

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6770051/publications.pdf Version: 2024-02-01

LUN LU

#	Article	IF	CITATIONS
1	The degradation of EZH2 mediated by IncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death and Differentiation, 2017, 24, 59-71.	11.2	271
2	SOX4 Induces Epithelial–Mesenchymal Transition and Contributes to Breast Cancer Progression. Cancer Research, 2012, 72, 4597-4608.	0.9	219
3	PRMT7 Induces Epithelial-to-Mesenchymal Transition and Promotes Metastasis in Breast Cancer. Cancer Research, 2014, 74, 5656-5667.	0.9	116
4	CDK5 is essential for TGF-β1-induced epithelial-mesenchymal transition and breast cancer progression. Scientific Reports, 2013, 3, 2932.	3.3	107
5	Arginine methylationâ€dependent LSD1 stability promotes invasion and metastasis of breast cancer. EMBO Reports, 2020, 21, e48597.	4.5	92
6	Methylation of EZH2 by PRMT1 regulates its stability and promotes breast cancer metastasis. Cell Death and Differentiation, 2020, 27, 3226-3242.	11.2	87
7	The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Scientific Reports, 2016, 6, 19874.	3.3	84
8	LncRNA ANCR down-regulation promotes TGF-β-induced EMT and metastasis in breast cancer. Oncotarget, 2017, 8, 67329-67343.	1.8	76
9	Phosphorylation of LSD1 at Ser112 is crucial for its function in induction of EMT and metastasis in breast cancer. Breast Cancer Research and Treatment, 2016, 159, 443-456.	2.5	49
10	The roles of long noncoding RNAs in breast cancer metastasis. Cell Death and Disease, 2020, 11, 749.	6.3	48
11	Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression. FASEB Journal, 2017, 31, 2287-2300.	0.5	45
12	Interleukin-12 p40 promoter activity is regulated by the reversible acetylation mediated by HDAC1 and p300. Cytokine, 2005, 31, 46-51.	3.2	43
13	Autism candidate gene DIP2A regulates spine morphogenesis via acetylation of cortactin. PLoS Biology, 2019, 17, e3000461.	5.6	39
14	O-GlcNAcylation of SKN-1 modulates the lifespan and oxidative stress resistance in Caenorhabditis elegans. Scientific Reports, 2017, 7, 43601.	3.3	36
15	Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2093-2103.	4.1	27
16	Arginine and lysine methylation of MRPS23 promotes breast cancer metastasis through regulating OXPHOS. Oncogene, 2021, 40, 3548-3563.	5.9	26
17	Muscle-Specific Histone H3K36 Dimethyltransferase SET-18 Shortens Lifespan of Caenorhabditis elegans by Repressing daf-16a Expression. Cell Reports, 2018, 22, 2716-2729.	6.4	25
18	Arginine hypomethylation-mediated proteasomal degradation of histone H4—an early biomarker of cellular senescence. Cell Death and Differentiation, 2020, 27, 2697-2709.	11.2	23

Jun Lu

#	Article	IF	CITATIONS
19	Phenoxymethylpenicillin-intercalated hydrotalcite as a bacteria inhibitor. Journal of Chemical Technology and Biotechnology, 2006, 81, 89-93.	3.2	22
20	Arginine methylation of SKN-1 promotes oxidative stress resistance in Caenorhabditis elegans. Redox Biology, 2019, 21, 101111.	9.0	21
21	HDAC inhibitor PAC-320 induces G2/M cell cycle arrest and apoptosis in human prostate cancer. Oncotarget, 2018, 9, 512-523.	1.8	18
22	The interplay between p16 serine phosphorylation and arginine methylation determines its function in modulating cellular apoptosis and senescence. Scientific Reports, 2017, 7, 41390.	3.3	17
23	The Interaction of the Senescent and Adjacent Breast Cancer Cells Promotes the Metastasis of Heterogeneous Breast Cancer Cells through Notch Signaling. International Journal of Molecular Sciences, 2021, 22, 849.	4.1	17
24	A novel anti-proliferative role of HMGA2Âin induction of apoptosis through caspase 2Âin primary human fibroblast cells. Bioscience Reports, 2015, 35, .	2.4	13
25	EZH2–CCF–cGAS Axis Promotes Breast Cancer Metastasis. International Journal of Molecular Sciences, 2022, 23, 1788.	4.1	13
26	miR-51 regulates GABAergic synapses by targeting Rab GEF GLO-4 and lysosomal trafficking-related GLO/AP-3 pathway in Caenorhabditis elegans. Developmental Biology, 2018, 436, 66-74.	2.0	9
27	Lysines 207 and 325 methylation of WDR5 catalyzed by SETD6 promotes breast cancer cell proliferation and migration. Oncology Reports, 2018, 40, 3069-3077.	2.6	8
28	<scp>SHON</scp> , a novel secreted protein, regulates epithelial–mesenchymal transition through transforming growth factorâ€₽ signaling in human breast cancer cells. International Journal of Cancer, 2015, 136, 1285-1295.	5.1	7
29	GSK3β activity is essential for senescence-associated heterochromatin foci (SAHF) formation induced by HMGA2 in WI38 cells. American Journal of Translational Research (discontinued), 2017, 9, 167-174.	0.0	6
30	ELTâ€2 promotes <i>O</i> â€GlcNAc transferase OGTâ€1 expression to modulate <i>Caenorhabditis elegans</i> lifespan. Journal of Cellular Biochemistry, 2020, 121, 4898-4907.	2.6	5
31	Dual Inhibition of H3K9me2 and H3K27me3 Promotes Tumor Cell Senescence without Triggering the Secretion of SASP. International Journal of Molecular Sciences, 2022, 23, 3911.	4.1	4
32	SHON expression predicts response and relapse risk of breast cancer patients after anthracycline-based combination chemotherapy or tamoxifen treatment. British Journal of Cancer, 2019, 120, 728-745.	6.4	3