Murilo Santhiago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6772643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensing Materials: Flexible Carbon-Based Electrochemical Devices Based on the Three-Dimensional Architecture of Paper. , 2023, , 600-612.		4
2	<i>In Situ</i> Nanocoating on Porous Pyrolyzed Paper Enables Antibiofouling and Sensitive Electrochemical Analyses in Biological Fluids. ACS Applied Materials & Interfaces, 2022, 14, 2522-2533.	8.0	20
3	Fast and efficient electrochemical thinning of ultra-large supported and free-standing MoS ₂ layers on gold surfaces. Nanoscale, 2022, 14, 6811-6821.	5.6	2
4	Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS Applied Materials & amp; Interfaces, 2022, 14, 22989-23001.	8.0	25
5	Bamboo-Based Microfluidic System for Sustainable Bio-devices. Environmental Footprints and Eco-design of Products and Processes, 2022, , 141-169.	1.1	4
6	Enhanced Hydrophobicity in Nanocellulose-Based Materials: Toward Green Wearable Devices. ACS Applied Bio Materials, 2021, 4, 6682-6689.	4.6	10
7	Bifunctional Metal Meshes Acting as a Semipermeable Membrane and Electrode for Sensitive Electrochemical Determination of Volatile Compounds. ACS Applied Materials & Interfaces, 2021, 13, 35914-35923.	8.0	13
8	Alcohol-Triggered Capillarity through Porous Pyrolyzed Paper-Based Electrodes Enables Ultrasensitive Electrochemical Detection of Phosphate. ACS Sensors, 2021, 6, 3125-3132.	7.8	24
9	Polydopamine nanofilms for highâ€performance paperâ€based electrochemical devices. Biopolymers, 2021, 112, e23472.	2.4	6
10	Fully 3D printing of carbon black-thermoplastic hybrid materials and fast activation for development of highly stable electrochemical sensors. Sensors and Actuators B: Chemical, 2021, 349, 130721.	7.8	24
11	Delayed Capillary Flow of Elastomers: An Efficient Method for Fabrication and Nanofunctionalization of Flexible, Foldable, Twistable, and Stretchable Electrodes from Pyrolyzed Paper. Advanced Electronic Materials, 2020, 6, 1900826.	5.1	19
12	Flexible cellulose-based devices for monitoring physical parameters. Comprehensive Analytical Chemistry, 2020, 89, 361-395.	1.3	8
13	Boosting Electrical Conductivity of Sugarcane Cellulose and Lignin Biocarbons through Annealing under Isopropanol Vapor. ACS Sustainable Chemistry and Engineering, 2020, 8, 7002-7010.	6.7	20
14	Ultra-highly conductive hollow channels guided by a bamboo bio-template for electric and electric and electrochemical devices. Journal of Materials Chemistry A, 2020, 8, 4030-4039.	10.3	31
15	Fabrication of microwell plates and microfluidic devices in polyester films using a cutting printer. Analytica Chimica Acta, 2020, 1119, 1-10.	5.4	19
16	Wearable binary cooperative polypyrrole nanofilms for chemical mapping on skin. Journal of Materials Chemistry A, 2019, 7, 5227-5233.	10.3	14
17	Bio-based nanostructured carbons toward sustainable technologies. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 22-26.	5.9	20
18	Versatile and Robust Integrated Sensors To Locally Assess Humidity Changes in Fully Enclosed	8.0	24

Murilo Santhiago

#	Article	IF	CITATIONS
19	Direct Drawing Method of Graphite onto Paper for High-Performance Flexible Electrochemical Sensors. ACS Applied Materials & Interfaces, 2017, 9, 11959-11966.	8.0	93
20	Flexible and Foldable Fully-Printed Carbon Black Conductive Nanostructures on Paper for High-Performance Electronic, Electrochemical, and Wearable Devices. ACS Applied Materials & Interfaces, 2017, 9, 24365-24372.	8.0	105
21	Flow in a Paperâ€based Bioactive Channel – Study on Electrochemical Detection of Glucose and Uric Acid. Electroanalysis, 2016, 28, 2245-2252.	2.9	17
22	Three-Dimensional Organic Conductive Networks Embedded in Paper for Flexible and Foldable Devices. ACS Applied Materials & Interfaces, 2016, 8, 10661-10664.	8.0	42
23	Tuning the electrochemical reduction of graphene oxide: structural correlations towards the electrooxidation of nicotinamide adenine dinucleotide hydride. Electrochimica Acta, 2016, 197, 194-199.	5.2	23
24	Triboelectric effect as a new strategy for sealing and controlling the flow in paper-based devices. Lab on A Chip, 2015, 15, 1651-1655.	6.0	43
25	Electrochemical Oxidation of Glassy Carbon Provides Similar Electrochemical Response as Graphene Oxide Prepared by Tour or Hummers Routes. ChemElectroChem, 2015, 2, 761-767.	3.4	25
26	Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochimica Acta, 2014, 130, 771-777.	5.2	137
27	Microfluidic paper-based devices for bioanalytical applications. Bioanalysis, 2014, 6, 89-106.	1.5	90
28	Modified electrode using multi-walled carbon nanotubes and a metallopolymer for amperometric detection of l-cysteine. Electrochimica Acta, 2013, 113, 332-339.	5.2	24
29	In situ activated nanostructured platform for oxidized glutathione biosensing. Electrochimica Acta, 2013, 90, 309-316.	5.2	10
30	Construction and Electrochemical Characterization of Microelectrodes for Improved Sensitivity in Paper-Based Analytical Devices. Analytical Chemistry, 2013, 85, 5233-5239.	6.5	78
31	A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sensors and Actuators B: Chemical, 2013, 177, 224-230.	7.8	116
32	Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device. Analytica Chimica Acta, 2012, 725, 44-50.	5.4	191
33	Construction of a new functional platform by grafting poly(4-vinylpyridine) in multi-walled carbon nanotubes for complexing copper ions aiming the amperometric detection of l-cysteine. Electrochimica Acta, 2012, 71, 150-158.	5.2	44
34	Electrochemical sensor based on imprinted sol–gel and nanomaterial for determination of caffeine. Sensors and Actuators B: Chemical, 2012, 166-167, 739-745.	7.8	54
35	Synthesis and Electrochemical Characterization of Poly(2â€methoxyâ€4â€vinylphenol) with MWCNTs. Electroanalysis, 2011, 23, 2562-2568.	2.9	11
36	Novel electrochemical sensor for the selective recognition of chlorogenic acid. Analytica Chimica Acta, 2011, 695, 44-50.	5.4	55

MURILO SANTHIAGO

#	Article	IF	CITATIONS
37	An amperometric sensor for l-cysteine based on nanostructured platform modified with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB). Sensors and Actuators B: Chemical, 2010, 146, 213-220.	7.8	25
38	In situ activated 3,5-dinitrobenzoic acid covalent attached to nanostructured platform for NADH electrooxidation. Electrochimica Acta, 2009, 54, 6609-6616.	5.2	26
39	Rosmarinic acid determination using biomimetic sensor based on purple acid phosphatase mimetic. Analytica Chimica Acta, 2008, 613, 91-97.	5.4	27
40	Determination of chlorogenic acid in coffee using a biomimetic sensor based on a new tetranuclear copper(II) complex. Talanta, 2008, 77, 394-399.	5.5	36
41	l-Cysteine determination in pharmaceutical formulations using a biosensor based on laccase from Aspergillus oryzae. Sensors and Actuators B: Chemical, 2007, 128, 279-285.	7.8	52