
## Sanjeev Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/676990/publications.pdf Version: 2024-02-01



SANIEEV CHDTA

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rivers and Lakes in Western Arabia Terra: The Fluvial Catchment of the ExoMars 2022 Rover Landing<br>Site. Journal of Geophysical Research E: Planets, 2022, 127, .                                                                                        | 3.6  | 9         |
| 2  | Fluvial Depositional Systems of the African Humid Period: An Analog for an Early, Wet Mars in the<br>Eastern Sahara. Journal of Geophysical Research E: Planets, 2022, 127, .                                                                              | 3.6  | 2         |
| 3  | Burial and Exhumation of Sedimentary Rocks Revealed by the Base Stimson Erosional Unconformity,<br>Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .                                                                             | 3.6  | 3         |
| 4  | Billion-year exposure ages in Gale crater (Mars) indicate Mount Sharp formed before the Amazonian<br>period. Earth and Planetary Science Letters, 2021, 554, 116667.                                                                                       | 4.4  | 4         |
| 5  | The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic<br>Imaging Investigation. Space Science Reviews, 2021, 217, 24.                                                                                                  | 8.1  | 76        |
| 6  | A Rock Record of Complex Aeolian Bedforms in a Hesperian Desert Landscape: The Stimson Formation<br>as Exposed in the Murray Buttes, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2021,<br>126, e2020JE006554.                           | 3.6  | 34        |
| 7  | A record of syn-tectonic sedimentation revealed by perched alluvial fan deposits in Valles Marineris,<br>Mars. Geology, 2021, 49, 1250-1254.                                                                                                               | 4.4  | 14        |
| 8  | New perspectives on the English Channel megaflood hypothesis: High-resolution multibeam and<br>seabed camera imaging of submarine landforms in the Northern Palaeovalley. Geomorphology, 2021,<br>382, 107692.                                             | 2.6  | 0         |
| 9  | Strongly heterogeneous patterns of groundwater depletion in Northwestern India. Journal of<br>Hydrology, 2021, 598, 126492.                                                                                                                                | 5.4  | 35        |
| 10 | Stratigraphic Relationships in Jezero Crater, Mars: Constraints on the Timing of Fluvial‣acustrine<br>Activity From Orbital Observations. Journal of Geophysical Research E: Planets, 2021, 126,<br>e2021JE006840.                                         | 3.6  | 20        |
| 11 | Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars.<br>Science, 2021, 374, 711-717.                                                                                                                         | 12.6 | 86        |
| 12 | Spatial variation of groundwater response to multiple drivers in a depleting alluvial aquifer system, northwestern India. Progress in Physical Geography, 2020, 44, 94-119.                                                                                | 3.2  | 28        |
| 13 | Extraformational sediment recycling on Mars. , 2020, 16, 1508-1537.                                                                                                                                                                                        |      | 20        |
| 14 | Post-monsoon air quality degradation across Northern India: assessing the impact of policy-related shifts in timing and amount of crop residue burnt. Environmental Research Letters, 2020, 15, 104067.                                                    | 5.2  | 56        |
| 15 | Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of<br><i>Curiosity</i> 's Exploration Campaign. Journal of Geophysical Research E: Planets, 2020, 125,<br>e2020JE006527.                                    | 3.6  | 69        |
| 16 | Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team. Space Science Reviews, 2020, 216, 1.                                                                                                    | 8.1  | 67        |
| 17 | A Lacustrine Paleoenvironment Recorded at Vera RubinRidge, Gale Crater: Overview of the<br>Sedimentology and Stratigraphy Observed by the Mars ScienceLaboratory Curiosity Rover. Journal of<br>Geophysical Research E: Planets, 2020, 125, e2019JE006307. | 3.6  | 69        |
| 18 | The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale<br>Crater, Mars, as Observed by the ChemCam Instrument. Journal of Geophysical Research E: Planets,<br>2020, 125, e2019JE006320.                          | 3.6  | 41        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Grain Size Variations in the Murray Formation: Stratigraphic Evidence for Changing Depositional<br>Environments in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125,<br>e2019JE006230. | 3.6  | 29        |
| 20 | Aram Dorsum: An Extensive Midâ€Noachian Age Fluvial Depositional System in Arabia Terra, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006244.                                           | 3.6  | 19        |
| 21 | A ROCK RECORD OF COMPLEX AEOLIAN BEDFORMS IN A HESPERIAN DESERT LANDSCAPE:THE STIMSON FORMATION AS EXPOSED IN THE MURRAY BUTTES, GALE CRATER, MARS. , 2020, , .                                                |      | 1         |
| 22 | A Diverse Array of Fluvial Depositional Systems in Arabia Terra: Evidence for midâ€Noachian to Early<br>Hesperian Rivers on Mars. Journal of Geophysical Research E: Planets, 2019, 124, 1913-1934.            | 3.6  | 48        |
| 23 | The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI). Planetary and Space Science, 2019, 165, 31-56.                                                                                           | 1.7  | 7         |
| 24 | Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation,<br>Gale crater, Mars. Sedimentology, 2019, 66, 1768-1802.                                                      | 3.1  | 80        |
| 25 | Middle–Late Pleistocene landscape evolution of the Dover Strait inferred from buried and submerged<br>erosional landforms. Quaternary Science Reviews, 2019, 203, 209-232.                                     | 3.0  | 8         |
| 26 | Holocene landscape dynamics in the Ghaggar-Hakra palaeochannel region at the northern edge of the<br>Thar Desert, northwest India. Quaternary International, 2019, 501, 317-327.                               | 1.5  | 21        |
| 27 | Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology, 2018, 65, 993-1042.                       | 3.1  | 143       |
| 28 | Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water<br>isotopes (δ18O, δ2H and 3H). Journal of Hydrology, 2018, 559, 835-847.                                         | 5.4  | 118       |
| 29 | Shaler: <i>inÂsitu</i> analysis of a fluvial sedimentary deposit on Mars. Sedimentology, 2018, 65, 96-122.                                                                                                     | 3.1  | 59        |
| 30 | Stepped fans and facies-equivalent phyllosilicates in Coprates Catena, Mars. Icarus, 2018, 307, 260-280.                                                                                                       | 2.5  | 9         |
| 31 | Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation,<br>Gale Crater. Geology, 2018, 46, 515-518.                                                                | 4.4  | 71        |
| 32 | Episodic and Declining Fluvial Processes in Southwest Melas Chasma, Valles Marineris, Mars. Journal<br>of Geophysical Research E: Planets, 2018, 123, 2527-2549.                                               | 3.6  | 18        |
| 33 | Geological Analysis of Martian Roverâ€Derived Digital Outcrop Models Using the 3â€D Visualization Tool,<br>Planetary Robotics 3â€D Viewer—PRo3D. Earth and Space Science, 2018, 5, 285-307.                    | 2.6  | 28        |
| 34 | The Hypanis Valles delta: The last highstand of a sea on early Mars?. Earth and Planetary Science<br>Letters, 2018, 500, 225-241.                                                                              | 4.4  | 41        |
| 35 | Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars. Science Advances, 2018, 4, eaar3330.                                                                                           | 10.3 | 150       |
| 36 | Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 2018, 360, 1096-1101.                                                                                                  | 12.6 | 369       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Does slab-window opening cause uplift of the overriding plate? A case study from the Gulf of<br>California. Tectonophysics, 2017, 719-720, 162-175.                                                                                                                                                                                                                                          | 2.2  | 5         |
| 38 | Discussion on â€~Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing<br>the impacts of early land plants on sedimentation' <i>Journal of the Geological Society</i> ,<br><i>London</i> , https://doi.org/10.1144/jgs2016-063. Journal of the Geological Society, 2017, 174, 947-950.                                                                         | 2.1  | 30        |
| 39 | Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater,<br>Mars. Earth and Planetary Science Letters, 2017, 471, 172-185.                                                                                                                                                                                                                            | 4.4  | 247       |
| 40 | The PanCam Instrument for the ExoMars Rover. Astrobiology, 2017, 17, 511-541.                                                                                                                                                                                                                                                                                                                | 3.0  | 55        |
| 41 | Diagenetic silica enrichment and lateâ€stage groundwater activity in Gale crater, Mars. Geophysical<br>Research Letters, 2017, 44, 4716-4724.                                                                                                                                                                                                                                                | 4.0  | 87        |
| 42 | Redox stratification of an ancient lake in Gale crater, Mars. Science, 2017, 356, .                                                                                                                                                                                                                                                                                                          | 12.6 | 209       |
| 43 | Two-stage opening of the Dover Strait and the origin of island Britain. Nature Communications, 2017, 8, 15101.                                                                                                                                                                                                                                                                               | 12.8 | 47        |
| 44 | Instrumentation Development for <i>In Situ</i> <sup>40</sup> Ar/ <sup>39</sup> Ar Planetary<br>Geochronology. Geostandards and Geoanalytical Research, 2017, 41, 381-396.                                                                                                                                                                                                                    | 3.1  | 6         |
| 45 | Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars.<br>Journal of Geophysical Research E: Planets, 2017, 122, 2-20.                                                                                                                                                                                                                          | 3.6  | 60        |
| 46 | Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2544-2573.                                                                                                                                                                                                                               | 3.6  | 83        |
| 47 | Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements. Nature Communications, 2017, 8, 1617.                                                                                                                                                                                                                                                 | 12.8 | 82        |
| 48 | Encounters with an unearthly mudstone: Understanding the first mudstone found on Mars.<br>Sedimentology, 2017, 64, 311-358.                                                                                                                                                                                                                                                                  | 3.1  | 48        |
| 49 | Preserved Stratigraphic Architecture and Evolution of A Net-Transgressive Mixed Wave- and<br>Tide-Influenced Coastal System: The Cliff House Sandstone, Northwestern New Mexico, U.S.A Journal<br>of Sedimentary Research, 2016, 86, 1399-1424.                                                                                                                                              | 1.6  | 12        |
| 50 | Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin Xâ€ray<br>diffraction of the Windjana sample (Kimberley area, Gale Crater). Journal of Geophysical Research E:<br>Planets, 2016, 121, 75-106.                                                                                                                                                        | 3.6  | 159       |
| 51 | Reply to the comment on "Geochemistry of buried river sediments from Ghaggar Plains, NW India:<br>Multi-proxy records of variations in provenance, paleoclimate, and paleovegetation patterns in the<br>Late Quaternary―by Singh et al. (2016), Palaeogeography, Palaeoclimatology, Palaeoecology 449 (2016)<br>85–100. Palaeogeography. Palaeoclimatology. Palaeoecology. 2016. 455. 68-70. | 2.3  | 3         |
| 52 | Extensive Noachian fluvial systems in Arabia Terra: Implications for early Martian climate. Geology, 2016, 44, 847-850.                                                                                                                                                                                                                                                                      | 4.4  | 96        |
| 53 | Linking the morphology of fluvial fan systems to aquifer stratigraphy in the Sutlej‥amuna plain of<br>northwest India. Journal of Geophysical Research F: Earth Surface, 2016, 121, 201-222.                                                                                                                                                                                                 | 2.8  | 45        |
| 54 | Tectonic significance of Cenozoic exhumation and foreland basin evolution in the Western Alps.<br>Tectonics, 2016, 35, 1892-1912.                                                                                                                                                                                                                                                            | 2.8  | 11        |

| #  | Article                                                                                                                                                                                                                                                               | IF               | CITATIONS                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| 55 | The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board <i>Curiosity</i> .<br>Journal of Geophysical Research E: Planets, 2016, 121, 784-804.                                                                                                | 3.6              | 67                       |
| 56 | Characteristics of pebble and cobble-sized clasts along the Curiosity rover traverse from sol 100 to 750: Terrain types, potential sources, and transport mechanisms. Icarus, 2016, 280, 72-92.                                                                       | 2.5              | 19                       |
| 57 | Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis<br>Palus, Gale crater, Mars. Icarus, 2016, 280, 3-21.                                                                                                                   | 2.5              | 57                       |
| 58 | Large wind ripples on Mars: A record of atmospheric evolution. Science, 2016, 353, 55-58.                                                                                                                                                                             | 12.6             | 144                      |
| 59 | Geochemistry of buried river sediments from Ghaggar Plains, NW India: Multi-proxy records of<br>variations in provenance, paleoclimate, and paleovegetation patterns in the Late Quaternary.<br>Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449, 85-100. | 2.3              | 47                       |
| 60 | Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars. Journal of Geophysical Research E: Planets, 2015, 120, 452-482.                                                                          | 3.6              | 51                       |
| 61 | Fault activity in the epicentral area of the 1580 Dover Strait (Pas-de-Calais) earthquake (northwestern) Tj ETQq1                                                                                                                                                     | l 0.78431<br>2.4 | 4 <sub>[</sub> gBT /Over |
| 62 | Quantifying geological processes on Mars—Results of the high resolution stereo camera (HRSC) on<br>Mars express. Planetary and Space Science, 2015, 112, 53-97.                                                                                                       | 1.7              | 63                       |
| 63 | Streamlined islands and the English Channel megaflood hypothesis. Global and Planetary Change, 2015, 135, 190-206.                                                                                                                                                    | 3.5              | 24                       |
| 64 | Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover<br>investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United<br>States of America, 2015, 112, 4245-4250.                | 7.1              | 172                      |
| 65 | Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 2015, 350, aac7575.                                                                                                                                                  | 12.6             | 471                      |
| 66 | Minimum effective area for high resolution crater counting of martian terrains. Icarus, 2015, 245, 198-240.                                                                                                                                                           | 2.5              | 103                      |
| 67 | ChemCam results from the Shaler outcrop in Gale crater, Mars. Icarus, 2015, 249, 2-21.                                                                                                                                                                                | 2.5              | 52                       |
| 68 | Mechanisms and timescales of fluvial activity at Mojave and other young Martian craters. Journal of<br>Geophysical Research E: Planets, 2014, 119, 604-634.                                                                                                           | 3.6              | 18                       |
| 69 | The origin and evolution of the Peace Vallis fan system that drains to the <i>Curiosity</i> landing area, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 705-728.                                                                          | 3.6              | 112                      |
| 70 | Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars.<br>Science, 2014, 343, 1245267.                                                                                                                                         | 12.6             | 323                      |
| 71 | A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.                                                                                                                                                         | 12.6             | 687                      |
| 72 | Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.                                                                                                                                                                          | 12.6             | 508                      |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover.<br>Science, 2014, 343, 1244797.                                                                                              | 12.6 | 475       |
| 74 | In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science, 2014, 343, 1247166.                                                                                                                              | 12.6 | 224       |
| 75 | Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.                                                                                                               | 12.6 | 246       |
| 76 | Calibrating Mars Orbiter Laser Altimeter pulse widths at Mars Science Laboratory candidate landing sites. Planetary and Space Science, 2014, 99, 118-127.                                                                     | 1.7  | 2         |
| 77 | Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond.<br>Journal of Geophysical Research E: Planets, 2014, 119, 1134-1161.                                                         | 3.6  | 104       |
| 78 | Rift flank uplift at the Gulf of California: No requirement for asthenospheric upwelling. Geology, 2014, 42, 259-262.                                                                                                         | 4.4  | 24        |
| 79 | Multi-resolution digital terrain models and their potential for Mars landing site assessments.<br>Planetary and Space Science, 2013, 85, 89-105.                                                                              | 1.7  | 4         |
| 80 | Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.                                                                                                          | 12.6 | 367       |
| 81 | Geo-electric resistivity evidence for subsurface palaeochannel systems adjacent to Harappan sites in northwest India. Quaternary International, 2013, 308-309, 66-75.                                                         | 1.5  | 53        |
| 82 | Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.                                                                                                                                                  | 12.6 | 326       |
| 83 | Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology, 2013, 41, 675-678.                                                                                                                     | 4.4  | 58        |
| 84 | Hydraulic modeling of a distributary channel of Athabasca Valles, Mars, using a highâ€resolution<br>digital terrain model. Journal of Geophysical Research, 2012, 117, .                                                      | 3.3  | 14        |
| 85 | Formation of an Hesperian-aged sedimentary basin containing phyllosilicates in Coprates Catena, Mars.<br>Icarus, 2012, 218, 178-195.                                                                                          | 2.5  | 26        |
| 86 | Constraints on the origin and evolution of Iani Chaos, Mars. Journal of Geophysical Research, 2011, 116, .                                                                                                                    | 3.3  | 28        |
| 87 | Influence of fault-controlled topography on fluvio-deltaic sedimentary systems in Eberswalde crater,<br>Mars. Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                | 4.0  | 18        |
| 88 | Timescales of alluvial fan development by precipitation on Mars. Geophysical Research Letters, 2011, 38,<br>n/a-n/a.                                                                                                          | 4.0  | 26        |
| 89 | Improved provenance tracing of Asian dust sources using rare earth elements and selected trace<br>elements for palaeomonsoon studies on the eastern Tibetan Plateau. Geochimica Et Cosmochimica<br>Acta, 2011, 75, 6374-6399. | 3.9  | 165       |
| 90 | Martian Geomorphology: introduction. Geological Society Special Publication, 2011, 356, 1-3.                                                                                                                                  | 1.3  | 2         |

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Fill and spill in Lethe Vallis: a recent flood-routing system in Elysium Planitia, Mars. Geological<br>Society Special Publication, 2011, 356, 203-227.                                                | 1.3  | 7         |
| 92  | Retreat of a giant cataract in a long-lived (3.7–2.6 Ga) martian outflow channel. Geology, 2010, 38,<br>791-794.                                                                                       | 4.4  | 30        |
| 93  | Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on<br>Mars. Geology, 2010, 38, 71-74.                                                                  | 4.4  | 37        |
| 94  | Late Noachian to Hesperian climate change on Mars: Evidence of episodic warming from transient<br>crater lakes near Ares Vallis. Journal of Geophysical Research, 2010, 115, .                         | 3.3  | 57        |
| 95  | The influence of bend amplitude and planform morphology on flow and sedimentation in submarine channels. Marine and Petroleum Geology, 2010, 27, 1431-1447.                                            | 3.3  | 53        |
| 96  | A refined chronology of catastrophic outflow events in Ares Vallis, Mars. Earth and Planetary<br>Science Letters, 2009, 288, 58-69.                                                                    | 4.4  | 57        |
| 97  | Facies architecture of a net transgressive sandstone reservoir analog: The Cretaceous Hosta Tongue,<br>New Mexico. AAPG Bulletin, 2008, 92, 513-547.                                                   | 1.5  | 51        |
| 98  | Flow processes and sedimentation in submarine channel bends. Marine and Petroleum Geology, 2007, 24, 470-486.                                                                                          | 3.3  | 109       |
| 99  | Transient landscapes at fault tips. Journal of Geophysical Research, 2007, 112, .                                                                                                                      | 3.3  | 56        |
| 100 | Catastrophic flooding origin of shelf valley systems in the English Channel. Nature, 2007, 448, 342-345.                                                                                               | 27.8 | 220       |
| 101 | Using bathymetry to identify basin inversion structures on the English Channel shelf. Geology, 2006, 34, 1001.                                                                                         | 4.4  | 15        |
| 102 | What sets topographic relief in extensional footwalls?. Geology, 2005, 33, 453.                                                                                                                        | 4.4  | 48        |
| 103 | Clinoform nucleation and growth in coarse-grained deltas, Loreto basin, Baja California Sur, Mexico:<br>a response to episodic accelerations in fault displacement. Basin Research, 2005, 17, 337-359. | 2.7  | 43        |
| 104 | Deformed streams reveal growth and linkage of a normal fault array in the Canyonlands graben,<br>Utah. Geology, 2005, 33, 645.                                                                         | 4.4  | 22        |
| 105 | Footwall topographic development during continental extension. Journal of Geophysical Research, 2004, 109, .                                                                                           | 3.3  | 79        |
| 106 | Landscape evolution at extensional relay zones. Journal of Geophysical Research, 2003, 108, .                                                                                                          | 3.3  | 34        |
| 107 | Repeated cycles of submarine channel incision, infill and transition to sheet sandstone development<br>in the Alpine Foreland Basin, SE France. Sedimentology, 2002, 49, 623-635.                      | 3.1  | 33        |
| 108 | Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Research, 2000, 12, 241-261.                                             | 2.7  | 90        |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | INVITED EDITORIAL Processes and controls in the stratigraphic development of extensional basins.<br>Basin Research, 2000, 12, 185-194.                                                            | 2.7 | 7         |
| 110 | Implications of foreland paleotopography for stratigraphic development in the Eocene distal Alpine foreland basin. Bulletin of the Geological Society of America, 2000, 112, 515-530.             | 3.3 | 46        |
| 111 | Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Research, 2000, 12, 241-261.                                        | 2.7 | 132       |
| 112 | INVITED EDITORIAL Processes and controls in the stratigraphic development of extensional basins.<br>Basin Research, 2000, 12, 185-194.                                                            | 2.7 | 25        |
| 113 | Controls on sedimentation in distal margin palaeovalleys in the Early Tertiary Alpine foreland basin,<br>southâ€eastern France. Sedimentology, 1999, 46, 357-384.                                 | 3.1 | 23        |
| 114 | Fossil shore platforms and drowned gravel beaches; evidence for high-frequency sea-level<br>fluctuations in the distal Alpine foreland basin. Journal of Sedimentary Research, 1999, 69, 394-413. | 1.6 | 18        |