List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6770419/publications.pdf Version: 2024-02-01

Μλελμικό Ηίβι

#	Article	IF	CITATIONS
1	Morphological analysis of the cerebellum and its efferent system in a basal actinopterygian fish, <i>Polypterus senegalus</i> . Journal of Comparative Neurology, 2022, 530, 1231-1246.	1.6	7
2	Involvement of Cerebellar Neural Circuits in Active Avoidance Conditioning in Zebrafish. ENeuro, 2021, 8, ENEURO.0507-20.2021.	1.9	8
3	Cfdp1 controls the cell cycle and neural differentiation in the zebrafish cerebellum and retina. Developmental Dynamics, 2021, 250, 1618-1633.	1.8	5
4	Contribution of <i>sox9b</i> to pigment cell formation in medaka fish. Development Growth and Differentiation, 2021, 63, 516-522.	1.5	5
5	Maintenance of quiescent oocytes by noradrenergic signals. Nature Communications, 2021, 12, 6925.	12.8	9
6	Gsx2 is required for specification of neurons in the inferior olivary nuclei from Ptf1a-expressing neural progenitors in zebrafish. Development (Cambridge), 2020, 147, .	2.5	9
7	Functionally distinct Purkinje cell types show temporal precision in encoding locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17330-17337.	7.1	20
8	Role of Reelin in cell positioning in the cerebellum and the cerebellum-like structure in zebrafish. Developmental Biology, 2019, 455, 393-408.	2.0	16
9	Tracing of Afferent Connections in the Zebrafish Cerebellum Using Recombinant Rabies Virus. Frontiers in Neural Circuits, 2019, 13, 30.	2.8	38
10	Syntaphilin-Mediated Docking of Mitochondria at the Growth Cone Is Dispensable for Axon Elongation <i>In Vivo</i> . ENeuro, 2019, 6, ENEURO.0026-19.2019.	1.9	8
11	Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. BMC Biology, 2018, 16, 40.	3.8	49
12	Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum. Developmental Biology, 2018, 438, 44-56.	2.0	22
13	REP1 inhibits FOXO3-mediated apoptosis to promote cancer cell survival. Cell Death and Disease, 2018, 8, e2536-e2536.	6.3	20
14	Roles of maternal wnt8a transcripts in axis formation in zebrafish. Developmental Biology, 2018, 434, 96-107.	2.0	26
15	Color opponency with a single kind of bistable opsin in the zebrafish pineal organ. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11310-11315.	7.1	23
16	Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genetics, 2018, 14, e1007260.	3.5	51
17	Axis Formation and Its Evolution in Ray-Finned Fish. Diversity and Commonality in Animals, 2018, , 709-742.	0.7	1
18	Osteocrin, a peptide secreted from the heart and other tissues, contributes to cranial osteogenesis and chondrogenesis in zebrafish. Development (Cambridge), 2017, 144, 334-344.	2.5	41

#	Article	IF	CITATIONS
19	Oncogenic role of rab escort protein 1 through EGFR and STAT3 pathway. Cell Death and Disease, 2017, 8, e2621-e2621.	6.3	14
20	Evolutionary mechanisms that generate morphology and neural ircuit diversity of the cerebellum. Development Growth and Differentiation, 2017, 59, 228-243.	1.5	43
21	Granule cells control recovery from classical conditioned fear responses in the zebrafish cerebellum. Scientific Reports, 2017, 7, 11865.	3.3	30
22	Medaka and zebrafish <i>contactin1</i> mutants as a model for understanding neural circuits for motor coordination. Genes To Cells, 2017, 22, 723-741.	1.2	10
23	Gene expression profiling of granule cells and Purkinje cells in the zebrafish cerebellum. Journal of Comparative Neurology, 2017, 525, 1558-1585.	1.6	34
24	Responses of cerebellar Purkinje cells during fictive optomotor behavior in larval zebrafish. Journal of Neurophysiology, 2016, 116, 2067-2080.	1.8	23
25	Gal4 Driver Transgenic Zebrafish. Advances in Genetics, 2016, 95, 65-87.	1.8	58
26	Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish. PLoS Genetics, 2015, 11, e1005587.	3.5	29
27	PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination. Science Advances, 2015, 1, e1500615.	10.3	44
28	Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry. Developmental Biology, 2015, 397, 1-17.	2.0	66
29	Sox5 Functions as a Fate Switch in Medaka Pigment Cell Development. PLoS Genetics, 2014, 10, e1004246.	3.5	55
30	Deciphering Cerebellar Neural Circuitry Involved in Higher Order Functions Using the Zebrafish Model. , 2014, , 161-184.		2
31	The parallel growth of motoneuron axons with the dorsal aorta depends on Vegfc/Vegfr3 signaling in zebrafish. Development (Cambridge), 2013, 140, 4081-4090.	2.5	30
32	Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish. Development (Cambridge), 2012, 139, 3644-3652.	2.5	71
33	Lesionâ€induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish. Journal of Comparative Neurology, 2012, 520, 3604-3616.	1.6	56
34	Dynamic changes in the gene expression of zebrafish Reelin receptors during embryogenesis and hatching period. Development Growth and Differentiation, 2012, 54, 253-263.	1.5	10
35	The Medaka zic1/zic4 Mutant Provides Molecular Insights into Teleost Caudal Fin Evolution. Current Biology, 2012, 22, 601-607.	3.9	41
36	Development and evolution of cerebellar neural circuits. Development Growth and Differentiation, 2012, 54, 373-389.	1.5	120

#	Article	IF	CITATIONS
37	Development of the cerebellum and cerebellar neural circuits. Developmental Neurobiology, 2012, 72, 282-301.	3.0	125
38	Requirement for Zebrafish Ataxin-7 in Differentiation of Photoreceptors and Cerebellar Neurons. PLoS ONE, 2012, 7, e50705.	2,5	32
39	Development of cerebellar neural circuits in zebrafish and medaka. Neuroscience Research, 2011, 71, e23.	1.9	0
40	Essential function of Sbno1 in Notch signal suppression during cortical neuron differentiation. Neuroscience Research, 2011, 71, e126.	1.9	0
41	Expression of <i>strawberry notch</i> family genes during zebrafish embryogenesis. Developmental Dynamics, 2010, 239, 1789-1796.	1.8	16
42	Atypical Protein Kinase C Regulates Primary Dendrite Specification of Cerebellar Purkinje Cells by Localizing Golgi Apparatus. Journal of Neuroscience, 2010, 30, 16983-16992.	3.6	69
43	Zinc finger genes <i>Fezf1</i> and <i>Fezf2</i> control neuronal differentiation by repressing <i>Hes5</i> expression in the forebrain. Development (Cambridge), 2010, 137, 1875-1885.	2.5	67
44	Syntabulin, a motor protein linker, controls dorsal determination. Development (Cambridge), 2010, 137, 923-933.	2.5	84
45	Suppression of Notch signal by Sbno1 is essential for differentiation of mouse cortical neuron. Neuroscience Research, 2010, 68, e129.	1.9	0
46	Proneural gene-linked neurogenesis in zebrafish cerebellum. Developmental Biology, 2010, 343, 1-17.	2.0	139
47	Dynein axonemal intermediate chain 2 is required for formation of the left–right body axis and kidney in medaka. Developmental Biology, 2010, 347, 53-61.	2.0	12
48	Formation and patterning of the forebrain and olfactory system by zincâ€finger genes <i>Fezf1</i> and <i>Fezf2</i> . Development Growth and Differentiation, 2009, 51, 221-231.	1.5	72
49	Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Developmental Biology, 2009, 330, 406-426.	2.0	264
50	Notch-regulated perineurium development from zebrafish spinal cord. Neuroscience Letters, 2008, 448, 240-244.	2.1	12
51	Genetic dissection of neural circuits by <i>Tol2</i> transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1255-1260.	7.1	505
52	The role of Strawberry notch family genes in the central nervous system development of zebrafish. Neuroscience Research, 2007, 58, S82.	1.9	0
53	Initial specification of the epibranchial placode in zebrafish embryos depends on the fibroblast growth factor signal. Developmental Dynamics, 2007, 236, 564-571.	1.8	50
54	Expression of zebrafish <i>ROR alpha</i> gene in cerebellarâ€like structures. Developmental Dynamics, 2007, 236, 2694-2701.	1.8	22

#	Article	IF	CITATIONS
55	Defects in reciprocal projections between the thalamus and cerebral cortex in the early development of Fezl-deficient mice. Journal of Comparative Neurology, 2007, 503, 454-465.	1.6	17
56	Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein. Nature Cell Biology, 2006, 8, 329-340.	10.3	101
57	Cdx-Hox code controls competence for responding to Fgfs and retinoic acid in zebrafish neural tissue. Development (Cambridge), 2006, 133, 4709-4719.	2.5	71
58	Patterning of proneuronal and inter-proneuronal domains by hairy- and enhancer of split-related genes in zebrafish neuroectoderm. Development (Cambridge), 2006, 133, 1609-1609.	2.5	1
59	Zinc-finger genes Fez and Fez-like function in the establishment of diencephalon subdivisions. Development (Cambridge), 2006, 133, 3993-4004.	2.5	94
60	Zinc-finger gene Fez in the olfactory sensory neurons regulates development of the olfactory bulb non-cell-autonomously. Development (Cambridge), 2006, 133, 1433-1443.	2.5	67
61	Patterning of proneuronal and inter-proneuronal domains by hairy- and enhancer of split-related genes in zebrafish neuroectoderm. Development (Cambridge), 2005, 132, 1375-1385.	2.5	68
62	Shisa Promotes Head Formation through the Inhibition of Receptor Protein Maturation for the Caudalizing Factors, Wnt and FGF. Cell, 2005, 120, 223-235.	28.9	157
63	Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Developmental Biology, 2005, 279, 125-141.	2.0	181
64	Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons. Neuron, 2005, 47, 817-831.	8.1	448
65	E-cadherin is required for gastrulation cell movements in zebrafish. Mechanisms of Development, 2005, 122, 747-763.	1.7	138
66	The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development (Cambridge), 2004, 131, 1741-1753.	2.5	149
67	Expression of sax1/nkx1.2 and sax2/nkx1.1 in zebrafish. Gene Expression Patterns, 2004, 4, 481-486.	0.8	22
68	Zinc finger genefez-like functions in the formation of subplate neurons and thalamocortical axons. Developmental Dynamics, 2004, 230, 546-556.	1.8	109
69	Genetic evidence for involvement of maternally derived Wnt canonical signaling in dorsal determination in zebrafish. Mechanisms of Development, 2004, 121, 371-386.	1.7	55
70	Gab1 is required for EGF receptor signaling and the transformation by activated ErbB2. Oncogene, 2003, 22, 1546-1556.	5.9	71
71	Zinc finger protein too few controls the development of monoaminergic neurons. Nature Neuroscience, 2003, 6, 28-33.	14.8	92
72	Ogon/Secreted Frizzled functions as a negative feedback regulator of Bmp signaling. Development (Cambridge), 2003, 130, 2705-2716.	2.5	96

#	Article	IF	CITATIONS
73	A homeobox gene,pnx, is involved in the formation of posterior neurons in zebrafish. Development (Cambridge), 2003, 130, 1853-1865.	2.5	20
74	Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood, 2002, 99, 1866-1869.	1.4	125
75	Adapter Molecule Grb2-Associated Binder 1 Is Specifically Expressed in Marginal Zone B Cells and Negatively Regulates Thymus-Independent Antigen-2 Responses. Journal of Immunology, 2002, 168, 5110-5116.	0.8	27
76	A novel repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal organizer formation in zebrafish. Mechanisms of Development, 2002, 118, 125-138.	1.7	63
77	Organizer Formation and Function. Results and Problems in Cell Differentiation, 2002, 40, 48-71.	0.7	23
78	Regulation of Pim-1 by Hsp90. Biochemical and Biophysical Research Communications, 2001, 281, 663-669.	2.1	74
79	Regulation of dharma/bozozok by the Wnt Pathway. Developmental Biology, 2001, 231, 397-409.	2.0	79
80	Role of phosphatidylinositol-3 kinase and its association with Gab1 in thrombopoietin-mediated up-regulation of platelet function. Experimental Hematology, 2001, 29, 616-622.	0.4	33
81	Tissue-Specific Autoregulation of the <i>stat3</i> Gene and Its Role in Interleukin-6-Induced Survival Signals in T Cells. Molecular and Cellular Biology, 2001, 21, 6615-6625.	2.3	121
82	Comparative FISH mapping of Gab1 and Gab2 genes in human, mouse and rat. Cytogenetic and Genome Research, 2001, 94, 39-42.	1.1	9
83	Docking Protein Gab2 Is Phosphorylated by ZAP-70 and Negatively Regulates T Cell Receptor Signaling by Recruitment of Inhibitory Molecules. Journal of Biological Chemistry, 2001, 276, 45175-45183.	3.4	80
84	Role of Gab1 in Heart, Placenta, and Skin Development and Growth Factor- and Cytokine-Induced Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Activation. Molecular and Cellular Biology, 2000, 20, 3695-3704.	2.3	240
85	Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene, 2000, 19, 2548-2556.	5.9	1,081
86	Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin 6-dependent hematopoietic cells. Blood, 2000, 95, 2577-2585.	1.4	105
87	Asymmetric p38 Activation in Zebrafish. Journal of Cell Biology, 2000, 150, 1335-1348.	5.2	60
88	gp130-mediated signalling as a therapeutic target. Expert Opinion on Therapeutic Targets, 2000, 4, 459-479.	1.0	2
89	Novel Mix-Family Homeobox Genes in Zebrafish and Their Differential Regulation. Biochemical and Biophysical Research Communications, 2000, 271, 603-609.	2.1	24
90	Zebrafish Dkk1 Functions in Forebrain Specification and Axial Mesendoderm Formation. Developmental Biology, 2000, 217, 138-152.	2.0	178

#	Article	IF	CITATIONS
91	Analysis of Upstream Elements in the HuC Promoter Leads to the Establishment of Transgenic Zebrafish with Fluorescent Neurons. Developmental Biology, 2000, 227, 279-293.	2.0	382
92	Kheper, a Novel ZFH∫î EF1 Family Member, Regulates the Development of the Neuroectoderm of Zebrafish (Danio rerio). Developmental Biology, 2000, 228, 29-40.	2.0	21
93	Dissection of Signaling Cascades through gp130 In Vivo. Immunity, 2000, 12, 95-105.	14.3	230
94	Expression of the zinc finger gene fez-like in zebrafish forebrain. Mechanisms of Development, 2000, 97, 191-195.	1.7	67
95	Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mechanisms of Development, 2000, 91, 293-303.	1.7	107
96	Gab-Family Adapter Molecules in Signal Transduction of Cytokine and Growth Factor Receptors, and T and B Cell Antigen Receptors. Leukemia and Lymphoma, 2000, 37, 299-307.	1.3	81
97	Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin 6-dependent hematopoietic cells. Blood, 2000, 95, 2577-2585.	1.4	8
98	Role of Gab1 in Heart, Placenta, and Skin Development and Growth Factor- and Cytokine-Induced Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Activation. Molecular and Cellular Biology, 2000, 20, 3695-3704.	2.3	33
99	Gab-Family Adapter Proteins Act Downstream of Cytokine and Growth Factor Receptors and T- and B-Cell Antigen Receptors. Blood, 1999, 93, 1809-1816.	1.4	241
100	STAT3 Is Required for the gp130-mediated Full Activation of the c-myc Gene. Journal of Experimental Medicine, 1999, 189, 63-73.	8.5	365
101	A Novel Oncostatin M-inducible Gene OIG37 Forms a Gene Family with MyD118 and GADD45 and Negatively Regulates Cell Growth. Journal of Biological Chemistry, 1999, 274, 24766-24772.	3.4	43
102	Engagement of Gab1 and Gab2 in Erythropoietin Signaling. Journal of Biological Chemistry, 1999, 274, 24469-24474.	3.4	88
103	Signaling Through Gp130: Toward a General Scenario of Cytokine Action. Growth Factors, 1999, 17, 81-91.	1.7	27
104	Synergistic Roles for Pim-1 and c-Myc in STAT3-Mediated Cell Cycle Progression and Antiapoptosis. Immunity, 1999, 11, 709-719.	14.3	393
105	JSAP1, a Novel Jun N-Terminal Protein Kinase (JNK)-Binding Protein That Functions as a Scaffold Factor in the JNK Signaling Pathway. Molecular and Cellular Biology, 1999, 19, 7539-7548.	2.3	270
106	Signal TransductionThrough Cytokine Receptors. International Reviews of Immunology, 1998, 17, 75-102.	3.3	29
107	STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition. EMBO Journal, 1998, 17, 6670-6677.	7.8	225
108	A novel homeobox gene, <i>dharma,</i> can induce the organizer in a non-cell-autonomous manner. Genes and Development, 1998, 12, 2345-2353.	5.9	118

#	Article	IF	CITATIONS
109	Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor gp130 to ERK Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 1998, 18, 4109-4117.	2.3	258
110	Involvement of a Common 10-Amino-Acid Segment in the Cytoplasmic Region of CD40 but Different MAP Kinases in Different CD40-Mediated Responses. Biochemical and Biophysical Research Communications, 1997, 233, 187-192.	2.1	3
111	Signaling mechanisms through gp130: A model of the cytokine system. Cytokine and Growth Factor Reviews, 1997, 8, 241-252.	7.2	345
112	Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6. FEBS Letters, 1997, 401, 133-137.	2.8	31
113	Overexpression of neurogenin induces ectopic expression of HuC in zebrafish. Neuroscience Letters, 1997, 239, 113-116.	2.1	81
114	An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT. Oncogene, 1997, 14, 751-761.	5.9	148
115	Tec tyrosine kinase links the cytokine receptors to PI-3 kinase probably through JAK. Oncogene, 1997, 14, 2273-2282.	5.9	86
116	Dual control of neurite outgrowth by STAT3 and MAP kinase in PC12 cells stimulated with interleukin-6. EMBO Journal, 1997, 16, 5345-5352.	7.8	135
117	Syk-dependent and -independent Signaling Cascades in B Cells Elicited by Osmotic and Oxidative Stress. Journal of Biological Chemistry, 1997, 272, 2098-2103.	3.4	82
118	IL-6 cytokine family and signal transduction: a model of the cytokine system. Journal of Molecular Medicine, 1996, 74, 1-12.	3.9	210
119	c-Jun Can Recruit JNK to Phosphorylate Dimerization Partners via Specific Docking Interactions. Cell, 1996, 87, 929-939.	28.9	473
120	Two Signals Are Necessary for Cell Proliferation Induced by a Cytokine Receptor gp130: Involvement of STAT3 in Anti-Apoptosis. Immunity, 1996, 5, 449-460.	14.3	618
121	A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature, 1996, 383, 453-457.	27.8	441
122	Interaction of the protein nucleobindin with Gαi2, as revealed by the yeast two-hybrid system. FEBS Letters, 1995, 373, 155-158.	2.8	43
123	JNK is involved in signal integration during costimulation of T lymphocytes. Cell, 1994, 77, 727-736.	28.9	908
124	JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell, 1994, 76, 1025-1037.	28.9	3,203
125	Oncogenic Ras activates c-Jun via a separate pathway from the activation of extracellular signal-regulated kinases Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6030-6034.	7.1	174
126	IL-6-Induced Homodimerization of gp130 and Associated Activation of a Tyrosine Kinase. Science, 1993, 260, 1808-1810.	12.6	706

#	ARTICLE	IF	CITATIONS
127	Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain Genes and Development, 1993, 7, 2135-2148.	5.9	1,776
128	Regulation of IL-6 receptor and GP130 expression on human cell lines of lymphoid and myeloid origin. Cytokine, 1992, 4, 495-499.	3.2	13
129	Interleukin-6 Receptor and Signals. Chemical Immunology and Allergy, 1992, 51, 181-204.	1.7	11
130	Interleukin-6 Receptor and Signals. Chemical Immunology and Allergy, 1992, 51, 181-204.	1.7	15
131	The Molecular Biology of Interleukin 6 and its Receptor. Novartis Foundation Symposium, 1992, 167, 5-23.	1.1	32
132	Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 11349-11353.	7.1	566
133	Interleukin 6 and its receptor in the immune response and hematopoiesis. International Journal of Cell Cloning, 1990, 8, 155-167.	1.6	25
134	Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell, 1990, 63, 1149-1157.	28.9	1,293
135	Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell, 1989, 58, 573-581.	28.9	1,387