkoxysilyl Functionalized Polycyclooctenes Synthesized by Chain-Transfer Ring-Opening Metathesis Polymerization. Macromolecules, 2015, 48, 7453-7465.	2.2	25
213	Ï€ Ligands in Alkaline Earth Complexes. Organometallics, 2017, 36, 1269-1277.	1.1	25
214	Steric effects in the enantioselective transfer hydrogenation of 2-aroylacetates. Tetrahedron: Asymmetry, 1999, 10, 4663-4666.	1.8	24
215	Synthesis and reactivity in salt metathesis reactions of trivalent [La(TpMe2)2X] (X=Cl, I) complexes: crystal structures of [La(TpMe2)2Cl] and [La(TpMe2)2(κ2-pzMe2)]. Polyhedron, 2004, 23, 2437-2445.	1.0	24
216	Chiral-at-ansa-Bridged Group 4 Metallocene Complexes {(R1R2C)-(3,6-tBu2Flu)(3-R3-5-Me-C5H2)}MCl2: Synthesis, Structure, Stereochemistry, and Use in Highly Isoselective Propylene Polymerization. Organometallics, 2011, 30, 263-272.	1.1	24

#	Article	IF	CITATIONS
217	Boronâ€functionalized poly(3â€hydroxybutyrate)s from hydroboration of poly(allylâ€Î²â€hydroxyalkanoate)s: Synthesis and insights into the microstructure. Journal of Polymer Science Part A, 2011, 49, 907-917.	2.5	24
218	Old and New <i>C</i> ₁ -Symmetric Group 4 Metallocenes {(R ¹ R ^{6′} R ^{7′} From Highly Isotactic Polypropylenes to Vinyl End-Capped Isotactic-Enriched Oligomers. Organometallics, 2012, 31, 8375-8387.	›> ₁ Flu)(3-R	.< <u>ş</u> up>3
219	Alkylyttrium Complexes of Amidine–Amidopyridinate Ligands. Intramolecular C(sp ³)–H Activation and Reactivity Studies. Organometallics, 2013, 32, 1517-1527.	1.1	24
220	Ethylene oligomerization promoted by chromium complexes bearing pyrrolide–imine–amine/ether tridentate ligands. Dalton Transactions, 2015, 44, 16073-16080.	1.6	24
221	Highly Stereocontrolled Ringâ€Opening Polymerization of Racemic Alkyl βâ€Malolactonates Mediated by Yttrium [Aminoâ€alkoxyâ€bis(phenolate)] Complexes. Chemistry - A European Journal, 2016, 22, 7629-7641.	1.7	24
222	\hat{l}_{\pm} , \hat{l}	1.9	24
223	Stereoselective Copolymerization of Styrene with Terpenes Catalyzed by an Ansa-Lanthanidocene Catalyst: Access to New Syndiotactic Polystyrene-Based Materials. Catalysts, 2017, 7, 361.	1.6	24
224	Diastereoselective synthesis of syn-3,5-dihydroxyesters via ruthenium-catalyzed asymmetric transfer hydrogenation. Tetrahedron Letters, 2002, 43, 2569-2571.	0.7	23
225	Model Studies of Methacrylate Chain Transfer Polymerization Mediated by Cationic Zirconocene tert-Butyl Enolate. Organometallics, 2005, 24, 2466-2472.	1.1	23
226	DFT investigations on the ring-opening polymerization of substituted cyclic carbonates catalyzed by zinc- $\{\hat{l}^2$ -diketiminate $\}$ complexes. Polymer Chemistry, 2015, 6, 3336-3352.	1.9	23
227	Simple access to alkoxysilyl telechelic polyolefins from ruthenium-catalyzed cross-metathesis depolymerization of polydienes. European Polymer Journal, 2017, 96, 403-413.	2.6	23
228	Oxidative addition of cationic (\hat{l} -6-chloroarene)tricarbonylmanganese compounds to palladium(0) complexes. Synthesis, characterisation and reactivity. Journal of Organometallic Chemistry, 1995, 493, C22-C24.	0.8	22
229	A new route to ene carbamates, precursors to benzoindolizinones through sequential asymmetric hydrogenation and cyclization. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1403-1408.	0.9	22
230	Ring-opening polymerization of 3,6-dimethyl-2,5-morpholinedione with discrete amino-alkoxy-bis(phenolate) yttrium initiators: mechanistic insights. Chemical Communications, 2006, , 4509.	2.2	22
231	Ethylene carbonate/cyclic ester random copolymers synthesized by ring-opening polymerization. Polymer Chemistry, 2015, 6, 1972-1985.	1.9	22
232	Polythioesters Prepared by Ringâ€Opening Polymerization of Cyclic Thioesters and Related Monomers. Chemistry - an Asian Journal, 2022, 17, .	1.7	22
233	Oneâ€Pot Synthesis of Lactide–Styrene Diblock Copolymers via Catalytic Immortal Ringâ€Opening Polymerization of Lactide and Nitroxideâ€Mediated Polymerization of Styrene. ChemSusChem, 2010, 3, 579-590.	3.6	21
234	New <i>C</i> ₁ -Symmetric Ph ₂ C-Bridged Multisubstituted <i>ansa</i> -Zirconocenes for Highly Isospecific Propylene Polymerization: Synthetic Approach via Activated Fulvenes. Organometallics, 2010, 29, 5073-5082.	1.1	21

#	Article	IF	Citations
235	DFT investigations on the ring-opening polymerization of cyclic carbonates catalyzed by zinc- $\{\hat{l}^2$ -diiminate $\}$ complexes. Polymer Chemistry, 2011, 2, 2564.	1.9	21
236	Diorganodiselenides and zinc(ii) organoselenolates containing (imino)aryl groups of type 2-(RNî€CH)C6H4. Dalton Transactions, 2012, 41, 5060.	1.6	21
237	Cyclodextrin-Centered Polyesters: Controlled Ring-Opening Polymerization of Cyclic Esters from \hat{l}^2 -Cyclodextrin-Diol. Macromolecules, 2012, 45, 1122-1130.	2.2	21
238	Kinetic Analysis of the Living Ringâ€Opening Polymerisation of <scp>L</scp> â€Lactide with Tin(II) Initiators. European Journal of Inorganic Chemistry, 2013, 2013, 5896-5905.	1.0	21
239	Ni(<scp>ii</scp>) complexes bearing pyrrolide-imine ligands with pendant N-, O- and S-donor groups: synthesis, structural characterization and use in ethylene oligomerization. RSC Advances, 2015, 5, 91524-91531.	1.7	21
240	Substitution Effects in Highly Syndioselective Styrene Polymerization Catalysts Based on Single-Component Allyl <i>ansa</i> -Lanthanidocenes: An Experimental and Theoretical Study. Macromolecules, 2017, 50, 6539-6551.	2.2	21
241	Modular Synthesis of 9,10-Dihydroacridines through an <i>ortho</i> -C Alkenylation/Hydroarylation Sequence between Anilines and Aryl Alkynes in Hexafluoroisopropanol. Organic Letters, 2021, 23, 2565-2570.	2.4	21
242	Efficient and Selective Rhodium-Catalyzed Hydrophosphorylation of Dienes. Advanced Synthesis and Catalysis, 2006, 348, 1093-1100.	2.1	20
243	Exploitation of a Chainâ€Endâ€Control Mechanism for the Synthesis of Alternating Copolymers. Angewandte Chemie - International Edition, 2010, 49, 2662-2663.	7.2	20
244	Macromolecular engineering via ring-opening polymerization (3): trimethylene carbonate block copolymers derived from glycerol. Polymer Chemistry, 2014, 5, 1229-1240.	1.9	20
245	Rhodium versus Iridium Catalysts in the Controlled Tandem Hydroformylation–Isomerization of Functionalized Unsaturated Fatty Substrates. ChemCatChem, 2015, 7, 513-520.	1.8	20
246	Asymmetric Hydrogenation of 2,4-Dioxo Esters: Selective Synthesis of 2-Hydroxy-4-oxo Esters and Direct Access to Chiral 2-Hydroxy-4-butyrolactones. European Journal of Organic Chemistry, 1999, 1999, 1787-1793.	1.2	19
247	Tuning diastereoselectivity with the solvent: the asymmetric hydrogenation of simple and functionalized 1,3-diketones with ruthenium(amidophosphine–phosphinite) catalysts. New Journal of Chemistry, 2000, 24, 309-312.	1.4	19
248	Structurally Characterized Lead(II) Alkoxides as Potent Ring-Opening Polymerization Catalysts. Organometallics, 2015, 34, 1321-1327.	1.1	19
249	Calcium complexes with imino-phosphinanilido chalcogenide ligands for heterofunctionalisation catalysis. RSC Advances, 2016, 6, 57835-57843.	1.7	19
250	Organocatalyzed ring-opening polymerization (ROP) of functional \hat{l}^2 -lactones: new insights into the ROP mechanism and poly(hydroxyalkanoate)s (PHAs) macromolecular structure. Polymer Chemistry, 2020, 11, 2640-2652.	1.9	19
251	Binary Neodymium Alkoxide/Dialkylmagnesium Polymerization Systems: Studies on the Nature of the Reaction Intermediates and Active Species. European Journal of Inorganic Chemistry, 2004, 2004, 3247-3253.	1.0	18
252	Convenient synthesis of mono- and di- \hat{l}^2 -hydroxy- \hat{l}^2 -bis(trifluoromethyl)-(di)imines from \hat{l}^2 -hydroxy- \hat{l}^2 -bis(trifluoromethyl)-ketones and (di)amines. Tetrahedron, 2008, 64, 75-83.	1.0	18

#	Article	lF	CITATIONS
253	Mechanistic investigations of palladium-catalysed single and double carbonylation of aryl and vinyl halides by methyl formate. Journal of Organometallic Chemistry, 1994, 482, 31-38.	0.8	17
254	Erhöhung der KatalyseaktivitÃt bei der Hydroformylierung von AcrylsÃuremethylester durch Verwendung von Zweiphasen―und "Supportedâ€Aqueousâ€Phaseâ€â€Systemen. Angewandte Chemie, 199 1608-1610.	⁾ 5 <u>1</u> . å 07,	17
255	Catalytic asymmetric hydrogenation of activated keto compounds by some homogeneous and silica-supported di(\hat{l} /4-carboxylato)bis(aminophosphinephosphinite)dirhodium complexes. Tetrahedron: Asymmetry, 1995, 6, 39-42.	1.8	17
256	Synthesis and Structural Diversity of Group 4 Metal Complexes with Multidentate Tethered Phenoxy-Amidine and Phenoxy-Amidinate Ligands. Organometallics, 2012, 31, 3228-3240.	1.1	17
257	Neutral and Cationic Alkyl and Amido Group 3 Metal Complexes of Amidine-Amidopyridinate Ligands: Synthesis, Structure, and Polymerization Catalytic Activity. European Journal of Inorganic Chemistry, 2014, 2014, 4168-4178.	1.0	17
258	Non-Isocyanate Polythiourethanes (NIPTUs) from Cyclodithiocarbonate Telechelic Polyethers. Macromolecules, 2019, 52, 5838-5849.	2.2	17
259	Yttriumâ€Mediated Ringâ€Opening Copolymerization of Oppositely Configurated 4â€Alkoxymethyleneâ€P²â€Propiolactones: Effective Access to Highly Alternated Isotactic Functional PHAs. Chemistry - A European Journal, 2019, 25, 6412-6424.	1.7	17
260	Bis(imino)carbazolate: A Master Key for Barium Chemistry. Angewandte Chemie - International Edition, 2020, 59, 9120-9126.	7.2	17
261	Kinetic resolution of racemic tricarbonyl(2-chloroanisole)chromium via palladium-catalysed asymmetric alkoxycarbonylation. Tetrahedron Letters, 1996, 37, 167-170.	0.7	16
262	When Singleâ€6ite Polymerization Catalysis Meets Chirality: Optical Activity of Stereoregular Polyolefins. Angewandte Chemie - International Edition, 2007, 46, 6404-6406.	7.2	16
263	Allyl strontium compounds: synthesis, molecular structure and properties. Dalton Transactions, 2012, 41, 9176.	1.6	16
264	Engineering of Syndiotactic and Isotactic Polystyrene-Based Copolymers via Stereoselective Catalytic Polymerization. Molecules, 2017, 22, 594.	1.7	16
265	Barium Siloxides and Catalysed Formation of Siâ^'Oâ^'Si' Motifs. Chemistry - A European Journal, 2019, 25, 13509-13513.	1.7	16
266	Zirconocene-Catalyzed Polymerization of \hat{l}_{\pm} -Olefins: When Intrinsic Higher Activity Is Flawed by Rapid Deactivation. Organometallics, 2019, 38, 2664-2673.	1.1	16
267	Barium complexes with crown-ether-functionalised amidinate and iminoanilide ligands for the hydrophosphination of vinylarenes. Dalton Transactions, 2019, 48, 9173-9180.	1.6	16
268	Metalâ‹â‹Fâ^C Bonding in Lowâ€Coordinate Alkaline Earth Fluoroarylamides. Chemistry - A European Journ 2019, 25, 8854-8864.	12.7	16
269	Homogeneous and heterogeneous alkyl-alkoxo-lanthanide type catalysts for polymerization and block-copolymerization of ethylene and methyl methacrylate. Journal of Molecular Catalysis A, 2002, 182-183, 525-531.	4.8	15
270	Discrete allyl complexes of group 3 metals and lanthanides. Comptes Rendus Chimie, 2010, 13, 608-625.	0.2	15

#	Article	IF	Citations
271	Wellâ€defined Syndiotactic Polystyreneâ€ <i>b</i> à€Atactic Polystyrene Stereoblock Polymers. Macromolecular Rapid Communications, 2011, 32, 751-757.	2.0	15
272	Zinc, aluminum and group 3 metal complexes of sterically demanding naphthoxy-pyridine ligands: Synthesis, structure, and use in ROP of racemic lactide and \hat{l}^2 -butyrolactone. Inorganica Chimica Acta, 2015, 431, 161-175.	1.2	15
273	Long-Chain Branched Polyethylene via Coordinative Tandem Insertion and Chain-Transfer Polymerization Using ∢i>rac∢/i>-{EBTHI}ZrCl∢sub>2⟨/sub>/MAO/Al–alkenyl Combinations: An Experimental and Theoretical Study. Macromolecules, 2020, 53, 8847-8857.	2.2	15
274	A versatile nitrogen ligand for alkaline-earth chemistry. Dalton Transactions, 2020, 49, 11878-11889.	1.6	15
275	Zinc(II) complexes based on sterically hindered hydrotris(pyrazolyl)borate ligands: Synthesis, reactivity and solid-state structures. Inorganica Chimica Acta, 2009, 362, 4585-4592.	1.2	14
276	Encapsulation and controlled release of l-leuprolide from poly(\hat{l}^2 -hydroxyalkanoate)s: impact of microstructure and chemical functionalities. New Journal of Chemistry, 2011, 35, 876.	1.4	14
277	Nickel-containing di-charged imidazolium ligand with high crystalline organization. Interception and characterization of a transient carbene/cation species. Inorganica Chimica Acta, 2011, 370, 505-512.	1.2	14
278	Ruthenium-catalyzed hydroformylation of the functional unsaturated fatty nitrile 10-undecenitrile. Journal of Molecular Catalysis A, 2016, 417, 116-121.	4.8	14
279	Tandem C(sp ²)–OMe Activation/C(sp ²)–C(sp ²) Coupling in Early Transition-Metal Complexes: Aromatic C–O Activation beyond Late Transition Metals. Journal of the American Chemical Society, 2016, 138, 4350-4353.	6.6	14
280	Azlactone Telechelic Polyolefins as Precursors to Polyamides: A Combination of Metathesis Polymerization and Polyaddition Reactions. Macromolecules, 2018, 51, 8084-8099.	2.2	14
281	Competitive nucleophilic aromatic substitution and palladium-catalyzed alkoxycarbonylation of (substituted chloroarene)Cr(CO)3 complexes. Tetrahedron Letters, 1994, 35, 4995-4998.	0.7	13
282	Syndio―and Isoselective Coordinative Chain Transfer Polymerization of Styrene Promoted by ⟨i⟩ansa⟨i⟩‣anthanidocene/ Dialkylmagnesium Systems. Advanced Synthesis and Catalysis, 2011, 353, 1367-1374.	2.1	13
283	Highly Syndiotactic or Isotactic Polyhydroxyalkanoates by Ligandâ€Controlled Yttriumâ€Catalyzed Stereoselective Ringâ€Opening Polymerization of Functional Racemic βâ€Lactones. Angewandte Chemie, 2017, 129, 10524-10529.	1.6	13
284	Syndiotactic-enriched propylene–styrene copolymers using fluorenyl-based half-titanocene catalysts. Journal of Molecular Catalysis A, 2006, 249, 230-235.	4.8	12
285	From glycidyl carbonate to hydroxyurethane side-groups in alternating fluorinated copolymers. Polymer Chemistry, 2014, 5, 5089.	1.9	12
286	Tailored Cyclic and Linear Polycarbosilazanes by Bariumâ€Catalyzed Nâ^'H/Hâ^'Si Dehydrocoupling Reactions. Angewandte Chemie, 2016, 128, 3808-3812.	1.6	12
287	Lowâ€Coordinate Barium Boryloxides: Synthesis and Dehydrocoupling Catalysis for the Production of Borasiloxanes. Angewandte Chemie, 2018, 130, 11921-11925.	1.6	12
288	Neodymium(III)tert-Butoxide-Dialkylmagnesium, a New Initiator System for Syndiotactic Polymerization of Methyl Methacrylate. Macromolecular Chemistry and Physics, 2002, 203, 550-555.	1.1	11

#	Article	IF	Citations
289	Preparation and stereoselective hydrogenation of chiral (4-hydroxy-tetrafuranylidene)carboxylates: a new formal entry to functional anti- and syn-3,5-dihydroxyesters. Tetrahedron Letters, 2002, 43, 2679-2682.	0.7	11
290	Thallium?Arene Contacts in a Rare Yttrium Tris(pyrazolyl)hydroborate ?ate? Complex. European Journal of Inorganic Chemistry, 2004, 2004, 4803-4806.	1.0	11
291	Ansa-metallocene andÂhalf-sandwich complexes ofÂgroup-3Âmetals andÂlanthanides incorporating fluorenyl-based ligands: from synthesis toÂcatalytic applications. Comptes Rendus Chimie, 2006, 9, 1151-1157.	0.2	11
292	Palladium complexes based on tridentate pyrazolyl-ligands: Synthesis, structures and use in Suzuki cross-coupling reactions. Inorganica Chimica Acta, 2009, 362, 4396-4402.	1.2	11
293	Guided acoustic wave resonators using an acoustic Bragg mirror. Applied Physics Letters, 2010, 96, 223504.	1.5	11
294	Scandium and yttrium complexes of an hybrid phenoxy-amidopyridinate ligand. Use in ROP of racemic lactide. Journal of Organometallic Chemistry, 2016, 823, 34-39.	0.8	11
295	Experimental and Computational Investigations on Highly Syndioselective Styrene–Ethylene Copolymerization Catalyzed by Allyl ⟨i⟩ansa⟨li⟩-Lanthanidocenes. Macromolecules, 2017, 50, 9577-9588.	2.2	11
296	A Theoretical Outlook on the Stereoselectivity Origins of Isoselective Zirconocene Propylene Polymerization Catalysts. Chemistry - A European Journal, 2018, 24, 10784-10792.	1.7	11
297	Base-induced cyclization of trimethoxy-o-aroyldiphenylphosphoryl methylbenzamide: a formal synthesis of (±) cherylline and (±) cherylline dimethylether. Tetrahedron Letters, 1996, 37, 3697-3700.	0.7	10
298	Binary cerium(IV) tert-butoxides-dialkylmagnesium systems: Radical versus coordinative polymerization of styrene. Journal of Molecular Catalysis A, 2005, 238, 207-214.	4.8	10
299	Functional Elastomers <i>via</i> Sequential Selective Diene Copolymerization/Hydrophosphorylation Catalysis. Advanced Synthesis and Catalysis, 2008, 350, 431-438.	2.1	10
300	Cadmium complexes bearing ^{Me2} N^E^O ^{â^'} (E = S, Se) organochalcogenoalkoxides and their zinc and mercury analogues. Dalton Transactions, 2017, 46, 3179-3191.	1.6	10
301	Tethered cationic alkaline earth – olefin complexes. Dalton Transactions, 2017, 46, 14785-14794.	1.6	10
302	Synthesis and structural characterization of zirconium complexes supported by tridentate pyrrolide-imino ligands with pendant <i>N</i> , <i>O</i> and <i>S</i> donor groups and their application in ethylene polymerization. New Journal of Chemistry, 2018, 42, 1477-1483.	1.4	10
303	Elaboration of Poly(É)-caprolactone)-g-TiNbO5 Nanocomposites via in situ Metal Complex Initiated Intercalative Polymerization. Macromolecular Materials and Engineering, 2004, 289, 531-538.	1.7	9
304	Microstructurally Controlled Polyisoprene or Polystyrene Diblock Copolymers ofrac-Lactide. Macromolecular Rapid Communications, 2005, 26, 1145-1150.	2.0	9
305	Rhodiumâ€Catalyzed Homogeneous and Aqueous Biphasic Hydroformylation of the Acrolein Acetal 2â€Vinylâ€5â€Methylâ€1,3â€Dioxane. ChemCatChem, 2013, 5, 1562-1569.	1.8	9
306	Aluminium, gallium and indium complexes supported by a chiral phenolato-prolinolato dianionic ligand. Main Group Metal Chemistry, $2016, 39, .$	0.6	9

#	Article	IF	CITATIONS
307	Catalytic Synthesis and Asymmetric Reduction of Pyridylglyoxylic Amides and Esters. Advanced Synthesis and Catalysis, 2001, 343, 289-298.	2.1	8
308	On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS. Materials Chemistry and Physics, 2013, 141, 891-902.	2.0	8
309	C sp 3H Bond Activation with Triel Metals: Indium and Gallium Zwitterions through Internal Hydride Abstraction in Rigid Salan Ligands. Chemistry - A European Journal, 2014, 20, 7706-7717.	1.7	8
310	Fogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, a Group I TS-block mineral from the Lagoa do Fogo, the Fogo volcano, São Miguel Island, the Azores: Description and crystal structure. Mineralogical Magazine, 2017, 81, 369-381.	0.6	8
311	Ruthenium complexes bearing amino-bis(phosphinite) or amino-bis(aminophosphine) ligands: Application in catalytic ester hydrogenation. Molecular Catalysis, 2017, 432, 15-22.	1.0	8
312	α,ω-Epoxide, Oxetane, and Dithiocarbonate Telechelic Copolyolefins: Access by Ring-Opening Metathesis/Cross-Metathesis Polymerization (ROMP/CM) of Cycloolefins in the Presence of Functional Symmetric Chain-Transfer Agents. Polymers, 2018, 10, 1241.	2.0	8
313	Bariumâ€Catalysed Dehydrocoupling of Hydrosilanes and Borinic Acids: A Mechanistic Insight. Chemistry - A European Journal, 2020, 26, 3535-3544.	1.7	8
314	Stereoselective Ring-Opening Polymerization of Functional $\hat{l}^2\text{-Lactones}$: Influence of the Exocyclic Side-Group. Polymer Chemistry, 0, , .	1.9	8
315	Bonding in Barium Boryloxides, Siloxides, Phenoxides and Silazides: A Comparison with the Lighter Alkaline Earths. Chemistry - A European Journal, 2021, 27, 11966-11982.	1.7	8
316	Highly Effective Polymerization of Acrylate Catalyzed by a "Constrained Geometry―Titanium Complex/B(C6F5)3System. Macromolecules, 2007, 40, 2293-2294.	2.2	7
317	Synthesis and structure of the first discrete dinuclear cationic aluminum complexes. Dalton Transactions, 2016, 45, 12346-12351.	1.6	7
318	K+···Cπ and K+···F Non-Covalent Interactions in π-Functionalized Potassium Fluoroalkoxides. Inorganics, 2017, 5, 13.	1.2	7
319	Rhodium-Biphephos-Catalyzed Tandem Isomerization–Hydroformylation of Oleonitrile. Catalysts, 2018, 8, 21.	1.6	7
320	Al-alkenyl-induced formation of long-chain branched polyethylene via coordinative tandem insertion and chain-transfer polymerization using (nBuCp)2ZrCl2/MAO systems: An experimental and theoretical study. European Polymer Journal, 2021, 154, 110567.	2.6	7
321	Zwitterionic Ni(<scp>ii</scp>) complexes bearing pyrazolyl-ether-imidazolium ligands: synthesis, structural characterization and use in ethylene oligomerization. New Journal of Chemistry, 2015, 39, 7234-7242.	1.4	6
322	Conformationally dynamic titanium and zirconium cationic complexes of bis(naphthoxy)pyridine ligands: structure, "oscillation―and olefin polymerization catalysis. Dalton Transactions, 2017, 46, 3150-3159.	1.6	6
323	Trinuclear tris(ansa-metallocene) complexes of zirconium and hafnium for olefin polymerization. Journal of Organometallic Chemistry, 2018, 878, 19-29.	0.8	6
324	Heterobimetallic Ba/Li and Ca/Li amides and diphenylmethanide. Dalton Transactions, 2019, 48, 5500-5504.	1.6	6

#	Article	lF	Citations
325	{Cyclopentadienyl/Fluorenyl}â€Group 4 ansa â€Metallocene Catalysts for Production of Tailorâ€Made Polyolefins. Chemical Record, 2021, 21, 357-375.	2.9	6
326	Electrochemical synthesis and catalytic applications of tinâ€"cobalt carbonyl complexes. Journal of Molecular Catalysis, 1992, 74, 465-479.	1.2	5
327	Zirconocene-catalyzed stereoselective cyclocopolymerization of 2-methyl-1,5-hexadiene with propylene. Polymer Chemistry, 2014, 5, 5560.	1.9	5
328	Secondary interactions – Cement in trinuclear calcium complexes. Inorganica Chimica Acta, 2018, 475, 59-64.	1.2	5
329	Synthesis, APPI Mass-Spectrometric Characterization, and Polymerization Studies of Group 4 Dinuclear Bis(ansa-metallocene) Complexes. Catalysts, 2018, 8, 558.	1.6	5
330	α,ω-Di(vinylene carbonate) telechelic polyolefins: Synthesis by metathesis reactions and studies as potential precursors toward hydroxy-oxazolidone-based polyolefin NIPUs. European Polymer Journal, 2019, 116, 144-157.	2.6	5
331	Water-tolerant catalyst systems for the bulk cationic polymerization of para-methylstyrene and indene. European Polymer Journal, 2010, 46, 1093-1099.	2.6	4
332	<i>i>i< i>PPâ€"<i>s< i>PP Stereoblocks or Blends? Studies on the Synthesis of Isotacticâ€"Syndiotactic Polypropylene Using Single <i>C< i>_{1< sub>â€Symmetric {Ph_{2< sub>Câ€{Flu)(3â€Me_{3< sub>Siâ€Cp)}ZrR_{2< sub> Metallocene Precatalysts. Macromolecular Chemistry and Physics, 2014, 215, 2035-2047.}}}}</i></i></i>	1,1	4
333	Evaluation of Band-Selective HSQC and HMBC: Methodological Validation on the Cyclosporin Cyclic Peptide and Application for Poly(3-hydroxyalkanoate)s Stereoregularity Determination. Polymers, 2018, 10, 533.	2.0	4
334	Insights in the Rhodium-Catalyzed Tandem Isomerization-Hydroformylation of 10-Undecenitrile: Evidence for a Fast Isomerization Regime. Catalysts, 2018, 8, 148.	1.6	4
335	Coupling Rhodiumâ€Catalyzed Hydroformylation of 10â€Undecenitrile with Organic Solvent Nanofiltration: Toluene Solution versus Solventâ€Free Processes. ChemPlusChem, 2019, 84, 1744-1760.	1.3	4
336	Metal–metal bonded alkaline-earth distannyls. Chemical Science, 2021, 12, 7098-7114.	3.7	4
337	Rutheniumâ€Catalyzed Coupling Reactions of CO 2 with C 2 H 4 and Hydrosilanes towards Silyl Esters. Chemistry - A European Journal, 2021, 27, 3997-4003.	1.7	4
338	Tacticity Control of Cyclic Poly(3â€Thiobutyrate) Prepared by Ringâ€Opening Polymerization of Racemic βâ€Thiobutyrolactone. Angewandte Chemie, 2022, 134, .	1.6	4
339	Group 12 and 13 metal-alkenyl promoted generation of long-chain branching in metallocene-based polyethylene. European Polymer Journal, 2022, 173, 111257.	2.6	4
340	Rhodium dihydride complexes as models for the theoretical analysis of enantioselective hydrogenation reactions. Tetrahedron: Asymmetry, 1998, 9, 2259-2270.	1.8	3
341	Heteroleptic lead(II)-halide complexes supported by a bulky iminoanilide ligand. Main Group Metal Chemistry, 2017, 40, .	0.6	3
342	α,ω-Bis(trialkoxysilyl) Telechelic Polyolefin/Polyether Copolymers for Adhesive Applications Using Ring-Opening Insertion Metathesis Polymerization Combined with a Chain-Transfer Agent. ACS Applied Polymer Materials, 2019, 1, 1540-1546.	2.0	3

#	Article	IF	CITATIONS
343	Paraffin-Inert Atmospheric Solid Analysis Probe: A Fast and Easy Approach To Characterize Extremely Air-Sensitive Organometallic Complexes by Mass Spectrometry. Analytical Chemistry, 2020, 92, 2922-2925.	3.2	3
344	Alkaline-earth complexes with macrocyclic-functionalised bis(phenolate)s and bis(fluoroalkoxide)s. Dalton Transactions, 2020, 49, 13017-13028.	1.6	3
345	Direct Synthesis of Benzoylpyridines from Chloropyridines via a Palladium-Carbene Catalyzed Carbonylative Suzuki Cross-Coupling Reaction. Synlett, 2003, 2003, 1874-1876.	1.0	2
346	Polyolefin/Polyether Alternated Copolymers: Silyl-Modified Polymers as Promising Monocomponent Precursors to Adhesives. ACS Applied Polymer Materials, 2020, 2, 5135-5146.	2.0	2
347	Upgrading Toughness and the Glass Transition Temperature of Polydicyclopentadiene upon Addition of Styrene–Ethylene–Butylene–Styrene Thermoplastic Elastomer. ACS Applied Polymer Materials, 2022, 4, 2251-2255.	2.0	2
348	Heteroleptic carbazolato-barium hydroborates and a related separated ion pair. Polyhedron, 2022, 217, 115731.	1.0	2
349	1,5-Diphenyl-4,8-bis(3-phenylpyrazol-1-yl)pyrazabole. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o521-o523.	0.4	1
350	Bariumâ€Catalysed Dehydrocoupling of Hydrosilanes and Borinic Acids: A Mechanistic Insight. Chemistry - A European Journal, 2020, 26, 3445-3445.	1.7	1
351	Bis(imino)carbazolate lead(ii) fluoride and related halides. Dalton Transactions, 2021, 50, 9021-9025.	1.6	1
352	Bonding analysis in ytterbium(ii) distannyl and related tetryls. Dalton Transactions, 2021, 50, 14273-14284.	1.6	1
353	Propylene Polymerization and Deactivation Processes with Isoselective {Cp/Flu} Zirconocene Catalysts. Catalysts, 2021, 11, 959.	1.6	1
354	Asymmetric Hydrogenation of 2,4-Dioxo Esters: Selective Synthesis of 2-Hydroxy-4-oxo Esters and Direct Access to Chiral 2-Hydroxy-4-butyrolactones., 1999, 1999, 1787.		1
355	Chlorolanthanocene-dialkylmagnesium systems for styrene bulk polymerization and styrene-ethylene block copolymerization., 2000, 201, 1813.		1
356	Meso- and Rac-[bis(3-phenyl-6-tert-butylinden-1-yl)dimethylsilyl]zirconium Dichloride: Precatalysts for the Production of Differentiated Polyethylene Products with Enhanced Properties. Polymers, 2022, 14, 2217.	2.0	1
357	Chemo- and Enantioselective Hydrosilylation of Carbonyl and Imino Groups: An Emphasis on Non-Traditional Catalyst Systems. ChemInform, 2003, 34, no.	0.1	O
358	Direct Zn-Diamine Promoted Reduction of C=O and C=N Bonds by Polymethylhydrosiloxane in Methanol ChemInform, 2003, 34, no.	0.1	0
359	Palladium-Catalyzed Carbonylative Coupling of Pyridine Halides with Aryl Boronic Acids ChemInform, 2003, 34, no.	0.1	O
360	New Developments in Zinc-Catalyzed Asymmetric Hydrosilylation of Ketones with PMHS ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
361	New Chiral 1,2-Diamines and Their Use in Zinc-Catalyzed Asymmetric Hydrosilylation of Acetophenone ChemInform, 2004, 35, no.	0.1	0
362	Synthesis, Characterization and Ethylene Oligomerization Studies of Chromium Complexes Bearing Imino-Furfural Ligands. Journal of the Brazilian Chemical Society, 2014, , .	0.6	0
363	<i>In My Element</i> : Yttrium. Chemistry - A European Journal, 2019, 25, 2379-2379.	1.7	O
364	Frontispiece: Recent Advances in Metalâ€Mediated Stereoselective Ringâ€Opening Polymerization of Functional Cyclic Esters towards Wellâ€Defined Poly(hydroxy acid)s: From Stereoselectivity to Sequenceâ€Control. Chemistry - A European Journal, 2020, 26, .	1.7	0
365	Secondary (Agostic Si–H/Electrostatic C–F) Interactions in Alkaline Earth-based Catalysts. RSC Catalysis Series, 2019, , 94-121.	0.1	0