Jacob Jolij

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6767835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics in typewriting performance reflect mental fatigue during real-life office work. PLoS ONE, 2020, 15, e0239984.	2.5	10
2	Dynamics in typewriting performance reflect mental fatigue during real-life office work. , 2020, 15, e0239984.		0
3	Dynamics in typewriting performance reflect mental fatigue during real-life office work. , 2020, 15, e0239984.		Ο
4	Dynamics in typewriting performance reflect mental fatigue during real-life office work. , 2020, 15, e0239984.		0
5	Dynamics in typewriting performance reflect mental fatigue during real-life office work. , 2020, 15, e0239984.		0
6	Age Modulates the Effects of Mental Fatigue on Typewriting. Frontiers in Psychology, 2018, 9, 1113.	2.1	11
7	Testing the potential paradoxes in $\hat{a} \in \hat{c}$ eretrocausal $\hat{a} \in \hat{c}$ phenomena. AlP Conference Proceedings, 2017, , .	0.4	2
8	Brain Potentials Highlight Stronger Implicit Food Memory for Taste than Health and Context Associations. PLoS ONE, 2016, 11, e0154128.	2.5	8
9	What You May Not See Might Slow You Down Anyway: Masked Images and Driving. PLoS ONE, 2012, 7, e29857.	2.5	6
10	Trial History Effects in Stroop Task Performance Are Independent of Top-Down Control. PLoS ONE, 2012, 7, e39802.	2.5	18
11	Music Alters Visual Perception. PLoS ONE, 2011, 6, e18861.	2.5	38
12	Act Quickly, Decide Later: Long-latency Visual Processing Underlies Perceptual Decisions but Not Reflexive Behavior. Journal of Cognitive Neuroscience, 2011, 23, 3734-3745.	2.3	15
13	Why do we see what's not there?. Communicative and Integrative Biology, 2011, 4, 764-767.	1.4	6
14	Transcranial magnetic stimulation-induced †̃visual echoes' are generated in early visual cortex. Neuroscience Letters, 2010, 484, 178-181.	2.1	11
15	Long-lasting modulation of feature integrationby transcranial magnetic stimulation. Journal of Vision, 2009, 9, 1-1.	0.3	81
16	Feedforward and Recurrent Processing in Scene Segmentation: Electroencephalography and Functional Magnetic Resonance Imaging. Journal of Cognitive Neuroscience, 2008, 20, 2097-2109.	2.3	125
17	Processing speed in recurrent visual networks correlates with general intelligence. NeuroReport, 2007, 18, 39-43.	1.2	12
18	Figure–ground segregation requires two distinct periods of activity in V1: a transcranial magnetic stimulation study. NeuroReport, 2005, 16, 1483-1487.	1.2	74

		JACOB JOLIJ		
#	Article		IF	CITATIONS
19	Repression of unconscious information by conscious processing: Evidence from affective blindsigh induced by transcranial magnetic stimulation. Proceedings of the National Academy of Sciences of United States of America, 2005, 102, 10747-10751.	t the	7.1	139
20	Cognitive Neuroergonomics of Perception. , 0, , .			0
21	Affective and Social Neuroergonomics. , 0, , .			0