Javeed Mahmood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6778523/publications.pdf

Version: 2024-02-01

218677 175258 5,676 56 26 52 citations g-index h-index papers 59 59 59 7487 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fused aromatic networks as a new class of gas hydrate inhibitors. Chemical Engineering Journal, 2022, 433, 133691.	12.7	7
2	Low-overpotential overall water splitting by a cooperative interface of cobalt-iron hydroxide and iron oxyhydroxide. Cell Reports Physical Science, 2022, 3, 100762.	5.6	43
3	Solution-Processable Semiconducting Conjugated Planar Network. ACS Applied Materials & Company (1997) Among the Interfaces, 2022, 14, 14588-14595.	8.0	O
4	Crystalline Porphyrazineâ€Linked Fused Aromatic Networks with High Proton Conductivity. Angewandte Chemie, 2022, 134, .	2.0	1
5	Crystalline Porphyrazine‣inked Fused Aromatic Networks with High Proton Conductivity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
6	In-Plane Oriented Two-Dimensional Conjugated Metal–Organic Framework Films for High-Performance Humidity Sensing. , 2022, 4, 1146-1153.		7
7	Recent Progress in Porous Fused Aromatic Networks and Their Applications. Small Science, 2021, 1, 2000007.	9.9	14
8	Anomalous phonon softening of G-band in compressed graphitic carbon nitride due to strong electrostatic repulsion. Applied Physics Letters, 2021, 118, .	3.3	2
9	Fused Aromatic Network Structures: Fused Aromatic Network with Exceptionally High Carrier Mobility (Adv. Mater. 9/2021). Advanced Materials, 2021, 33, 2170063.	21.0	0
10	Fused aromatic networks with the different spatial arrangement of structural units. Cell Reports Physical Science, 2021, 2, 100502.	5.6	3
11	Synthesis of Saddle-Shape Octaaminotetraphenylene Octahydrochloride. Journal of Organic Chemistry, 2021, 86, 14398-14403.	3.2	2
12	Fused Aromatic Network with Exceptionally High Carrier Mobility. Advanced Materials, 2021, 33, e2004707.	21.0	16
13	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes. Advanced Materials Interfaces, 2021, 8, 2101373.	3.7	3
14	Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism. Cell Reports Physical Science, 2021, 2, 100653.	5.6	4
15	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes (Adv. Mater.) Tj ETQq $1\ 1\ 0.78$	34314 rgB	T /Overlock
16	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horizons, 2020, 5, 43-56.	8.0	223
17	Iron encased organic networks with enhanced lithium storage properties. Energy Storage, 2020, 2, e114.	4.3	4
18	Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO ₂ -saturated media for an aqueous Zn–CO ₂ system. Journal of Materials Chemistry A, 2020, 8, 14927-14934.	10.3	16

#	Article	IF	Citations
19	Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nature Communications, 2020, 11, 1278.	12.8	340
20	Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework. Communications Chemistry, 2020, 3, .	4.5	40
21	Vertical two-dimensional layered fused aromatic ladder structure. Nature Communications, 2020, 11, 2021.	12.8	29
22	Forming layered conjugated porous BBL structures. Polymer Chemistry, 2019, 10, 4185-4193.	3.9	13
23	Metal (MÂ= Ru, Pd and Co) embedded in C2N with enhanced lithium storage properties. Materials Today Energy, 2019, 14, 100359.	4.7	13
24	Room-Temperature Organic Ferromagnetism. CheM, 2019, 5, 1012-1014.	11.7	9
25	Synergistic Coupling Derived Cobalt Oxide with Nitrogenated Holey Two-Dimensional Matrix as an Efficient Bifunctional Catalyst for Metal–Air Batteries. ACS Nano, 2019, 13, 5502-5512.	14.6	87
26	Fused Aromatic Network Structures as a Platform for Efficient Electrocatalysis. Advanced Materials, 2019, 31, e1805062.	21.0	31
27	Scalable Synthesis of Tetrapodal Octaamine. European Journal of Organic Chemistry, 2019, 2019, 2335-2338.	2.4	4
28	Robust fused aromatic pyrazine-based two-dimensional network for stably cocooning iron nanoparticles as an oxygen reduction electrocatalyst. Nano Energy, 2019, 56, 581-587.	16.0	35
29	Direct Synthesis of a Covalent Triazineâ€Based Framework from Aromatic Amides. Angewandte Chemie - International Edition, 2018, 57, 8438-8442.	13.8	196
30	Direct Synthesis of a Covalent Triazineâ€Based Framework from Aromatic Amides. Angewandte Chemie, 2018, 130, 8574-8578.	2.0	40
31	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie, 2018, 130, 3473-3478.	2.0	6
32	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie - International Edition, 2018, 57, 3415-3420.	13.8	40
33	Defect-Free Encapsulation of Fe ⁰ in 2D Fused Organic Networks as a Durable Oxygen Reduction Electrocatalyst. Journal of the American Chemical Society, 2018, 140, 1737-1742.	13.7	124
34	Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. Nano Energy, 2018, 44, 304-310.	16.0	118
35	Hydrogen Evolution Reaction: Encapsulating Iridium Nanoparticles Inside a 3D Cageâ€Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction (Adv. Mater.) Tj ETQq1 1 0.78	43 140 gBT	
36	Encapsulating Iridium Nanoparticles Inside a 3D Cageâ€Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1805606.	21.0	98

#	Article	IF	CITATIONS
37	Molybdenumâ€Based Carbon Hybrid Materials to Enhance the Hydrogen Evolution Reaction. Chemistry - A European Journal, 2018, 24, 18158-18179.	3.3	46
38	Organic Ferromagnetism: Trapping Spins in the Glassy State of an Organic Network Structure. CheM, 2018, 4, 2357-2369.	11.7	42
39	Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst. Advanced Functional Materials, 2017, 27, 1605717.	14.9	80
40	Electrocatalyts: Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
41	An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nature Nanotechnology, 2017, 12, 441-446.	31.5	1,271
42	Twoâ€Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. ChemNanoMat, 2017, 3, 373-391.	2.8	106
43	Nitrogen-rich two-dimensional porous polybenzimidazole network as a durable metal-free electrocatalyst for a cobalt reduction reaction in organic dye-sensitized solar cells. Nano Energy, 2017, 34, 533-540.	16.0	11
44	Electrocatalysis: Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst (Small 40/2017). Small, 2017, 13, .	10.0	1
45	2D Frameworks of C ₂ N and C ₃ N as New Anode Materials for Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1702007.	21.0	282
46	Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst. Small, 2017, 13, 1701167.	10.0	82
47	Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals. Nature Communications, 2017, 8, 1599.	12.8	12
48	Macroporous Inverse Opal-like Mo $<$ sub $><$ i $>xi></sub>C with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano, 2017, 11, 7527-7533.$	14.6	102
49	Unusually Stable Triazineâ€based Organic Superstructures. Angewandte Chemie, 2016, 128, 7539-7543.	2.0	3
50	Two-dimensional polyaniline (C ₃ N) from carbonized organic single crystals in solid state. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7414-7419.	7.1	380
51	Unusually Stable Triazineâ€based Organic Superstructures. Angewandte Chemie - International Edition, 2016, 55, 7413-7417.	13.8	6
52	Nitrogenated holey two-dimensional structures. Nature Communications, 2015, 6, 6486.	12.8	923
53	Cobalt Oxide Encapsulated in C ₂ N- <i>h</i> 2D Network Polymer as a Catalyst for Hydrogen Evolution. Chemistry of Materials, 2015, 27, 4860-4864.	6.7	131
54	Scalable Synthesis of Pure and Stable Hexaaminobenzene Trihydrochloride. Synlett, 2013, 24, 246-248.	1.8	23

#	Article	IF	CITATIONS
55	Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5588-5593.	7.1	595
56	A facile synthesis of novel unsymmetrical N-(4-oxo-2-phenyl-3(4H)-quinazolinoyl)-N-(aryl)acetamidines. Chinese Chemical Letters, 2010, 21, 905-910.	9.0	3