Matthew L Meyerson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6766283/publications.pdf

Version: 2024-02-01

172 papers 118,111 citations

93 h-index 168 g-index

187 all docs

187 docs citations

times ranked

187

108381 citing authors

#	Article	lF	CITATIONS
1	EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy. Science, 2004, 304, 1497-1500.	6.0	9,038
2	Signatures of mutational processes in human cancer. Nature, 2013, 500, 415-421.	13.7	8,060
3	The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483, 603-607.	13.7	6,473
4	Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17, 98-110.	7.7	6,138
5	Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499, 214-218.	13.7	4,761
6	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	13.5	3,979
7	Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology, 2013, 31, 213-219.	9.4	3,934
8	The Immune Landscape of Cancer. Immunity, 2018, 48, 812-830.e14.	6.6	3,706
9	The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463, 899-905.	13.7	3,331
10	Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 2014, 505, 495-501.	13.7	2,586
11	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	13.9	2,582
12	GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biology, 2011, 12, R41.	3.8	2,546
13	The Molecular Taxonomy of Primary Prostate Cancer. Cell, 2015, 163, 1011-1025.	13.5	2,435
14	Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell, 2014, 159, 676-690.	13.5	2,318
15	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	13.5	2,111
16	Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host and Microbe, 2013, 14, 207-215.	5.1	1,913
17	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell, 2017, 169, 1327-1341.e23.	13.5	1,794
18	Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell, 2017, 171, 540-556.e25.	13.5	1,742

#	Article	IF	CITATIONS
19	Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 2012, 30, 413-421.	9.4	1,710
20	Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients. Cell, 2015, 161, 933-945.	13.5	1,710
21	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 2016, 164, 550-563.	13.5	1,695
22	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	13.5	1,670
23	Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 2013, 45, 1134-1140.	9.4	1,616
24	Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing. Cell, 2012, 150, 1107-1120.	13.5	1,591
25	Genomic analysis identifies association of <i>Fusobacterium</i> with colorectal carcinoma. Genome Research, 2012, 22, 292-298.	2.4	1,587
26	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 2015, 163, 506-519.	13.5	1,485
27	Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genetics, 2012, 44, 685-689.	9.4	1,300
28	Initial genome sequencing and analysis of multiple myeloma. Nature, 2011, 471, 467-472.	13.7	1,288
29	Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nature Medicine, 2018, 24, 679-690.	15.2	1,224
30	Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia. Cell, 2013, 152, 714-726.	13.5	1,202
31	Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics, 2012, 44, 1104-1110.	9.4	1,186
32	The genomic complexity of primary human prostate cancer. Nature, 2011, 470, 214-220.	13.7	1,107
33	Punctuated Evolution of Prostate Cancer Genomes. Cell, 2013, 153, 666-677.	13.5	1,107
34	Characterizing the cancer genome in lung adenocarcinoma. Nature, 2007, 450, 893-898.	13.7	1,020
35	Inhibition of telomerase limits the growth of human cancer cells. Nature Medicine, 1999, 5, 1164-1170.	15.2	983
36	Analysis of <i>Fusobacterium</i> persistence and antibiotic response in colorectal cancer. Science, 2017, 358, 1443-1448.	6.0	983

#	Article	IF	CITATIONS
37	Structures of Lung Cancer-Derived EGFR Mutants and Inhibitor Complexes: Mechanism of Activation and Insights into Differential Inhibitor Sensitivity. Cancer Cell, 2007, 11, 217-227.	7.7	933
38	Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nature Genetics, 2016, 48, 607-616.	9.4	933
39	Chromothripsis from DNA damage inÂmicronuclei. Nature, 2015, 522, 179-184.	13.7	924
40	Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 2015, 5, 1164-1177.	7.7	821
41	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	7.7	750
42	<i>Fusobacterium nucleatum</i> in colorectal carcinoma tissue and patient prognosis. Gut, 2016, 65, 1973-1980.	6.1	718
43	Landscape of genomic alterations in cervical carcinomas. Nature, 2014, 506, 371-375.	13.7	708
44	The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell, 2014, 26, 319-330.	7.7	665
45	Genetic and transcriptional evolution alters cancer cell line drug response. Nature, 2018, 560, 325-330.	13.7	662
46	Oncogenic Transformation by Inhibitor-Sensitive and -Resistant EGFR Mutants. PLoS Medicine, 2005, 2, e313.	3.9	603
47	Commensal Microbiota Promote Lung Cancer Development via γδT Cells. Cell, 2019, 176, 998-1013.e16.	13.5	592
48	Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature, 2020, 580, 269-273.	13.7	587
49	Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nature Communications, 2017, 8, 1324.	5.8	584
50	Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nature Biotechnology, 2014, 32, 479-484.	9.4	495
51	Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discovery, 2016, 6, 914-929.	7.7	485
52	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	7.7	482
53	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 2018, 33, 690-705.e9.	7.7	478
54	Oncotator: Cancer Variant Annotation Tool. Human Mutation, 2015, 36, E2423-E2429.	1.1	448

#	Article	IF	CITATIONS
55	Structural, Biochemical, and Clinical Characterization of Epidermal Growth Factor Receptor (EGFR) Exon 20 Insertion Mutations in Lung Cancer. Science Translational Medicine, 2013, 5, 216ra177.	5.8	438
56	Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nature Cancer, 2020, 1, 235-248.	5.7	430
57	Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nature Communications, 2019, 10, 3991.	5.8	409
58	Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Research, 2015, 25, 316-327.	2.4	343
59	Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight, 2016, 1, e87062.	2.3	340
60	Mutational processes shape the landscape of TP53 mutations in human cancer. Nature Genetics, 2018, 50, 1381-1387.	9.4	334
61	Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Reports, 2018, 23, 3392-3406.	2.9	324
62	Characterization of HPV and host genome interactions in primary head and neck cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15544-15549.	3.3	317
63	Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain. PLoS Medicine, 2006, 3, e485.	3.9	298
64	PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nature Biotechnology, 2011, 29, 393-396.	9.4	289
65	Whole-Exome Sequencing Reveals Frequent Genetic Alterations in <i>BAP1</i> , <i>NF2</i> , <i>CDKN2A</i> , and <i>CUL1</i> in Malignant Pleural Mesothelioma. Cancer Research, 2015, 75, 264-269.	0.4	289
66	SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Research, 2018, 28, 581-591.	2.4	288
67	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Systems, 2018, 6, 282-300.e2.	2.9	284
68	Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nature Genetics, 2016, 48, 176-182.	9.4	283
69	Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nature Biotechnology, 2000, 18, 1001-1005.	9.4	282
70	Genomic basis for RNA alterations in cancer. Nature, 2020, 578, 129-136.	13.7	280
71	Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nature Genetics, 2011, 43, 964-968.	9.4	270
72	Genome coverage and sequence fidelity of Â29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Research, 2004, 32, e71-e71.	6.5	266

#	Article	IF	CITATIONS
73	Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell, 2018, 174, 433-447.e19.	13.5	258
74	Targeted genomic rearrangements using CRISPR/Cas technology. Nature Communications, 2014, 5, 3728.	5.8	252
75	<i>EGFR</i> Variant Heterogeneity in Glioblastoma Resolved through Single-Nucleus Sequencing. Cancer Discovery, 2014, 4, 956-971.	7.7	251
76	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Reports, 2018, 23, 194-212.e6.	2.9	245
77	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell, 2018, 173, 386-399.e12.	13.5	228
78	Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. Clinical and Translational Gastroenterology, 2016, 7, e200.	1.3	225
79	High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotechnology, 2011, 29, 1109-1113.	9.4	204
80	Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Research, 2014, 24, 1053-1063.	2.4	191
81	A Pan-Cancer Analysis of Transcriptome Changes Associated with Somatic Mutations in U2AF1 Reveals Commonly Altered Splicing Events. PLoS ONE, 2014, 9, e87361.	1.1	168
82	BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers. Nucleic Acids Research, 2015, 43, e19-e19.	6.5	161
83	Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nature Communications, 2018, 9, 5450.	5.8	157
84	Updated Frequency of EGFR and KRAS Mutations in NonSmall-Cell Lung Cancer in Latin America: The Latin-American Consortium for the Investigation of Lung Cancer (CLICaP). Journal of Thoracic Oncology, 2015, 10, 838-843.	0.5	156
85	A Functional Landscape of Resistance to ALK Inhibition in Lung Cancer. Cancer Cell, 2015, 27, 397-408.	7.7	150
86	Prognostic Impact of Novel Molecular Subtypes of Small Intestinal Neuroendocrine Tumor. Clinical Cancer Research, 2016, 22, 250-258.	3.2	149
87	Near universal detection of alterations in <scp><i>CTNNB1</i></scp> and <scp>Wnt</scp> pathway regulators in desmoidâ€type fibromatosis by wholeâ€exome sequencing and genomic analysis. Genes Chromosomes and Cancer, 2015, 54, 606-615.	1.5	138
88	<i>Fusobacterium nucleatum</i> in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunology Research, 2018, 6, 1327-1336.	1.6	127
89	Genomic and immune profiling of pre-invasive lung adenocarcinoma. Nature Communications, 2019, 10, 5472.	5.8	127
90	Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Science Translational Medicine, 2016, 8, 363ra147.	5.8	126

#	Article	IF	Citations
91	Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Research, 2013, 23, 228-235.	2.4	124
92	Telomerase activation, cellular immortalization and cancer. Annals of Medicine, 2001, 33, 123-129.	1.5	121
93	Sensitive Detection of Minimal Residual Disease in Patients Treated for Early-Stage Breast Cancer. Clinical Cancer Research, 2020, 26, 2556-2564.	3.2	109
94	Cancer Genomes Evolve by Pulverizing Single Chromosomes. Cell, 2011, 144, 9-10.	13.5	107
95	Insertions and Deletions Target Lineage-Defining Genes in Human Cancers. Cell, 2017, 168, 460-472.e14.	13.5	106
96	Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor. Cancer Discovery, 2018, 8, 108-125.	7.7	99
97	Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression. Cancer Discovery, 2018, 8, 59-73.	7.7	96
98	Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children With Solid Tumors. JCO Precision Oncology, 2018, 2018, 1-13.	1.5	95
99	Tumor fraction in cell-free DNA as a biomarker in prostate cancer. JCI Insight, 2018, 3, .	2.3	94
100	Whole Exome Sequencing Identifies TSC1/TSC2 Biallelic Loss as the Primary and Sufficient Driver Event for Renal Angiomyolipoma Development. PLoS Genetics, 2016, 12, e1006242.	1.5	93
101	Cetuximab Response of Lung Cancer–Derived EGF Receptor Mutants Is Associated with Asymmetric Dimerization. Cancer Research, 2013, 73, 6770-6779.	0.4	87
102	Allele-dependent variation in the relative cellular potency of distinct EGFR inhibitors. Cancer Biology and Therapy, 2007, 6, 661-667.	1.5	83
103	Comparison of Prevalence and Types of Mutations in Lung Cancers Among Black and White Populations. JAMA Oncology, 2017, 3, 801.	3.4	78
104	Calibrating genomic and allelic coverage bias in single-cell sequencing. Nature Communications, 2015, 6, 6822.	5.8	74
105	Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nature Structural and Molecular Biology, 2015, 22, 703-711.	3.6	72
106	Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics. Nature Chemical Biology, 2016, 12, 102-108.	3.9	72
107	Glioblastoma-Derived Epidermal Growth Factor Receptor Carboxyl-Terminal Deletion Mutants Are Transforming and Are Sensitive to EGFR-Directed Therapies. Cancer Research, 2011, 71, 7587-7596.	0.4	70
108	Genetic Ancestry Contributes to Somatic Mutations in Lung Cancers from Admixed Latin American Populations. Cancer Discovery, 2021, 11, 591-598.	7.7	69

#	Article	IF	CITATIONS
109	Rapid Intraoperative Molecular Characterization of Glioma. JAMA Oncology, 2015, 1, 662.	3.4	68
110	The tumor virus landscape of AIDS-related lymphomas. Blood, 2015, 125, e14-e22.	0.6	67
111	<i>MET</i> Exon 14 Mutation Encodes an Actionable Therapeutic Target in Lung Adenocarcinoma. Cancer Research, 2017, 77, 4498-4505.	0.4	57
112	Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer. Nature Genetics, 2018, 50, 937-943.	9.4	55
113	Pervasive generation of non-canonical subgenomic RNAs by SARS-CoV-2. Genome Medicine, 2020, 12, 108.	3.6	54
114	The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. American Journal of Pathology, 2018, 188, 2839-2852.	1.9	51
115	Dynamic Epigenetic Regulation by Menin During Pancreatic Islet Tumor Formation. Molecular Cancer Research, 2015, 13, 689-698.	1.5	49
116	Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the \hat{I}^3 -secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case. Journal of Physical Education and Sports Management, 2015, 1, a000539.	0.5	47
117	Genetic modifiers of EGFR dependence in non-small cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18661-18666.	3.3	46
118	Frequent HIN-1 Promoter Methylation and Lack of Expression in Multiple Human Tumor Types. Molecular Cancer Research, 2004, 2, 489-494.	1.5	46
119	Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nature Genetics, 2021, 53, 881-894.	9.4	44
120	Characterization of DDR2 Inhibitors for the Treatment of <i>DDR2</i> Mutated Nonsmall Cell Lung Cancer. ACS Chemical Biology, 2015, 10, 2687-2696.	1.6	43
121	Genomic discovery and clonal tracking in multiple myeloma by cell-free DNA sequencing. Leukemia, 2018, 32, 1838-1841.	3.3	42
122	<i>SOS1</i> mutations are rare in human malignancies: Implications for Noonan syndrome patients. Genes Chromosomes and Cancer, 2008, 47, 253-259.	1.5	40
123	Copy number alterations unmasked as enhancer hijackers. Nature Genetics, 2017, 49, 5-6.	9.4	40
124	Genotype-targeted local therapy of glioma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8388-E8394.	3.3	40
125	Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women. International Journal of Cancer, 2015, 137, 776-783.	2.3	39
126	RAS–MAPK Reactivation Facilitates Acquired Resistance in <i>FGFR1</i> -Amplified Lung Cancer and Underlies a Rationale for Upfront FGFR–MEK Blockade. Molecular Cancer Therapeutics, 2018, 17, 1526-1539.	1.9	39

#	Article	IF	Citations
127	Structure of PDE3A-SLFN12 complex reveals requirements for activation of SLFN12 RNase. Nature Communications, 2021, 12, 4375.	5.8	39
128	Splicing modulation sensitizes chronic lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies. JCI Insight, 2018, 3, .	2.3	39
129	Illuminating the noncoding genome in cancer. Nature Cancer, 2020, 1, 864-872.	5.7	37
130	Multi-Omics Analysis Identifies MGA as a Negative Regulator of the MYC Pathway in Lung Adenocarcinoma. Molecular Cancer Research, 2020, 18, 574-584.	1.5	33
131	Identification and Characterization of Oncogenic <i>SOS1</i> Mutations in Lung Adenocarcinoma. Molecular Cancer Research, 2019, 17, 1002-1012.	1.5	32
132	Kinase Domain Activation of FGFR2 Yields High-Grade Lung Adenocarcinoma Sensitive to a Pan-FGFR Inhibitor in a Mouse Model of NSCLC. Cancer Research, 2014, 74, 4676-4684.	0.4	31
133	NSCLC Driven by $\langle i \rangle$ DDR2 $\langle i \rangle$ Mutation Is Sensitive to Dasatinib and JQ1 Combination Therapy. Molecular Cancer Therapeutics, 2015, 14, 2382-2389.	1.9	29
134	Pooled Genomic Screens Identify Anti-apoptotic Genes as Targetable Mediators of Chemotherapy Resistance in Ovarian Cancer. Molecular Cancer Research, 2019, 17, 2281-2293.	1.5	29
135	Metagenomic Characterization of Microbial Communities In Situ Within the Deeper Layers of the Ileum in Crohn's Disease. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 563-566.e5.	2.3	23
136	Identification of an "Exceptional Responder―Cell Line to MEK1 Inhibition: Clinical Implications for MEK-Targeted Therapy. Molecular Cancer Research, 2016, 14, 207-215.	1.5	23
137	Antigen identification for HLA class I– and HLA class II–restricted T cell receptors using cytokine-capturing antigen-presenting cells. Science Immunology, 2021, 6, .	5.6	22
138	Recurrent allelic deletions of chromosome arms $15q$ and $16q$ in human small cell lung carcinomas., $2000, 27, 323-331.$		21
139	Malawi Polyomavirus Is a Prevalent Human Virus That Interacts with Known Tumor Suppressors. Journal of Virology, 2015, 89, 857-862.	1.5	21
140	Quantification of aneuploidy in targeted sequencing data using ASCETS. Bioinformatics, 2021, 37, 2461-2463.	1.8	21
141	Molecular Characterization and Therapeutic Targeting of Colorectal Cancers Harboring Receptor Tyrosine Kinase Fusions. Clinical Cancer Research, 2021, 27, 1695-1705.	3.2	19
142	Optimization of PDE3A Modulators for SLFN12-Dependent Cancer Cell Killing. ACS Medicinal Chemistry Letters, 2019, 10, 1537-1542.	1.3	17
143	Patterns of chromosome 18 loss of heterozygosity in multifocal ileal neuroendocrine tumors. Genes Chromosomes and Cancer, 2020, 59, 535-539.	1.5	16
144	Whole-genome characterization of lung adenocarcinomas lacking alterations in the RTK/RAS/RAF pathway. Cell Reports, 2021, 34, 108707.	2.9	16

#	Article	IF	Citations
145	Pan-ERBB kinase inhibition augments CDK4/6 inhibitor efficacy in oesophageal squamous cell carcinoma. Gut, 2022, 71, 665-675.	6.1	15
146	Distinct pathways affected by menin versus MLL1/MLL2 in MLL-rearranged acute myeloid leukemia. Experimental Hematology, 2019, 69, 37-42.	0.2	13
147	Mechanistic insights into cancer cell killing through interaction of phosphodiesterase 3A and schlafen family member 12. Journal of Biological Chemistry, 2020, 295, 3431-3446.	1.6	12
148	Functional Genomic Analysis of <i>CDK4</i> and <i>CDK6</i> Gene Dependency across Human Cancer Cell Lines. Cancer Research, 2022, 82, 2171-2184.	0.4	12
149	Kmt2a cooperates with menin to suppress tumorigenesis in mouse pancreatic islets. Cancer Biology and Therapy, 2016, 17, 1274-1281.	1.5	11
150	Comprehensive metagenomic analysis of blastic plasmacytoid dendritic cell neoplasm. Blood Advances, 2020, 4, 1006-1011.	2.5	10
151	Pugh et al. reply. Nature, 2015, 520, E12-E14.	13.7	8
152	Autophosphorylation of the carboxylâ€terminal domain is not required for oncogenic transformation by lungâ€cancer derived <scp>EGFR</scp> mutants. International Journal of Cancer, 2018, 143, 679-685.	2.3	8
153	Long-read sequencing reveals complex patterns of wraparound transcription in polyomaviruses. PLoS Pathogens, 2022, 18, e1010401.	2.1	8
154	An international report on bacterial communities in esophageal squamous cell carcinoma. International Journal of Cancer, 2022, 151, 1947-1959.	2.3	7
155	Human genetic variation and disease. Lancet, The, 2003, 362, 259-260.	6.3	5
156	Haplotype-resolved germline and somatic alterations in renal medullary carcinomas. Genome Medicine, 2021, 13, 114.	3.6	5
157	Mechanistic Insights into Transmissible Cancers of Mammals. Cancer Cell, 2018, 33, 543-544.	7.7	4
158	Bacterial invaders drive CRC progression. Science Signaling, 2020, 13, .	1.6	3
159	High-Throughput Sequence Analysis of the Tyrosine Kinome in Acute Myeloid Leukemia Blood, 2007, 110, 886-886.	0.6	3
160	Circulating Tumor DNA Provides a Sneak Peek into Treatment Responses in Non–Small Cell Lung Cancer. Cancer Research, 2019, 79, 1038-1040.	0.4	2
161	SF3B1 Mutation Alters The Selection Of 3' RNA Splice Sites In Chronic Lymphocytic Leukemia. Blood, 2013, 122, 117-117.	0.6	2
162	Next-Generation Sequencing for the Identification of Transplantation-Associated Pathogens. Blood, 2012, 120, LBA-4-LBA-4.	0.6	1

#	Article	IF	Citations
163	The Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 5-5.	0.6	1
164	Oncogenic ARAF as a new driver in lung adenocarcinoma Journal of Clinical Oncology, 2014, 32, 11034-11034.	0.8	1
165	Distinct MET alterations to induce a common phenotype and to define a MET-driven subset of papillary RCC: Results from the Cancer Genome Atlas (TCGA) Kidney Renal Papillary (KIRP) Working Group Journal of Clinical Oncology, 2015, 33, 4521-4521.	0.8	1
166	Genomic Evolution in a Patient With Lung Adenocarcinoma With a Germline EGFR T790M Mutation. JTO Clinical and Research Reports, 2021, 2, 100146.	0.6	0
167	Large-Scale CLL Genome Analysis Reveals Novel Cancer Genes, Including SF3B1. Blood, 2011, 118, 463-463.	0.6	O
168	High Throughput Sequencing-Based Pathogen Discovery In Multiple Myeloma. Blood, 2013, 122, 5322-5322.	0.6	0
169	Comprehensive Genetic Interrogation of Circulating Multiple Myeloma Cells at Single Cell Resolution. Blood, 2016, 128, 800-800.	0.6	O
170	Bifidobacterium Genus in Colorectal Carcinoma Tissue in relation to Tumor Characteristics and Patient Survival. FASEB Journal, 2018, 32, 407.3.	0.2	0
171	Abstract 3890: Sequencing of 888 pediatric solid tumors informs precision oncology trial design and data sharing initiatives in pediatric cancer. Cancer Research, 2022, 82, 3890-3890.	0.4	0
172	Abstract 2151: Identification and proteogenomic characterization of novel lung adenocarcinoma subtypes with therapeutic relevance. Cancer Research, 2022, 82, 2151-2151.	0.4	O