Ashraf S Gorgey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6777664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The interaction of macronutrients and body composition among individuals with chronic spinal cord injury. British Journal of Nutrition, 2023, 129, 1011-1022.	2.3	5
2	Effects of Electrical Stimulation Training on Body Composition Parameters After Spinal Cord Injury: A Systematic Review. Archives of Physical Medicine and Rehabilitation, 2022, 103, 1168-1178.	0.9	15
3	Leisure-time physical activity, anthropometrics, and body composition as predictors of quality of life domains after spinal cord injury: an exploratory cross-sectional study. Neural Regeneration Research, 2022, 17, 1369.	3.0	6
4	Prediction of Distal Femur and Proximal Tibia Bone Mineral Density From Total Body Dual Energy X-Ray Absorptiometry Scans in Persons with Spinal Cord Injury. Journal of Clinical Densitometry, 2022, 25, 252-260.	1.2	3
5	Benefits and interval training in individuals with spinal cord injury: A thematic review. Journal of Spinal Cord Medicine, 2022, 45, 327-338.	1.4	2
6	Exoskeleton Training and Trans-Spinal Stimulation for Physical Activity Enhancement After Spinal Cord Injury (EXTra-SCI): An Exploratory Study. Frontiers in Rehabilitation Sciences, 2022, 2, 789422.	1.2	7
7	Epidural stimulation with locomotor training ameliorates unstable blood pressure after tetraplegia. A case report. Annals of Clinical and Translational Neurology, 2022, 9, 232-238.	3.7	2
8	Telerehabilitation for Exercise in Neurological Disability. , 2022, , 319-337.		0
9	Visceral Adiposity, Inflammation, and Testosterone Predict Skeletal Muscle Mitochondrial Mass and Activity in Chronic Spinal Cord Injury. Frontiers in Physiology, 2022, 13, 809845.	2.8	4
10	The COVID-19 pandemic impacts all domains of quality of life in Egyptians with spinal cord injury: a retrospective longitudinal study. Spinal Cord, 2022, 60, 757-762.	1.9	5
11	Assessment of mitochondrial respiratory capacity using minimally invasive and noninvasive techniques in persons with spinal cord injury. PLoS ONE, 2022, 17, e0265141.	2.5	1
12	Skeletal muscle stiffness as measured by magnetic resonance elastography after chronic spinal cord injury: a cross-sectional pilot study. Neural Regeneration Research, 2021, 16, 2486.	3.0	7
13	Bone and non-contractile soft tissue changes following open kinetic chain resistance training and testosterone treatment in spinal cord injury: an exploratory study. Osteoporosis International, 2021, 32, 1321-1332.	3.1	11
14	Energy Expenditure, Cardiorespiratory Fitness, and Body Composition Following Arm Cycling or Functional Electrical Stimulation Exercises in Spinal Cord Injury: A 16-Week Randomized Controlled Trial. Topics in Spinal Cord Injury Rehabilitation, 2021, 27, 121-134.	1.8	18
15	Low-dose testosterone replacement therapy and electrically evoked resistance training enhance muscle quality after spinal cord injury. Neural Regeneration Research, 2021, 16, 1544.	3.0	2
16	Body Composition and Metabolic Assessment After Motor Complete Spinal Cord Injury: Development of a Clinically Relevant Equation to Estimate Body Fat. Topics in Spinal Cord Injury Rehabilitation, 2021, 27. 11-22.	1.8	26
17	Acute exercise improves glucose effectiveness but not insulin sensitivity in paraplegia. Disability and Rehabilitation, 2021, , 1-7.	1.8	3
18	Role of exercise on visceral adiposity after spinal cord injury: a cardiometabolic risk factor. European Journal of Applied Physiology, 2021, 121, 2143-2163.	2.5	5

#	Article	IF	CITATIONS
19	Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. Journal of Applied Physiology, 2021, 131, 265-276.	2.5	11
20	Effects Of Resistance Training Versus Passive Movement Training On Muscle Size, Oxygen Uptake And Ventilatory Efficiency After Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2021, 53, 121-121.	0.4	0
21	Leisure-time Physical Activity, Anthropometrics, And Body Composition To Predict Quality Of Life After Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2021, 53, 451-451.	0.4	Ο
22	Anthropometric Prediction of Visceral Adiposity in Persons With Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation, 2021, 27, 23-35.	1.8	9
23	Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury. Journal of Neurophysiology, 2021, 126, 1843-1859.	1.8	26
24	Effects of dose deâ€escalation following testosterone treatment and evoked resistance exercise on body composition, metabolic profile, and neuromuscular parameters in persons with spinal cord injury. Physiological Reports, 2021, 9, e15089.	1.7	5
25	Comparison of Various Indices in Identifying Insulin Resistance and Diabetes in Chronic Spinal Cord Injury. Journal of Clinical Medicine, 2021, 10, 5591.	2.4	8
26	Invasive and Non-Invasive Approaches of Electrical Stimulation to Improve Physical Functioning after Spinal Cord Injury. Journal of Clinical Medicine, 2021, 10, 5356.	2.4	10
27	Measurement of Visceral Adipose Tissue in Persons With Spinal Cord Injury by Magnetic Resonance Imaging and Dual X-Ray Absorptiometry: Generation and Application of a Predictive Equation. Journal of Clinical Densitometry, 2020, 23, 63-72.	1.2	12
28	A secondary analysis of testosterone and electrically evoked resistance training versus testosterone only (TEREX-SCI) on untrained muscles after spinal cord injury: a pilot randomized clinical trial. Spinal Cord, 2020, 58, 298-308.	1.9	14
29	Methodological considerations for near-infrared spectroscopy to assess mitochondrial capacity after spinal cord injury. Journal of Spinal Cord Medicine, 2020, 43, 623-632.	1.4	2
30	Waist circumference cutoff identifying risks of obesity, metabolic syndrome, and cardiovascular disease in men with spinal cord injury. PLoS ONE, 2020, 15, e0236752.	2.5	21
31	Magnetic Resonance Elastography to Measure Muscle Stiffness After Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2020, 101, e26.	0.9	Ο
32	Proposed Waist Circumference Cut-off to Identify Risks of Obesity, Metabolic Syndrome, and Cardiovascular Disease After Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2020, 101, e27.	0.9	0
33	Attenuation of autonomic dysreflexia during functional electrical stimulation cycling by neuromuscular electrical stimulation training: case reports. Spinal Cord Series and Cases, 2020, 6, 12.	0.6	5
34	The feasibility of using exoskeletalâ€assisted walking with epidural stimulation: a case report study. Annals of Clinical and Translational Neurology, 2020, 7, 259-265.	3.7	21
35	Sixteen weeks of testosterone with or without evoked resistance training on protein expression, fiber hypertrophy and mitochondrial health after spinal cord injury. Journal of Applied Physiology, 2020, 128, 1487-1496.	2.5	25
36	Electrical stimulation and denervated muscles after spinal cord injury. Neural Regeneration Research, 2020, 15, 1397.	3.0	37

#	Article	IF	CITATIONS
37	Trabecular Bone Quality In Spinal Cord Injury Following Open Chain Resistance Training And Testosterone Replacement. Medicine and Science in Sports and Exercise, 2020, 52, 77-77.	0.4	Ο
38	Effects Of Testosterone And Resistance Training On Protein Expression And Mitochondrial Functions Following Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2020, 52, 77-77.	0.4	0
39	Long-term effect of intrathecal baclofen treatment on bone health and body composition after spinal cord injury: A case matched report. World Journal of Orthopedics, 2020, 11, 453-464.	1.8	3
40	Exoskeletal Assisted Rehabilitation After Spinal Cord Injury. , 2019, , 440-447.e2.		17
41	Skeletal muscle hypertrophy and attenuation of cardio-metabolic risk factors (SHARC) using functional electrical stimulation-lower extremity cycling in persons with spinal cord injury: study protocol for a randomized clinical trial. Trials, 2019, 20, 526.	1.6	21
42	Prediction of thigh skeletal muscle mass using dual energy x-ray absorptiometry compared to magnetic resonance imaging after spinal cord injury. Journal of Spinal Cord Medicine, 2019, 42, 622-630.	1.4	10
43	Low-Dose Testosterone and Evoked Resistance Exercise after Spinal Cord Injury on Cardio-Metabolic Risk Factors: An Open-Label Randomized Clinical Trial. Journal of Neurotrauma, 2019, 36, 2631-2645.	3.4	45
44	Testosterone and Resistance Training Improve Muscle Quality in Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2019, 51, 1591-1598.	0.4	19
45	Caloric Intake Relative to Total Daily Energy Expenditure Using a Spinal Cord Injury–Specific Correction Factor. American Journal of Physical Medicine and Rehabilitation, 2019, 98, 947-952.	1.4	25
46	Effects of Testosterone and Resistance Training on Anabolic and Inflammatory Biomarkers Following Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2019, 51, 823-823.	0.4	0
47	Serum testosterone levels may influence body composition and cardiometabolic health in men with spinal cord injury. Spinal Cord, 2019, 57, 229-239.	1.9	25
48	Mitochondrial health and muscle plasticity after spinal cord injury. European Journal of Applied Physiology, 2019, 119, 315-331.	2.5	37
49	Quantification of trunk and android lean mass using dual energy x-ray absorptiometry compared to magnetic resonance imaging after spinal cord injury. Journal of Spinal Cord Medicine, 2019, 42, 508-516.	1.4	11
50	Sex dimorphism in the distribution of adipose tissue and its influence on proinflammatory adipokines and cardiometabolic profiles in motor complete spinal cord injury. Journal of Spinal Cord Medicine, 2019, 42, 430-436.	1.4	17
51	The Effects of Electrical Stimulation Parameters in Managing Spasticity After Spinal Cord Injury. American Journal of Physical Medicine and Rehabilitation, 2019, 98, 484-499.	1.4	24
52	Dietary manipulation and testosterone replacement therapy may explain changes in body composition after spinal cord injury: A retrospective case report. World Journal of Clinical Cases, 2019, 7, 2427-2437.	0.8	6
53	Testosterone and Resistance Training Improves Muscle Quality Following Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2019, 51, 307-307.	0.4	0
54	Plasma adiponectin levels are correlated with body composition, metabolic profiles, and mitochondrial markers in individuals with chronic spinal cord injury. Spinal Cord, 2018, 56, 863-872.	1.9	14

#	Article	IF	CITATIONS
55	Validation of Anthropometric Muscle Cross-Sectional Area Equation after Spinal Cord Injury. International Journal of Sports Medicine, 2018, 39, 366-373.	1.7	7
56	Paradigms of Lower Extremity Electrical Stimulation Training After Spinal Cord Injury. Journal of Visualized Experiments, 2018, , .	0.3	10
57	Predicting Basal Metabolic Rate in Men with Motor Complete Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2018, 50, 1305-1312.	0.4	32
58	Associations of the trunk skeletal musculature and dietary intake to biomarkers of cardiometabolic health after spinal cord injury. Clinical Physiology and Functional Imaging, 2018, 38, 949-958.	1.2	12
59	Estimates of the precision of regional and whole body composition by dual-energy x-ray absorptiometry in persons with chronic spinal cord injury. Spinal Cord, 2018, 56, 987-995.	1.9	28
60	Anthropometric Prediction of Visceral Adipose Tissue in Persons With Motor Complete Spinal Cord Injury. PM and R, 2018, 10, 817.	1.6	7
61	Higher dietary intake of vitamin D may influence total cholesterol and carbohydrate profile independent of body composition in men with Chronic Spinal Cord Injury. Journal of Spinal Cord Medicine, 2018, 41, 459-470.	1.4	10
62	Gender Dimorphism in Central Adiposity May Explain Metabolic Dysfunction After Spinal Cord Injury. PM and R, 2018, 10, 338-348.	1.6	20
63	Body composition changes with testosterone replacement therapy following spinal cord injury and aging: A mini review. Journal of Spinal Cord Medicine, 2018, 41, 624-636.	1.4	24
64	The influence of level of spinal cord injury on adipose tissue and its relationship to inflammatory adipokines and cardiometabolic profiles. Journal of Spinal Cord Medicine, 2018, 41, 407-415.	1.4	38
65	Predicting Basal Metabolic Rate After Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2018, 50, 482-483.	0.4	Ο
66	Smart Data-Driven Optimization of Powered Prosthetic Ankles Using Surface Electromyography. Sensors, 2018, 18, 2705.	3.8	6
67	Testosterone and Resistance Training Increased Muscle Size Compared to Testosterone Only after Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2018, 99, e12.	0.9	0
68	Robotic exoskeletons: The current pros and cons. World Journal of Orthopedics, 2018, 9, 112-119.	1.8	123
69	Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury. PLoS ONE, 2018, 13, e0203049.	2.5	29
70	Feasibility of robotic exoskeleton ambulation in a C4 person with incomplete spinal cord injury: a case report. Spinal Cord Series and Cases, 2018, 4, 36.	0.6	12
71	American Academy of Spinal Cord Injury Professionals ASCIP 2018 Educational Conference & Expo Stronger Together: Passion, Purpose and Possibilities in SCI/D. Journal of Spinal Cord Medicine, 2018, 41, 599-622.	1.4	0
72	The future of SCI rehabilitation: Understanding the impact of exoskeletons on gait mechanics. Journal of Spinal Cord Medicine, 2018, 41, 544-546.	1.4	4

#	Article	IF	CITATIONS
73	Semi-automated segmentation of magnetic resonance images for thigh skeletal muscle and fat using threshold technique after spinal cord injury. Neural Regeneration Research, 2018, 13, 1787.	3.0	14
74	Testosterone and Resistance Exercise Improved Body Composition and Basal Metabolic Rate after Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2018, 50, 199.	0.4	0
75	Anthropometric prediction of skeletal muscle cross-sectional area in persons with spinal cord injury. Journal of Applied Physiology, 2017, 122, 1255-1261.	2.5	15
76	Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord Injury (TEREX-SCI): study protocol for a randomised controlled trial. BMJ Open, 2017, 7, e014125.	1.9	32
77	Liver Adiposity and Metabolic Profile in Individuals with Chronic SCI. Archives of Physical Medicine and Rehabilitation, 2017, 98, e21.	0.9	0
78	Metabolic Profile as a Function of Mitochondrial Activity in Individuals With Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2017, 98, e81-e82.	0.9	0
79	Trunk Lean and Android Mass Using Magnetic Resonance Imaging and DXA After Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2017, 98, e124.	0.9	0
80	Skeletal muscle mitochondrial mass is linked to lipid and metabolic profile in individuals with spinal cord injury. European Journal of Applied Physiology, 2017, 117, 2137-2147.	2.5	21
81	A feasibility pilot using telehealth videoconference monitoring of home-based NMES resistance training in persons with spinal cord injury. Spinal Cord Series and Cases, 2017, 3, 17039.	0.6	20
82	Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury. Journal of Spinal Cord Medicine, 2017, 40, 439-448.	1.4	30
83	Effects of a fifty-six month electrical stimulation cycling program after tetraplegia: case report. Journal of Spinal Cord Medicine, 2017, 40, 485-488.	1.4	17
84	EMG-based energy expenditure optimization for active prosthetic leg tuning. , 2017, 2017, 394-397.		2
85	Mitochondrial mass and activity as a function of body composition in individuals with spinal cord injury. Physiological Reports, 2017, 5, e13080.	1.7	29
86	Electroencephalogram-Based Brain–Computer Interface and Lower-Limb Prosthesis Control: A Case Study. Frontiers in Neurology, 2017, 8, 696.	2.4	36
87	Liver Adiposity and Metabolic Profile in Individuals with Chronic Spinal Cord Injury. BioMed Research International, 2017, 2017, 1-11.	1.9	28
88	Disruption in bone marrow fat may attenuate testosterone action on muscle size after spinal cord injury: a case report. European Journal of Physical and Rehabilitation Medicine, 2017, 53, 625-629.	2.2	5
89	Exoskeleton Training May Improve Level of Physical Activity After Spinal Cord Injury: A Case Series. Topics in Spinal Cord Injury Rehabilitation, 2017, 23, 245-255.	1.8	38
90	MRI analysis and clinical significance of lower extremity muscle cross-sectional area after spinal cord injury. Neural Regeneration Research, 2017, 12, 714.	3.0	11

#	Article	IF	CITATIONS
91	Quantification of intermuscular and intramuscular adipose tissue using magnetic resonance imaging after neurodegenerative disorders. Neural Regeneration Research, 2017, 12, 2100.	3.0	38
92	Blood Flow Restricted Exercise with Electrical Stimulation Enhanced Flow Mediation Dilation in Persons with Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2016, 48, 836.	0.4	0
93	Effects of Use and Disuse on Non-paralyzed and Paralyzed Skeletal Muscles. , 2016, 7, 68.		9
94	Investigation of muscle activity during loaded human gait using signal processing of multi-channel surface EMG and IMU. , 2016, , .		3
95	Longitudinal changes in body composition and metabolic profile between exercise clinical trials in men with chronic spinal cord injury. Journal of Spinal Cord Medicine, 2016, 39, 699-712.	1.4	38
96	Effects of once weekly NMES training on knee extensors fatigue and body composition in a person with spinal cord injury. Journal of Spinal Cord Medicine, 2016, 39, 99-102.	1.4	21
97	Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. European Journal of Applied Physiology, 2016, 116, 1231-1244.	2.5	41
98	Characteristics of Electrically Evoked Resistance Training Over 16ÂWeeks in Persons with Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2016, 97, e132-e133.	0.9	0
99	Heterotopic Ossification Size was Not Influenced by Electrical Stimulation Training and Testosterone Replacement Therapy After Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2016, 97, e18.	0.9	0
100	Intramedullary Femoral Fixation interferes with Testosterone Action on Muscle Cross-sectional Area in a Person with Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2016, 97, e127.	0.9	2
101	Exoskeleton Training Improves Parameters of Physical Activity in a Person with Tetraplegia. Archives of Physical Medicine and Rehabilitation, 2016, 97, e132.	0.9	1
102	Anthropometric Prediction of Skeletal Muscle Cross-sectional Area in Persons with Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2016, 48, 894.	0.4	0
103	The Authors Respond. Archives of Physical Medicine and Rehabilitation, 2016, 97, 175-176.	0.9	0
104	Acute Responses of Functional Electrical Stimulation Cycling on the Ventilationâ€ŧo O ₂ Production Ratio and Substrate Utilization After Spinal Cord Injury. PM and R, 2016, 8, 225-234.	1.6	18
105	Neuromuscular electrical stimulation and testosterone did not influence heterotopic ossification size after spinal cord injury: A case series. World Journal of Clinical Cases, 2016, 4, 172.	0.8	10
106	Skeletal muscle conditioning may be an effective rehabilitation intervention preceding functional electrical stimulation cycling. Neural Regeneration Research, 2016, 11, 1232.	3.0	11
107	Skeletal muscle mitochondrial health and spinal cord injury. World Journal of Orthopedics, 2016, 7, 628.	1.8	21
108	Novel rehabilitation paradigm for restoration of hand functions after tetraplegia. Neural Regeneration Research, 2016, 11, 1058.	3.0	0

#	Article	IF	CITATIONS
109	Activity-Based Restorative Therapies after Spinal Cord Injury: Inter-institutional conceptions and perceptions. , 2015, 6, 254.		41
110	Adiposity and spinal cord injury. World Journal of Orthopedics, 2015, 6, 567.	1.8	25
111	Does Upper Extremity Training Influence Body Composition after Spinal Cord Injury?. , 2015, 6, 271.		23
112	Exercise Recommendations and Considerations for Persons With Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2015, 96, 1749-1750.	0.9	54
113	The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury – Part II. Journal of Spinal Cord Medicine, 2015, 38, 23-37.	1.4	68
114	Frequency of Dietary Recalls, Nutritional Assessment, and Body Composition Assessment in Men With Chronic Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2015, 96, 1646-1653.	0.9	43
115	Neuromuscular Electrical Stimulation Training Increases Intermuscular Fascial Length but Not Tendon Cross-Sectional Area After Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation, 2015, 21, 87-92.	1.8	10
116	Exercise awareness and barriers after spinal cord injury. World Journal of Orthopedics, 2014, 5, 158.	1.8	51
117	Body composition changes after 12 months of FES cycling: case report of a 60-year-old female with paraplegia. Spinal Cord, 2014, 52, S3-S4.	1.9	22
118	Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury. Journal of Rehabilitation Research and Development, 2014, 51, 1455-1468.	1.6	26
119	Effects of spinal cord injury on body composition and metabolic profile – Part I. Journal of Spinal Cord Medicine, 2014, 37, 693-702.	1.4	210
120	Improving the Efficiency of Electrical Stimulation Activities After Spinal Cord Injury. Current Physical Medicine and Rehabilitation Reports, 2014, 2, 169-175.	0.8	12
121	Intraâ€rater Reliability of Ultrasound Imaging of Wrist Extensor Muscles in Patients With Tetraplegia. PM and R, 2014, 6, 127-133.	1.6	10
122	Neuromuscular electrical stimulation attenuates thigh skeletal muscles atrophy but not trunk muscles after spinal cord injury. Journal of Electromyography and Kinesiology, 2013, 23, 977-984.	1.7	32
123	Femoral Bone Marrow Adiposity and Cortical Bone Crossâ€Sectional Areas in Men With Motor Complete Spinal Cord Injury. PM and R, 2013, 5, 939-948.	1.6	26
124	Differences in current amplitude evoking leg extension in individuals with spinal cord injury. NeuroRehabilitation, 2013, 33, 161-170.	1.3	19
125	Seat Pressure Changes after Eight Weeks of Functional Electrical Stimulation Cycling: A Pilot Study. Topics in Spinal Cord Injury Rehabilitation, 2013, 19, 222-228.	1.8	14
126	Home-Based Functional Electrical Stimulation Cycling Enhances Quality of Life in Individuals with Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation, 2013, 19, 324-329.	1.8	28

#	Article	IF	CITATIONS
127	The role of nutrition in health status after spinal cord injury. , 2013, 4, 14-22.		23
128	The effects of aging and electrical stimulation exercise on bone after spinal cord injury. , 2013, 4, 141-53.		11
129	Effects of Resistance Training on Adiposity and Metabolism after Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2012, 44, 165-174.	0.4	146
130	Insulin growth factors may explain relationship between spasticity and skeletal muscle size in men with spinal cord injury. Journal of Rehabilitation Research and Development, 2012, 49, 373.	1.6	23
131	Report of practicability of a 6-month home-based functional electrical stimulation cycling program in an individual with tetraplegia. Journal of Spinal Cord Medicine, 2012, 35, 182-186.	1.4	21
132	A report of anticipated benefits of functional electrical stimulation after spinal cord injury. Journal of Spinal Cord Medicine, 2012, 35, 107-112.	1.4	31
133	Exercise Adherence During Home-Based Functional Electrical Stimulation Cycling by Individuals with Spinal Cord Injury. American Journal of Physical Medicine and Rehabilitation, 2012, 91, 922-930.	1.4	42
134	A Model of Prediction and Cross-Validation of Fat-Free Mass in Men With Motor Complete Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2012, 93, 1240-1245.	0.9	20
135	Feasibility of home-based functional electrical stimulation cycling: case report. Spinal Cord, 2012, 50, 170-171.	1.9	28
136	Regional and relative adiposity patterns in relation to carbohydrate and lipid metabolism in men with spinal cord injury. Applied Physiology, Nutrition and Metabolism, 2011, 36, 107-114.	1.9	88
137	A Preliminary Report on the Effects of the Level of Spinal Cord Injury on the Association Between Central Adiposity and Metabolic Profile. PM and R, 2011, 3, 440-446.	1.6	44
138	Acute effects of locomotor training on neuromuscular and metabolic profile after incomplete spinal cord injury. NeuroRehabilitation, 2011, 29, 79-83.	1.3	12
139	Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury. Metabolism: Clinical and Experimental, 2011, 60, 843-851.	3.4	101
140	The effects of spinal cord injury and exercise on bone mass: A literature review. NeuroRehabilitation, 2011, 29, 261-269.	1.3	62
141	Influence of motor complete spinal cord injury on visceral and subcutaneous adipose tissue measured by multi-axial magnetic resonance imaging. Journal of Spinal Cord Medicine, 2011, 34, 99-109.	1.4	56
142	Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation, 2011, 28, 231-248.	1.3	64
143	Relationship of Spasticity to Soft Tissue Body Composition and the Metabolic Profile in Persons With Chronic Motor Complete Spinal Cord Injury. Journal of Spinal Cord Medicine, 2010, 33, 6-15.	1.4	81
144	Oral baclofen administration in persons with chronic spinal cord injury does not prevent the protective effects of spasticity on body composition and glucose homeostasis. Spinal Cord, 2010, 48, 160-165.	1.9	12

#	Article	IF	CITATIONS
145	Locomotor and resistance training restore walking in an elderly person with a chronic incomplete spinal cord injury. NeuroRehabilitation, 2010, 26, 127-133.	1.3	15
146	Skeletal Muscle Hypertrophy and Decreased Intramuscular Fat After Unilateral Resistance Training in Spinal Cord Injury: Case Report. Journal of Spinal Cord Medicine, 2010, 33, 90-95.	1.4	67
147	Effects of Electrical Stimulation Parameters on Fatigue in Skeletal Muscle. Journal of Orthopaedic and Sports Physical Therapy, 2009, 39, 684-692.	3.5	113
148	Visceral & Abdominal Subcutaneous Fat And Body Composition In Motor Complete Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2009, 41, 402.	0.4	1
149	The Effect of Low-Level Laser Therapy on Electrically Induced Muscle Fatigue: A Pilot Study. Photomedicine and Laser Surgery, 2008, 26, 501-506.	2.0	40
150	Spasticity may defend skeletal muscle size and composition after incomplete spinal cord injury. Spinal Cord, 2008, 46, 96-102.	1.9	66
151	The Role of Pulse Duration and Stimulation Duration in Maximizing the Normalized Torque During Neuromuscular Electrical Stimulation. Journal of Orthopaedic and Sports Physical Therapy, 2008, 38, 508-516.	3.5	67
152	High specific torque is related to lengthening contraction-induced skeletal muscle injury. Journal of Applied Physiology, 2008, 104, 639-647.	2.5	22
153	Prevalence of Obesity After Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation, 2007, 12, 1-7.	1.8	77
154	Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord, 2007, 45, 304-309.	1.9	324
155	Presentation 4. Archives of Physical Medicine and Rehabilitation, 2006, 87, e7-e8.	0.9	1
156	Determining the Extent of Neural Activation during Maximal Effort. Medicine and Science in Sports and Exercise, 2006, 38, 1470-1475.	0.4	29
157	Effects of neuromuscular electrical stimulation parameters on specific tension. European Journal of Applied Physiology, 2006, 97, 737-744.	2.5	83