
John T Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6771302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chemical Reviews, 2022, 122, 5977-6039.	47.7	92
2	A nanovaccine for enhancing cellular immunity via cytosolic co-delivery of antigen and polyIC RNA. Journal of Controlled Release, 2022, 345, 354-370.	9.9	14
3	Nano-Particulate Platforms for Vaccine Delivery to Enhance Antigen-Specific CD8+ T-Cell Response. Methods in Molecular Biology, 2022, 2412, 367-398.	0.9	0
4	Bioinspired vaccines to enhance MHC class-I antigen cross-presentation. Current Opinion in Immunology, 2022, 77, 102215.	5.5	12
5	Amphiphilic Polyelectrolyte Graft Copolymers Enhance the Activity of Cyclic Dinucleotide STING Agonists. Advanced Healthcare Materials, 2021, 10, e2001056.	7.6	10
6	Nanoparticle delivery improves the pharmacokinetic properties of cyclic dinucleotide STING agonists to open a therapeutic window for intravenous administration. Journal of Controlled Release, 2021, 330, 1118-1129.	9.9	58
7	Engineering Vaccines for Tissueâ€Resident Memory T Cells. Advanced Therapeutics, 2021, 4, 2000230.	3.2	13
8	A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Communications Biology, 2021, 4, 211.	4.4	45
9	Building new roads to stronger immunity. Science Advances, 2021, 7, .	10.3	Ο
10	Endosomal Escape: Amphiphilic Polyelectrolyte Graft Copolymers Enhance the Activity of Cyclic Dinucleotide STING Agonists (Adv. Healthcare Mater. 2/2021). Advanced Healthcare Materials, 2021, 10, 2170004.	7.6	0
11	High-Throughput Automation of Endosomolytic Polymers for mRNA Delivery. ACS Applied Bio Materials, 2021, 4, 1640-1654.	4.6	15
12	Pharmacological Activation of cGAS for Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 753472.	4.8	13
13	At the bench: Engineering the next generation of cancer vaccines. Journal of Leukocyte Biology, 2020, 108, 1435-1453.	3.3	22
14	Multimodal Multiplexed Immunoimaging with Nanostars to Detect Multiple Immunomarkers and Monitor Response to Immunotherapies. ACS Nano, 2020, 14, 651-663.	14.6	49
15	Co-delivery of Peptide Neoantigens and Stimulator of Interferon Genes Agonists Enhances Response to Cancer Vaccines. ACS Nano, 2020, 14, 9904-9916.	14.6	97
16	Structural Optimization of Polymeric Carriers to Enhance the Immunostimulatory Activity of Molecularly Defined RIG-I Agonists. ACS Central Science, 2020, 6, 2008-2022.	11.3	20
17	Heterotypic immunity against vaccinia virus in an HLA-B*07:02 transgenic mousepox infection model. Scientific Reports, 2020, 10, 13167.	3.3	9
18	Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma. , 2020, 8, e000282.		95

JOHN T WILSON

#	Article	IF	CITATIONS
19	Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opinion on Drug Delivery, 2019, 16, 1149-1167.	5.0	46
20	Mucosal Immunization with a pH-Responsive Nanoparticle Vaccine Induces Protective CD8 ⁺ Lung-Resident Memory T Cells. ACS Nano, 2019, 13, 10939-10960.	14.6	89
21	Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nature Nanotechnology, 2019, 14, 269-278.	31.5	406
22	Delivery of 5′-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy. Biomaterials Science, 2019, 7, 547-559.	5.4	49
23	Microparticle Depots for Controlled and Sustained Release of Endosomolytic Nanoparticles. Cellular and Molecular Bioengineering, 2019, 12, 429-442.	2.1	9
24	The efficiency of cytosolic drug delivery using pH-responsive endosomolytic polymers does not correlate with activation of the NLRP3 inflammasome. Biomaterials Science, 2019, 7, 1888-1897.	5.4	19
25	A sweeter approach to vaccine design. Science, 2019, 363, 584-585.	12.6	22
26	Abstract A187: RIG-I agonists reinforce antitumor adaptive immunity and decrease Treg activity in breast cancer. , 2019, , .		0
27	Abstract 4978: Digital spatial profiling of molecular responses to nanoparticle STING agonists identify S100A9 and B7-H3 as possible escape mechanisms. Cancer Research, 2019, 79, 4978-4978.	0.9	3
28	Environmentally Triggerable Retinoic Acid-Inducible Gene I Agonists Using Synthetic Polymer Overhangs. Bioconjugate Chemistry, 2018, 29, 742-747.	3.6	13
29	Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancers. Cancer Research, 2018, 78, 6183-6195.	0.9	130
30	Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Biomaterials, 2018, 182, 82-91.	11.4	77
31	Fatty Acid-Mimetic Micelles for Dual Delivery of Antigens and Imidazoquinoline Adjuvants. ACS Biomaterials Science and Engineering, 2017, 3, 179-194.	5.2	25
32	Eliciting Epitope-Specific CD8+ T Cell Response by Immunization with Microbial Protein Antigens Formulated with α-Galactosylceramide: Theory, Practice, and Protocols. Methods in Molecular Biology, 2017, 1494, 321-352.	0.9	8
33	Vaccine delivery: where polymer chemistry meets immunology. Therapeutic Delivery, 2016, 7, 193-196.	2.2	21
34	Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer. ACS Omega, 2016, 1, 234-243.	3.5	62
35	Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS. Biointerphases, 2016, 11, 02A304.	1.6	19
36	Enhancement of MHC-I Antigen Presentation via Architectural Control of pH-Responsive, Endosomolytic Polymer Nanoparticles. AAPS Journal, 2015, 17, 358-369.	4.4	52

JOHN T WILSON

#	Article	IF	CITATIONS
37	Discovering protective CD8 T cell epitopes—no single immunologic property predicts it!. Current Opinion in Immunology, 2015, 34, 43-51.	5.5	18
38	Dynamic intracellular delivery of antibiotics via pH-responsive polymersomes. Polymer Chemistry, 2015, 6, 1255-1266.	3.9	34
39	Molecular Engineering of Cell and Tissue Surfaces with Polymer Thin Films. , 2014, , 281-314.		2
40	Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8+ T cell responses. Journal of Controlled Release, 2014, 191, 24-33.	9.9	119
41	Targeting. , 2013, , 1028-1036.		1
42	pH-Responsive Nanoparticle Vaccines for Dual-Delivery of Antigens and Immunostimulatory Oligonucleotides. ACS Nano, 2013, 7, 3912-3925.	14.6	280
43	An Automated Process for Layerâ€by‣ayer Assembly of Polyelectrolyte Multilayer Thin Films on Viable Cell Aggregates. Advanced Healthcare Materials, 2013, 2, 266-270.	7.6	25
44	Cell Surface Engineering with Polyelectrolyte Multilayer Thin Films. Journal of the American Chemical Society, 2011, 133, 7054-7064.	13.7	178
45	Biomolecular surface engineering of pancreatic islets with thrombomodulin. Acta Biomaterialia, 2010, 6, 1895-1903.	8.3	38
46	Effect of the Conjugation of Peg to the PLL on the Micro- and Mesoscopic Properties of a POPC Bilayer. Biophysical Journal, 2010, 98, 91a.	0.5	0
47	Chemoselective Immobilization of Peptides on Abiotic and Cell Surfaces at Controlled Densities. Langmuir, 2010, 26, 7675-7678.	3.5	22
48	Thrombomodulin Improves Early Outcomes After Intraportal Islet Transplantation. American Journal of Transplantation, 2009, 9, 1308-1316.	4.7	40
49	Noncovalent Cell Surface Engineering with Cationic Graft Copolymers. Journal of the American Chemical Society, 2009, 131, 18228-18229.	13.7	107
50	Challenges and emerging technologies in the immunoisolation of cells and tissues. Advanced Drug Delivery Reviews, 2008, 60, 124-145.	13.7	183
51	Layer-by-Layer Assembly of a Conformal Nanothin PEG Coating for Intraportal Islet Transplantation. Nano Letters, 2008, 8, 1940-1948.	9.1	177
52	Thrombosis and Inflammation in Intraportal Islet Transplantation: A Review of Pathophysiology and Emerging Therapeutics. Journal of Diabetes Science and Technology, 2008, 2, 746-759.	2.2	26
53	Surface Re-engineering of Pancreatic Islets with Recombinant azido-Thrombomodulin. Bioconjugate Chemistry, 2007, 18, 1713-1715.	3.6	89
54	Construction of pegylated multilayer architectures via (strept)avidin/biotin interactions. Materials Science and Engineering C, 2007, 27, 402-408.	7.3	29

JOHN T WILSON

#	Article	IF	CITATIONS
55	In vivo biocompatibility and stability of a substrate-supported polymerizable membrane-mimetic film. Biomaterials, 2007, 28, 609-617.	11.4	26
56	Gentisuric acid: Metabolic formation in animals and identification as a metabolite of aspirin in man. Clinical Pharmacology and Therapeutics, 1978, 23, 635-643.	4.7	39
57	Disposition of propoxyphene and propranolol in children. Clinical Pharmacology and Therapeutics, 1976, 19, 264-270.	4.7	21