Martin J Spiering

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6779118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SYMBIOSES OF GRASSES WITH SEEDBORNE FUNGAL ENDOPHYTES. Annual Review of Plant Biology, 2004, 55, 315-340.	18.7	759
2	Comparative genomics of the fungal pathogens <i>Candida dubliniensis</i> and <i>Candida albicans</i> . Genome Research, 2009, 19, 2231-2244.	5.5	195
3	Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry, 2001, 58, 395-401.	2.9	124
4	Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus Neotyphodium uncinatum. Genetics, 2005, 169, 1403-1414.	2.9	122
5	Distribution of the fungal endophyte Neotyphodium Iolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry, 2005, 66, 195-202.	2.9	102
6	In Planta Regulation of Extension of an Endophytic Fungus and Maintenance of High Metabolic Rates in Its Mycelium in the Absence of Apical Extension. Applied and Environmental Microbiology, 2001, 67, 5377-5383.	3.1	86
7	Comparative Transcript Profiling of Candida albicans and Candida dubliniensis Identifies <i>SFL2</i> , a C. albicans Gene Required for Virulence in a Reconstituted Epithelial Infection Model. Eukaryotic Cell, 2010, 9, 251-265.	3.4	78
8	Effects of the Fungal Endophyte, Neotyphodium Iolii, on Net Photosynthesis and Growth Rates of Perennial Ryegrass (Lolium perenne) are Independent of In Planta Endophyte Concentration. Annals of Botany, 2006, 98, 379-387.	2.9	73
9	Simplified Extraction of Ergovaline and Peramine for Analysis of Tissue Distribution in Endophyte-Infected Grass Tillers. Journal of Agricultural and Food Chemistry, 2002, 50, 5856-5862.	5.2	71
10	Vegetative Incompatibility Loci with Dedicated Roles in Allorecognition Restrict Mycovirus Transmission in Chestnut Blight Fungus. Genetics, 2014, 197, 701-714.	2.9	66
11	Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Molecular Microbiology, 2007, 66, 915-929.	2.5	50
12	Expressed sequence tags and genes associated with loline alkaloid expression by the fungal endophyte Neotyphodium uncinatum. Fungal Genetics and Biology, 2002, 36, 242-254.	2.1	47
13	Characterizing the Roles of Cryphonectria parasitica RNA-Dependent RNA Polymerase-Like Genes in Antiviral Defense, Viral Recombination and Transposon Transcript Accumulation. PLoS ONE, 2014, 9, e108653.	2.5	43
14	Comparison of loline alkaloid gene clusters across fungal endophytes: Predicting the co-regulatory sequence motifs and the evolutionary history. Fungal Genetics and Biology, 2007, 44, 1002-1010.	2.1	31
15	Role of the LoIP cytochrome P450 monooxygenase in loline alkaloid biosynthesis. Fungal Genetics and Biology, 2008, 45, 1307-1314.	2.1	29
16	Transformation of the ryegrass endophyte Neotyphodium lolii can alter its in planta mycelial morphology. Mycological Research, 2006, 110, 601-611.	2.5	20
17	Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures. Fungal Genetics and Biology, 2009, 46, 517-530.	2.1	16
18	Gene identification in black cohosh (Actaea racemosa L.): expressed sequence tag profiling and genetic screening yields candidate genes for production of bioactive secondary metabolites. Plant Cell Reports, 2011, 30, 613-629.	5.6	13

MARTIN J SPIERING

#	Article	IF	CITATIONS
19	Systems Approaches to Unraveling Plant Metabolism: Identifying Biosynthetic Genes of Secondary Metabolic Pathways. Methods in Molecular Biology, 2014, 1083, 253-273.	0.9	3
20	How to catch a HIF—the work of Gregg Semenza's lab on hypoxia-inducible factor 1. Journal of Biological Chemistry, 2020, 295, 715-716.	3.4	2
21	Yeast as a detective's assistant: Susan Henry's work on inositol-containing phospholipids. Journal of Biological Chemistry, 2020, 295, 7001-7002.	3.4	1
22	Melding the best of two worlds: Cecil Pickett's work on cellular oxidative stress and in drug discovery and development. Journal of Biological Chemistry, 2020, 295, 3929-3931.	3.4	1
23	How to catch a HIF—the work of Gregg Semenza's lab on hypoxia-inducible factor 1. Journal of Biological Chemistry, 2020, 295, 715-716.	3.4	1