Nunilo Cremades

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6768597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Pathological G51D Mutation in Alpha-Synuclein Oligomers Confers Distinct Structural Attributes and Cellular Toxicity. Molecules, 2022, 27, 1293.	3.8	6
2	Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cellular and Molecular Life Sciences, 2022, 79, 174.	5.4	45
3	The role of water in the primary nucleation of protein amyloid aggregation. Biophysical Chemistry, 2021, 269, 106520.	2.8	36
4	The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nature Communications, 2021, 12, 1814.	12.8	123
5	α-Helical peptidic scaffolds to target α-synuclein toxic species with nanomolar affinity. Nature Communications, 2021, 12, 3752.	12.8	40
6	All-or-none amyloid disassembly via chaperone-triggered fibril unzipping favors clearance of α-synuclein toxic species. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
7	The extent of protein hydration dictates the preference for heterogeneous or homogeneous nucleation generating either parallel or antiparallel β-sheet α-synuclein aggregates. Chemical Science, 2020, 11, 11902-11914.	7.4	30
8	Multiplicity of α-Synuclein Aggregated Species and Their Possible Roles in Disease. International Journal of Molecular Sciences, 2020, 21, 8043.	4.1	33
9	Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Communications Biology, 2020, 3, 435.	4.4	44
10	Defining α-synuclein species responsible for Parkinson's disease phenotypes in mice. Journal of Biological Chemistry, 2019, 294, 10392-10406.	3.4	96
11	Novel Small Molecules Targeting the Intrinsically Disordered Structural Ensemble of α-Synuclein Protect Against Diverse α-Synuclein Mediated Dysfunctions. Scientific Reports, 2019, 9, 16947.	3.3	25
12	The contribution of biophysical and structural studies of protein self-assembly to the design of therapeutic strategies for amyloid diseases. Neurobiology of Disease, 2018, 109, 178-190.	4.4	62
13	Multistep Inhibition of α-Synuclein Aggregation and Toxicity <i>in Vitro</i> and <i>in Vivo</i> by Trodusquemine. ACS Chemical Biology, 2018, 13, 2308-2319.	3.4	86
14	Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents. Journal of Parkinson's Disease, 2018, 8, 303-322.	2.8	151
15	Preparation of α-Synuclein Amyloid Assemblies for Toxicity Experiments. Methods in Molecular Biology, 2018, 1779, 45-60.	0.9	15
16	A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1009-E1017.	7.1	231
17	Inhibition of α-Synuclein Fibril Elongation by Hsp70 Is Governed by a Kinetic Binding Competition between α-Synuclein Species. Biochemistry, 2017, 56, 1177-1180.	2.5	47
18	Structural Characteristics of α-Synuclein Oligomers. International Review of Cell and Molecular Biology, 2017, 329, 79-143.	3.2	95

NUNILO CREMADES

#	Article	IF	CITATIONS
19	Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science, 2017, 358, 1440-1443.	12.6	492
20	Single-Molecule Imaging of Individual Amyloid Protein Aggregates in Human Biofluids. ACS Chemical Neuroscience, 2016, 7, 399-406.	3.5	99
21	Calcium is a key factor in α-synuclein induced neurotoxicity. Journal of Cell Science, 2016, 129, 1792-801.	2.0	136
22	Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1206-15.	7.1	181
23	Amyloid-β and α-Synuclein Decrease the Level of Metal-Catalyzed Reactive Oxygen Species by Radical Scavenging and Redox Silencing. Journal of the American Chemical Society, 2016, 138, 3966-3969.	13.7	69
24	Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease. Antioxidants and Redox Signaling, 2016, 24, 376-391.	5.4	266
25	Ca2+ is a key factor in α-synuclein-induced neurotoxicity. Development (Cambridge), 2016, 143, e1.1-e1.1.	2.5	5
26	Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson's disease genetically related mutants. Scientific Reports, 2015, 5, 16696.	3.3	92
27	Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1994-2003.	7.1	384
28	Fast Flow Microfluidics and Single-Molecule Fluorescence for the Rapid Characterization of α-Synuclein Oligomers. Analytical Chemistry, 2015, 87, 8818-8826.	6.5	81
29	Cell surface localised Hsp70 is a cancer specific regulator of clathrinâ€independent endocytosis. FEBS Letters, 2015, 589, 2747-2753.	2.8	37
30	Targeting the Intrinsically Disordered Structural Ensemble of α-Synuclein by Small Molecules as a Potential Therapeutic Strategy for Parkinson's Disease. PLoS ONE, 2014, 9, e87133.	2.5	126
31	Nanobodies Raised against Monomeric α-Synuclein Distinguish between Fibrils at Different Maturation Stages. Journal of Molecular Biology, 2013, 425, 2397-2411.	4.2	90
32	Hsp70 Oligomerization Is Mediated by an Interaction between the Interdomain Linker and the Substrate-Binding Domain. PLoS ONE, 2013, 8, e67961.	2.5	66
33	Insights in the (un)structural organization of Bacillus pasteurii UreG, an intrinsically disordered GTPase enzyme. Molecular BioSystems, 2012, 8, 220-228.	2.9	44
34	Direct Observation of the Interconversion of Normal and Toxic Forms of α-Synuclein. Cell, 2012, 149, 1048-1059.	28.9	755
35	Population of Nonnative States of Lysozyme Variants Drives Amyloid Fibril Formation. Journal of the American Chemical Society, 2011, 133, 7737-7743.	13.7	72
36	Local Cooperativity in an Amyloidogenic State of Human Lysozyme Observed at Atomic Resolution. Journal of the American Chemical Society, 2010, 132, 15580-15588.	13.7	55

NUNILO CREMADES

#	Article	IF	CITATIONS
37	Structure and Properties of a Complex of α-Synuclein and a Single-Domain Camelid Antibody. Journal of Molecular Biology, 2010, 402, 326-343.	4.2	164
38	On the Mechanism of Nonspecific Inhibitors of Protein Aggregation: Dissecting the Interactions of α-Synuclein with Congo Red and Lacmoid. Biochemistry, 2009, 48, 8322-8334.	2.5	88
39	Discovery of Specific Flavodoxin Inhibitors as Potential Therapeutic Agents against <i>Helicobacter pylori</i> Infection. ACS Chemical Biology, 2009, 4, 928-938.	3.4	48
40	Molten Globule and Native State Ensemble of Helicobacter pylori Flavodoxin: Can Crowding, Osmolytes or Cofactors Stabilize the Native Conformation Relative to the Molten Globule?. Biophysical Journal, 2008, 95, 1913-1927.	0.5	20
41	The Flavodoxin from <i>Helicobacter pylori</i> :  Structural Determinants of Thermostability and FMN Cofactor Binding. Biochemistry, 2008, 47, 627-639.	2.5	32
42	Conformational Stability of Helicobacter pylori Flavodoxin. Journal of Biological Chemistry, 2008, 283, 2883-2895.	3.4	13
43	Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria. Journal of Clinical Investigation, 2008, 118, 2858-2867.	8.2	145
44	Flavodoxin:Quinone Reductase (FqrB): a Redox Partner of Pyruvate:Ferredoxin Oxidoreductase That Reversibly Couples Pyruvate Oxidation to NADPH Production in Helicobacter pylori and Campylobacter jejuni. Journal of Bacteriology, 2007, 189, 4764-4773.	2.2	63
45	Antiparasitic Drug Nitazoxanide Inhibits the Pyruvate Oxidoreductases of Helicobacter pylori , Selected Anaerobic Bacteria and Parasites, and Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 2007, 51, 868-876.	3.2	207
46	Common conformational changes in flavodoxins induced by FMN and anion binding: The structure of <i>Helicobacter pylori</i> apoflavodoxin. Proteins: Structure, Function and Bioinformatics, 2007, 69, 581-594.	2.6	24
47	Filling Small, Empty Protein Cavities: Structural and Energetic Consequences. Journal of Molecular Biology, 2006, 358, 701-712.	4.2	23
48	The native-state ensemble of proteins provides clues for folding, misfolding and function. Trends in Biochemical Sciences, 2006, 31, 494-496.	7.5	30
49	Towards a new therapeutic target: Helicobacter pylori flavodoxin. Biophysical Chemistry, 2005, 115, 267-276.	2.8	44