
Mirko Schoenitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6770605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combustion and Flame, 2005, 140, 310-318.	5.2	448
2	Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combustion Theory and Modelling, 2006, 10, 603-623.	1.9	281
3	Ignition of Aluminum Powders Under Different Experimental Conditions. Propellants, Explosives, Pyrotechnics, 2005, 30, 36-43.	1.6	199
4	Exothermic reactions in Al–CuO nanocomposites. Thermochimica Acta, 2006, 451, 34-43.	2.7	161
5	Oxidation and Melting of Aluminum Nanopowders. Journal of Physical Chemistry B, 2006, 110, 13094-13099.	2.6	143
6	Fully dense nano-composite energetic powders prepared by arrested reactive milling. Proceedings of the Combustion Institute, 2005, 30, 2071-2078.	3.9	124
7	Fluorine-containing oxidizers for metal fuels in energetic formulations. Defence Technology, 2019, 15, 1-22.	4.2	112
8	Experimental methodology and heat transfer model for identification of ignition kinetics of powdered fuels. International Journal of Heat and Mass Transfer, 2006, 49, 4943-4954.	4.8	109
9	Structure and properties of Al–Mg mechanical alloys. Journal of Materials Research, 2003, 18, 1827-1836.	2.6	103
10	Aluminum-Rich Al-MoO3 Nanocomposite Powders Prepared by Arrested Reactive Milling. Journal of Propulsion and Power, 2008, 24, 192-198.	2.2	97
11	Ignition of aluminum-rich Al–Ti mechanical alloys in air. Combustion and Flame, 2006, 144, 688-697.	5.2	94
12	Oxidation kinetics and combustion of boron particles with modified surface. Combustion and Flame, 2016, 173, 288-295.	5.2	89
13	Mechanochemically prepared reactive and energetic materials: a review. Journal of Materials Science, 2017, 52, 11789-11809.	3.7	85
14	Fully Dense, Aluminum-Rich Al-CuO Nanocomposite Powders for Energetic Formulations. Combustion Science and Technology, 2008, 181, 97-116.	2.3	84
15	A study of mechanical alloying processes using reactive milling and discrete element modeling. Acta Materialia, 2005, 53, 2909-2918.	7.9	79
16	Ignition and combustion of mechanically alloyed Al–Mg powders with customized particle sizes. Combustion and Flame, 2013, 160, 835-842.	5.2	79
17	Control of Structural Refinement and Composition in Al-MoO3 Nanocomposites Prepared by Arrested Reactive Milling. Propellants, Explosives, Pyrotechnics, 2006, 31, 382-389.	1.6	74
18	Mechanical alloying and reactive milling in a high energy planetary mill. Journal of Alloys and Compounds, 2009, 478, 246-251.	5.5	70

#	Article	IF	CITATIONS
19	Combustion of boron and boron–iron composite particles in different oxidizers. Combustion and Flame, 2018, 192, 44-58.	5.2	69
20	The effect of surface modification of aluminum powder on its flowability, combustion and reactivity. Powder Technology, 2010, 204, 63-70.	4.2	67
21	Constant Volume Explosions of Aerosols of Metallic Mechanical Alloys and Powder Blends. Journal of Propulsion and Power, 2003, 19, 405-412.	2.2	66
22	Correlating ignition mechanisms of aluminum-based reactive materials with thermoanalytical measurements. Progress in Energy and Combustion Science, 2015, 50, 81-105.	31.2	65
23	Oxidation of nano-sized aluminum powders. Thermochimica Acta, 2016, 636, 48-56.	2.7	65
24	REFLECTED SHOCK IGNITION AND COMBUSTION OF ALUMINUM AND NANOCOMPOSITE THERMITE POWDERS. Combustion Science and Technology, 2007, 179, 457-476.	2.3	58
25	Combustion of Boron-Titanium Nanocomposite Powders in Different Environments. Journal of Propulsion and Power, 2008, 24, 184-191.	2.2	58
26	Kinetic Analysis of Thermite Reactions in Al-MoO3 Nanocomposites. Journal of Propulsion and Power, 2007, 23, 683-687.	2.2	56
27	Combustion of boron particles in products of an air–acetylene flame. Combustion and Flame, 2016, 172, 194-205.	5.2	52
28	Oxidation of aluminum powders at high heating rates. Thermochimica Acta, 2010, 507-508, 115-122.	2.7	51
29	Boron doped with iron: Preparation and combustion in air. Combustion and Flame, 2019, 200, 286-295.	5.2	51
30	Morphology and composition of the fly ash particles produced in incineration of municipal solid waste. Fuel Processing Technology, 2002, 75, 173-184.	7.2	50
31	Aluminum in magnesium silicate perovskite: Formation, structure, and energetics of magnesium-rich defect solid solutions. Journal of Geophysical Research, 2003, 108, .	3.3	50
32	Nanocomposite thermite powders prepared by cryomilling. Journal of Alloys and Compounds, 2009, 488, 386-391.	5.5	50
33	Oxidation of Aluminum Particles in the Presence of Water. Journal of Physical Chemistry B, 2009, 113, 5136-5140.	2.6	50
34	Production of carbon-coated aluminium nanopowders in pulsed microarc discharge. Nanotechnology, 2002, 13, 638-643.	2.6	49
35	COMBUSTION OF AEROSOLIZED SPHERICAL ALUMINUM POWDERS AND FLAKES IN AIR. Combustion Science and Technology, 2004, 176, 1055-1069.	2.3	48
36	Reaction interface between aluminum and water. International Journal of Hydrogen Energy, 2013, 38, 11222-11232.	7.1	44

#	Article	IF	CITATIONS
37	lodine Release, Oxidation, and Ignition of Mechanically Alloyed Alâ^'I Composites. Journal of Physical Chemistry C, 2010, 114, 19653-19659.	3.1	43
38	Oxidation of Magnesium: Implication for Aging and Ignition. Journal of Physical Chemistry C, 2016, 120, 974-983.	3.1	43
39	Mechanically alloyed Al–I composite materials. Journal of Physics and Chemistry of Solids, 2010, 71, 1213-1220.	4.0	42
40	Inactivation of Aerosolized <i>Bacillus atrophaeus</i> (BG) Endospores and MS2 Viruses by Combustion of Reactive Materials. Environmental Science & Technology, 2012, 46, 7334-7341.	10.0	42
41	Oxidation, ignition, and combustion of Al·I2 composite powders. Combustion and Flame, 2012, 159, 1980-1986.	5.2	41
42	Thermal inactivation of airborne viable Bacillus subtilis spores by short-term exposure in axially heated air flow. Journal of Aerosol Science, 2010, 41, 352-363.	3.8	40
43	Oxidation Processes and Phase Changes in Metastable Al-Mg Alloys. Journal of Propulsion and Power, 2004, 20, 1064-1068.	2.2	39
44	Calorimetric investigation of the aluminum–water reaction. International Journal of Hydrogen Energy, 2012, 37, 11035-11045.	7.1	39
45	Reactions leading to ignition in fully dense nanocomposite Al-oxide systems. Combustion and Flame, 2011, 158, 1076-1083.	5.2	38
46	Mechanically alloyed Alâ \in "Li powders. Journal of Alloys and Compounds, 2007, 432, 111-115.	5.5	37
47	Combustion Characteristics of Stoichiometric Al-CuO Nanocomposite Thermites Prepared by Different Methods. Combustion Science and Technology, 2017, 189, 555-574.	2.3	37
48	Aluminum-Metal Reactive Composites. Combustion Science and Technology, 2011, 183, 1107-1132.	2.3	35
49	Correlation of optical emission and pressure generated upon ignition of fully-dense nanocomposite thermite powders. Combustion and Flame, 2013, 160, 734-741.	5.2	34
50	Effect of temperature on synthesis and properties of aluminum–magnesium mechanical alloys. Journal of Alloys and Compounds, 2005, 402, 70-77.	5.5	33
51	Oxidation, ignition and combustion behaviors of differently prepared boron-magnesium composites. Combustion and Flame, 2020, 221, 11-19.	5.2	33
52	Method for Studying Survival of Airborne Viable Microorganisms in Combustion Environments: Development and Evaluation. Aerosol and Air Quality Research, 2010, 10, 414-424.	2.1	32
53	lgnition and combustion of boron-based Al·B·I2 and Mg·B·I2 composites. Chemical Engineering Journal, 2016, 293, 112-117.	12.7	32
54	Effect of purity and surface modification on stability and oxidation kinetics of boron powders. Thermochimica Acta, 2017, 652, 17-23.	2.7	32

#	Article	IF	CITATIONS
55	Metal-rich aluminum–polytetrafluoroethylene reactive composite powders prepared by mechanical milling at different temperatures. Journal of Materials Science, 2017, 52, 7452-7465.	3.7	32
56	Arrested Reactive Milling Synthesis and Characterization of Sodium-Nitrate Based Reactive Composites. Propellants, Explosives, Pyrotechnics, 2007, 32, 32-41.	1.6	31
57	Bismuth fluoride-coated boron powders as enhanced fuels. Combustion and Flame, 2020, 221, 1-10.	5.2	31
58	Bimetal Al–Ni nano-powders for energetic formulations. Combustion and Flame, 2016, 173, 179-186.	5.2	30
59	lodine-containing aluminum-based fuels for inactivation of bioaerosols. Combustion and Flame, 2014, 161, 303-310.	5.2	29
60	Effect of boron content in B·BiF3 and B·Bi composites on their ignition and combustion. Combustion and Flame, 2020, 215, 78-85.	5.2	29
61	Reactive, Mechanically Alloyed Al·Mg Powders with Customized Particle Sizes and Compositions. Journal of Propulsion and Power, 2014, 30, 96-104.	2.2	28
62	Nanocomposite Thermites with Calcium Iodate Oxidizer. Propellants, Explosives, Pyrotechnics, 2017, 42, 284-292.	1.6	27
63	Low-Temperature Exothermic Reactions in Al/CuO Nanothermites Producing Copper Nanodots and Accelerating Combustion. ACS Applied Nano Materials, 2021, 4, 3811-3820.	5.0	26
64	Characterization of Fine Nickel-Coated Powder as Potential Fuel Additive. Journal of Propulsion and Power, 2010, 26, 454-460.	2.2	25
65	Consolidation and mechanical properties of reactive nanocomposite powders. Powder Technology, 2011, 208, 637-642.	4.2	25
66	Initial stages of oxidation of aluminum powder in oxygen. Journal of Thermal Analysis and Calorimetry, 2016, 125, 129-141.	3.6	25
67	Combustion of Boron and Boron-Containing Reactive Composites in Laminar and Turbulent Air Flows. Combustion Science and Technology, 2017, 189, 683-697.	2.3	24
68	Carbide formation in Al–Ti mechanical alloys. Scripta Materialia, 2005, 53, 1095-1099.	5.2	23
69	Aluminum Powder Oxidation in CO ₂ and Mixed CO ₂ /O ₂ Environments. Journal of Physical Chemistry C, 2009, 113, 6768-6773.	3.1	23
70	Low-temperature exothermic reactions in fully-dense Al/MoO3 nanocomposite powders. Thermochimica Acta, 2014, 594, 1-10.	2.7	23
71	On problems of isoconversion data processing for reactions in Al-rich Al–MoO3 thermites. Thermochimica Acta, 2008, 477, 1-6.	2.7	22
72	Nanocomposite thermite powders with improved flowability prepared by mechanical milling. Powder Technology, 2018, 327, 368-380.	4.2	22

#	Article	IF	CITATIONS
73	Reactive Composite Boron–Magnesium Powders Prepared byÂMechanical Milling. Journal of Propulsion and Power, 2018, 34, 787-794.	2.2	22
74	Vapor-phase decomposition of dimethyl methylphosphonate (DMMP), a sarin surrogate, in presence of metal oxides. Defence Technology, 2021, 17, 1095-1114.	4.2	22
75	Boron-based reactive materials with high concentrations of iodine as a biocidal additive. Chemical Engineering Journal, 2017, 325, 495-501.	12.7	21
76	Enthalpy of formation of CaSi 2 O 5, a quenched high-pressure phase with pentacoordinate silicon. Physics and Chemistry of Minerals, 2001, 28, 57-60.	0.8	20
77	Mechanical Alloys in the Al-Rich Part of the Al-Ti Binary System. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 455-461.	0.1	19
78	Effect of composition on properties of reactive Al·B·I2 powders prepared by mechanical milling. Journal of Physics and Chemistry of Solids, 2015, 83, 1-7.	4.0	19
79	Biocidal effectiveness of combustion products of iodine-bearing reactive materials against aerosolized bacterial spores. Journal of Aerosol Science, 2018, 116, 106-115.	3.8	19
80	Heterogeneous reaction kinetics for oxidation and combustion of boron. Thermochimica Acta, 2019, 682, 178415.	2.7	19
81	Boron-Metal Fluoride Reactive Composites: Preparation and Reactions Leading to Their Ignition. Journal of Propulsion and Power, 2019, 35, 802-810.	2.2	19
82	Microspheres with Diverse Material Compositions Can be Prepared by Mechanical Milling. Advanced Engineering Materials, 2020, 22, 1901204.	3.5	19
83	Oxidation of Aluminum Particles in Mixed CO ₂ /H ₂ O Atmospheres. Journal of Physical Chemistry C, 2010, 114, 18925-18930.	3.1	18
84	Validation of the Thermal Oxidation Model for Al/CuO Nanocomposite Powder. Combustion Science and Technology, 2014, 186, 47-67.	2.3	18
85	Nanocomposite and mechanically alloyed reactive materials as energetic additives in chemical oxygen generators. Combustion and Flame, 2014, 161, 2708-2716.	5.2	18
86	Fuel-rich aluminum–nickel fluoride reactive composites. Combustion and Flame, 2019, 210, 439-453.	5.2	18
87	Combustion of Aluminumâ€Metal Fluoride Reactive Composites in Different Environments. Propellants, Explosives, Pyrotechnics, 2019, 44, 1327-1336.	1.6	17
88	Effect of particle morphology on reactivity, ignition and combustion of boron powders. Fuel, 2022, 324, 124538.	6.4	17
89	Thermodynamic data of lawsonite and zoisite in the system CaO–Al2O3–SiO2–H2O based on experimental phase equilibria and calorimetric work. Contributions To Mineralogy and Petrology, 2001, 142, 298-308.	3.1	16
90	Effect of premilling Al and CuO in acetonitrile on properties of Al·CuO thermites prepared by arrested reactive milling. Combustion and Flame, 2020, 214, 57-64.	5.2	16

#	Article	IF	CITATIONS
91	Enthalpy of formation of katoite Ca ₂ Al ₂ [(OH) ₄] ₃ ; energetics of the hydrogarnet substitution. American Mineralogist, 1999, 84, 389-391.	1.9	15
92	Aluminum–Iodoform Composite Reactive Material. Advanced Engineering Materials, 2014, 16, 909-917.	3.5	15
93	Modes of Ignition of Powder Layers of Nanocomposite Thermites by Electrostatic Discharge. Journal of Energetic Materials, 2017, 35, 29-43.	2.0	15
94	Combustion of Mg and composite Mg·S powders in different oxidizers. Combustion and Flame, 2018, 195, 292-302.	5.2	15
95	Reactive Shell Model for Boron Oxidation. Journal of Physical Chemistry C, 2019, 123, 11807-11813.	3.1	15
96	Preparation, Ignition, and Combustion of Mg·S Reactive Nanocomposites. Combustion Science and Technology, 2016, 188, 1345-1364.	2.3	14
97	Mechanically alloyed magnesium–boron–iodine composite powders. Journal of Materials Science, 2016, 51, 3585-3591.	3.7	14
98	Aluminum-based materials for inactivation of aerosolized spores of <i>Bacillus anthracis</i> surrogates. Aerosol Science and Technology, 2017, 51, 224-234.	3.1	14
99	Composite Alâ^™Ti powders prepared by high-energy milling with different process controls agents. Advanced Powder Technology, 2019, 30, 1319-1328.	4.1	14
100	Transition Metal Catalysts for Boron Combustion. Combustion Science and Technology, 2021, 193, 1400-1424.	2.3	14
101	Titanium-boron reactive composite powders with variable morphology prepared by arrested reactive milling. Fuel, 2022, 310, 122313.	6.4	14
102	High-temperature phase equilibria in the system Zr–O–N. Journal of Materials Research, 2006, 21, 320-328.	2.6	12
103	Preparation, ignition, and combustion of magnesium-calcium iodate reactive nano-composite powders. Chemical Engineering Journal, 2019, 359, 955-962.	12.7	12
104	Experimental technique for studying high-temperature phases in reactive molten metal based systems. Review of Scientific Instruments, 2004, 75, 5177-5185.	1.3	11
105	Oxidation of Mechanically Alloyed Al-rich Al–Ti Powders. Oxidation of Metals, 2006, 65, 357-376.	2.1	11
106	Energy storage materials with oxide-encapsulated inclusions of low melting metal. Acta Materialia, 2016, 107, 254-260.	7.9	11
107	High density reactive composite powders. Journal of Alloys and Compounds, 2018, 735, 1863-1870.	5.5	11
108	Effect of process parameters on mechanochemical nitration of toluene. Journal of Materials Science, 2018, 53, 13690-13700.	3.7	11

#	Article	IF	CITATIONS
109	Custom particle morphology in energetic nanocomposites prepared by arrested reactive milling in immiscible liquids. Powder Technology, 2020, 359, 238-246.	4.2	11
110	Zirconium-boron reactive composite powders prepared by arrested reactive milling. Journal of Energetic Materials, 2020, 38, 142-161.	2.0	11
111	Effect of Purity, Surface Modification and Iron Coating on Ignition and Combustion of Boron in Air. Combustion Science and Technology, 2021, 193, 1567-1586.	2.3	11
112	Study of particle lifting mechanisms in an electrostatic discharge plasma. International Journal of Multiphase Flow, 2021, 137, 103564.	3.4	11
113	Atomic Scale Insights into the First Reaction Stages Prior to Al/CuO Nanothermite Ignition: Influence of Porosity. ACS Applied Materials & amp; Interfaces, 2022, 14, 29451-29461.	8.0	11
114	Numerical Simulation of Mechanical Alloying in a Shaker Mill by Discrete Element Method. KONA Powder and Particle Journal, 2005, 23, 152-162.	1.7	10
115	Oxidation of differently prepared Al-Mg alloy powders in oxygen. Journal of Alloys and Compounds, 2016, 685, 402-410.	5.5	10
116	Spherical boron powders prepared by mechanical milling in immiscible liquids. Powder Technology, 2021, 388, 41-50.	4.2	10
117	Ignition of zirconium powders placed near an electrostatic discharge. Combustion and Flame, 2021, 226, 1-13.	5.2	9
118	ON GAS RELEASE BY THERMALLY-INITIATED FULLY-DENSE 2Al·3CuO NANOCOMPOSITE POWDER. International Journal of Energetic Materials and Chemical Propulsion, 2012, 11, 275-292.	0.3	9
119	FUEL-RICH ALUMINUM-METAL FLUORIDE THERMITES. International Journal of Energetic Materials and Chemical Propulsion, 2017, 16, 81-101.	0.3	8
120	Inactivation of aerosolized surrogates of Bacillus anthracis spores by combustion products of aluminum- and magnesium-based reactive materials: Effect of exposure time. Aerosol Science and Technology, 2018, 52, 579-587.	3.1	8
121	Mechanochemical Nitration of Aromatic Compounds. Journal of Energetic Materials, 2018, 36, 191-201.	2.0	8
122	Effect of milling temperature on structure and reactivity of Al–Ni composites. Journal of Materials Science, 2018, 53, 1178-1190.	3.7	8
123	Displacement of powders from surface by shock and plasma generated by electrostatic discharge. Journal of Electrostatics, 2019, 100, 103353.	1.9	7
124	Stability and Ignition of a Siloxaneâ€Coated Magnesium Powder. Propellants, Explosives, Pyrotechnics, 2020, 45, 621-627.	1.6	6
125	Mechanochemical nitration of toluene with metal oxide catalysts. Applied Catalysis A: General, 2020, 601, 117604.	4.3	6
126	Combustion of Composites of Boron with Bismuth and Cobalt Fluorides in Different Environments. Combustion Science and Technology, 2021, 193, 1343-1358.	2.3	6

#	Article	IF	CITATIONS
127	Ignition Mechanisms of Reactive Nanocomposite Powders Combining Al, B, and Si as Fuels with Metal Fluorides as Oxidizers. Combustion Science and Technology, 2023, 195, 597-618.	2.3	6
128	PREPARATION AND CHARACTERIZATION OF GRANULAR HYBRID REACTIVE MATERIALS. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9, 267-284.	0.3	6
129	The enthalpy of transformation of Ca(OH) 2 -I (portlandite) to Ca(OH) 2 -II (EuI 2 structure) by low-temperature DSC. Physics and Chemistry of Minerals, 2000, 27, 604-609.	0.8	5
130	Nearly Pure Aluminum Powders with Modified Protective Surface. Combustion Science and Technology, 2013, 185, 1360-1377.	2.3	5
131	Kinetics of thermal decomposition of a synthetic K–H3O jarosite analog. Journal of Thermal Analysis and Calorimetry, 2014, 115, 609-620.	3.6	5
132	Combustion of a rapidly initiated fully dense nanocomposite Al–CuO thermite powder. Combustion Theory and Modelling, 2019, 23, 651-673.	1.9	5
133	Preparation and Characterization of Silicon-Metal Fluoride Reactive Composites. Nanomaterials, 2020, 10, 2367.	4.1	5
134	Highly reactive spheroidal milled aluminum. Materialia, 2021, 15, 100959.	2.7	5
135	Structural Refinement in Al-MoO ₃ Nanocomposites Prepared by Arrested Reactive Milling. Materials Research Society Symposia Proceedings, 2005, 896, 41.	0.1	4
136	Combustion of Boron-Titanium Nanocomposite Powders in Different Environments. , 2006, , .		4
137	The Effect of Heating Rate on Combustion of Fully Dense Nanocomposite Thermite Particles. Combustion Science and Technology, 0, , 1-19.	2.3	4
138	Boron-Rich Composite Thermite Powders with Binary Bi ₂ O ₃ ·CuO Oxidizers. Energy & Fuels, 2021, 35, 10327-10338.	5.1	4
139	Effect of organic liquid process control agents on properties of ball-milled powders. Advanced Powder Technology, 2022, 33, 103332.	4.1	4
140	Reactive Al-Li Powders Prepared by Mechanical Alloying. Materials Research Society Symposia Proceedings, 2005, 896, 81.	0.1	3
141	Fuel-Rich Al-MoO3 Nanocomposites Prepared by Arrested Reactive Milling. , 2007, , .		3
142	Aluminum Rich Al-CuO Nanocomposite Materials Prepared by Arrested Reactive Milling at Cryogenic and Room Temperature. , 2009, , .		3
143	Metastable Aluminum-Based Reactive Composite Materials Prepared by Cryomilling. , 2012, , .		3
144	OXIDATION, IGNITION AND COMBUSTION OF AL-HYDROCARBON COMPOSITE REACTIVE POWDERS. International Journal of Energetic Materials and Chemical Propulsion, 2012, 11, 353-373.	0.3	3

#	Article	IF	CITATIONS
145	Potential one-pot synthesis of spherical magnesium silicate powder by mechanical milling. Powder Technology, 2022, 404, 117458.	4.2	3
146	Aluminum in Magnesium Silicate Perovskite: Synthesis and Energetics of Defect Solid Solutions. Materials Research Society Symposia Proceedings, 2002, 718, 1.	0.1	2
147	Oxidation Processes and Phase Changes in Metastable Al-Ti Mechanical Alloys. Materials Research Society Symposia Proceedings, 2003, 800, 115.	0.1	2
148	Nano-Composite Energetic Powders Prepared by Arrested Reactive Milling. , 2005, , .		2
149	Preparation, ignition, and combustion of mechanically alloyed Al-Mg powders with customized particle sizes. Materials Research Society Symposia Proceedings, 2013, 1521, 1.	0.1	2
150	Nano-structured Aluminum Powders with Modified Protective Surface Layers. Materials Research Society Symposia Proceedings, 2013, 1521, 1.	0.1	2
151	Arrested Reactive Milling for In-Situ Production of Energetic Nanocomposites for Propulsion and Energy-Intensive Technologies in Exploration Missions. , 2005, , .		1
152	Kinetic Analysis of Thermite Reactions in Al-MoO3 Nanocomposites. , 2006, , .		1
153	Heterogeneous Processes Leading To Metal Ignition In Reactive Nanocomposite Materials. , 2007, , .		1
154	Mechanical Alloying and Reactive Milling in a High Energy Planetary Mill. , 2008, , .		1
155	Oxidation and Ignition of Aluminum Particles in the Presence of Water Vapor. , 2008, , .		1
156	Mechanically Alloyed Al-Ti Powders Prepared by Mechanical Milling at Cryogenic Temperatures. , 2009, , .		1
157	Characterization of Fine Aluminum Powder Coated with Nickel as a Potential Fuel Additive. , 2010, , .		1
158	Evaluation of K–H3O jarosite as thermal witness material. Journal of Thermal Analysis and Calorimetry, 2014, 117, 141-149.	3.6	1
159	Combustion of Magnesium-Sulfur Composite Particles Ignited by Different Stimuli. Propellants, Explosives, Pyrotechnics, 2018, 43, 1178-1183.	1.6	1
160	Effect of metal nitrate on mechanochemical nitration of toluene. Reaction Chemistry and Engineering, 2021, 6, 2050-2057.	3.7	1
161	Parameters affecting mechanochemical nitration of aromatic precursors. Chemical Engineering Science, 2021, 246, 116906.	3.8	1
162	Melting and Oxidation of Nanometer Size Aluminum Powders. Materials Research Society Symposia Proceedings, 2005, 896, 61.	0.1	0

#	Article	IF	CITATIONS
163	Fully Dense, Aluminum-Rich Al-CuO Nanocomposite Powders for Energetic Formulations. , 2008, , .		0
164	Synthesis of Aluminum-Rich Nanocomposite Powders at Cryogenic Tempatures. , 2008, , .		0
165	Mechanically Alloyed Al-I Composite Materials. , 2010, , .		Ο