List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6766100/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Engineering of regulatory T cells by means of mRNA electroporation in a GMP-compliant manner.<br>Cytotherapy, 2022, , .                                                                                                                          | 0.7  | 4         |
| 2  | Anti-Tumor Potency of Short-Term Interleukin-15 Dendritic Cells Is Potentiated by In Situ Silencing of<br>Programmed-Death Ligands. Frontiers in Immunology, 2022, 13, 734256.                                                                   | 4.8  | 2         |
| 3  | Two for one: targeting BCMA and CD19 in B-cell malignancies with off-the-shelf dual-CAR NK-92 cells.<br>Journal of Translational Medicine, 2022, 20, 124.                                                                                        | 4.4  | 21        |
| 4  | Luminescent HumanÂiPSC-Derived Neurospheroids Enable Modeling of Neurotoxicity After<br>Oxygen–glucose Deprivation. Neurotherapeutics, 2022, 19, 550-569.                                                                                        | 4.4  | 5         |
| 5  | Safety and Efficacy of Antibiotic De-escalation and Discontinuation in High-Risk Hematological<br>Patients With Febrile Neutropenia: A Single-Center Experience. Open Forum Infectious Diseases, 2022, 9,<br>ofab624.                            | 0.9  | 21        |
| 6  | Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncolmmunology, 2022, 11, .                                                                                                                                                     | 4.6  | 54        |
| 7  | Functional consequences of a close encounter between microglia and brain-infiltrating monocytes during CNS pathology and repair. Journal of Leukocyte Biology, 2021, 110, 89-106.                                                                | 3.3  | 6         |
| 8  | Murine induced pluripotent stem cellâ€derived neuroimmune cell culture models emphasize opposite<br>immuneâ€effector functions of interleukin 13â€primed microglia and macrophages in terms of<br>neuroimmune toxicity. Glia, 2021, 69, 326-345. | 4.9  | 4         |
| 9  | Antigen-Specific Treatment Modalities in MS: The Past, the Present, and the Future. Frontiers in<br>Immunology, 2021, 12, 624685.                                                                                                                | 4.8  | 15        |
| 10 | The Ins and Outs of Messenger RNA Electroporation for Physical Gene Delivery in Immune Cell-Based Therapy. Pharmaceutics, 2021, 13, 396.                                                                                                         | 4.5  | 18        |
| 11 | Immunoglobin G/total antibody testing for SARS-CoV-2: A prospective cohort study of ambulatory patients and health care workers in two Belgian oncology units comparing three commercial tests. European Journal of Cancer, 2021, 148, 328-339.  | 2.8  | 14        |
| 12 | A systematic review on poly(I:C) and poly-ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 213.                                                      | 8.6  | 42        |
| 13 | Transmigration across a Steady-State Blood–Brain Barrier Induces Activation of Circulating Dendritic<br>Cells Partly Mediated by Actin Cytoskeletal Reorganization. Membranes, 2021, 11, 700.                                                    | 3.0  | 6         |
| 14 | Tripleâ€negative breast cancer—Role of immunology: A systemic review. Breast Journal, 2020, 26, 995-999.                                                                                                                                         | 1.0  | 36        |
| 15 | Absence of BCL-2 Expression Identifies a Subgroup of AML with Distinct Phenotypic, Molecular, and<br>Clinical Characteristics. Journal of Clinical Medicine, 2020, 9, 3090.                                                                      | 2.4  | 8         |
| 16 | The immunologic aspects in hormone receptor positive breast cancer. Cancer Treatment and Research Communications, 2020, 25, 100207.                                                                                                              | 1.7  | 4         |
| 17 | Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma. Journal of Hematology and Oncology, 2020, 13, 164.                                                                                                                  | 17.0 | 88        |
| 18 | SARS-CoV-2 and cancer: Are they really partners in crime?. Cancer Treatment Reviews, 2020, 89, 102068.                                                                                                                                           | 7.7  | 60        |

| #  | Article                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | HLA Class II Genotype Does Not Affect the Myelin Responsiveness of Multiple Sclerosis Patients. Cells, 2020, 9, 2703.                                                                                                                                                                               | 4.1 | Ο         |
| 20 | Rapid Assessment of Functional Avidity of Tumor-Specific T Cell Receptors Using an Antigen-Presenting<br>Tumor Cell Line Electroporated with Full-Length Tumor Antigen mRNA. Cancers, 2020, 12, 256.                                                                                                | 3.7 | 12        |
| 21 | Ribonucleic Acid Engineering of Dendritic Cells for Therapeutic Vaccination: Ready â€~N Able to Improve<br>Clinical Outcome?. Cancers, 2020, 12, 299.                                                                                                                                               | 3.7 | 2         |
| 22 | Neuroprotective modulation of microglia effector functions following priming with interleukin 4<br>and 13: current limitations in understanding their mode-of-action. Brain, Behavior, and Immunity, 2020,<br>88, 856-866.                                                                          | 4.1 | 30        |
| 23 | Mycosis fungoides of the vulva. İstanbul Kuzey Klinikleri, 2020, 8, 101-105.                                                                                                                                                                                                                        | 0.3 | Ο         |
| 24 | Clinical and immunological control of experimental autoimmune encephalomyelitis by tolerogenic dendritic cells loaded with MOG-encoding mRNA. Journal of Neuroinflammation, 2019, 16, 167.                                                                                                          | 7.2 | 20        |
| 25 | Chimeric Antigen Receptor-Modified T Cell Therapy in Multiple Myeloma: Beyond B Cell Maturation<br>Antigen. Frontiers in Immunology, 2019, 10, 1613.                                                                                                                                                | 4.8 | 70        |
| 26 | CD56 Homodimerization and Participation in Anti-Tumor Immune Effector Cell Functioning: A Role for<br>Interleukin-15. Cancers, 2019, 11, 1029.                                                                                                                                                      | 3.7 | 7         |
| 27 | Murine iPSC-derived microglia and macrophage cell culture models recapitulate distinct phenotypical and functional properties of classical and alternative neuro-immune polarisation. Brain, Behavior, and Immunity, 2019, 82, 406-421.                                                             | 4.1 | 19        |
| 28 | Dendritic Cell-Based and Other Vaccination Strategies for Pediatric Cancer. Cancers, 2019, 11, 1396.                                                                                                                                                                                                | 3.7 | 13        |
| 29 | Interruption or Discontinuation of Tyrosine Kinase Inhibitor Treatment in Chronic Myeloid Leukaemia:<br>A Retrospective Cohort Study (SPARKLE) in Belgium. Acta Haematologica, 2019, 142, 197-207.                                                                                                  | 1.4 | 6         |
| 30 | Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. Journal of Clinical Medicine, 2019, 8, 579.                                                                                                                                                                                           | 2.4 | 48        |
| 31 | COMPARISON OF THE POWER OF PROCALCITONIN AND C-REACTIVE PROTEIN TO DISCRIMINATE BETWEEN<br>DIFFERENT AETIOLOGIES OF FEVER IN PROLONGED PROFOUND NEUTROPENIA: A SINGLE-CENTRE<br>PROSPECTIVE OBSERVATIONAL STUDY Mediterranean Journal of Hematology and Infectious Diseases,<br>2019. 11. e2019023. | 1.3 | 7         |
| 32 | Analysis of von Willebrand Disease in the South Moravian Population (Czech Republic): Results from the BRNO-VWD Study. Thrombosis and Haemostasis, 2019, 119, 594-605.                                                                                                                              | 3.4 | 5         |
| 33 | Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol<br>for two phase I clinical trials comparing intradermal and intranodal cell administration. BMJ Open,<br>2019, 9, e030309.                                                                     | 1.9 | 63        |
| 34 | Bone marrow histology in CALR mutated thrombocythemia and myelofibrosis: results from two cross sectional studies in 70 newly diagnosed JAK2/MPL wild type thrombocythemia patients. , 2019, 2, 064-078.                                                                                            |     | 0         |
| 35 | To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2018, 77, 178-192.                                                                                                                                           | 1.7 | 42        |
| 36 | Poly(I:C) primes primary human glioblastoma cells for an immune response invigorated by PD-L1<br>blockade. Oncolmmunology, 2018, 7, e1407899.                                                                                                                                                       | 4.6 | 38        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Efficient and Non-genotoxic RNA-Based Engineering of Human T Cells Using Tumor-Specific T Cell<br>Receptors With Minimal TCR Mispairing. Frontiers in Immunology, 2018, 9, 2503.                                                     | 4.8 | 29        |
| 38 | Shuttling Tolerogenic Dendritic Cells across the Blood–Brain Barrier In Vitro via the Introduction<br>of De Novo C–C Chemokine Receptor 5 Expression Using Messenger RNA Electroporation. Frontiers in<br>Immunology, 2018, 8, 1964. | 4.8 | 8         |
| 39 | Interleukin-15-Cultured Dendritic Cells Enhance Anti-Tumor Gamma Delta T Cell Functions through<br>IL-15 Secretion. Frontiers in Immunology, 2018, 9, 658.                                                                           | 4.8 | 38        |
| 40 | A versatile T cell-based assay to assess therapeutic antigen-specific PD-1-targeted approaches.<br>Oncotarget, 2018, 9, 27797-27808.                                                                                                 | 1.8 | 17        |
| 41 | Immune remodelling of stromal cell grafts in the central nervous system: therapeutic inflammation<br>or (harmless) side-effect?. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2846-2852.                       | 2.7 | 9         |
| 42 | Concise Review: Innate and Adaptive Immune Recognition of Allogeneic and Xenogeneic Cell<br>Transplants in the Central Nervous System. Stem Cells Translational Medicine, 2017, 6, 1434-1441.                                        | 3.3 | 34        |
| 43 | Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid<br>leukemia. Blood, 2017, 130, 1713-1721.                                                                                         | 1.4 | 170       |
| 44 | Monocyte-Derived Dendritic Cells with Silenced PD-1 Ligands and Transpresenting Interleukin-15<br>Stimulate Strong Tumor-Reactive T-cell Expansion. Cancer Immunology Research, 2017, 5, 710-715.                                    | 3.4 | 36        |
| 45 | Adult acute precursor B-cell lymphoblastic leukemia presenting as hypercalcemia and osteolytic bone<br>lesions. Experimental Hematology and Oncology, 2017, 6, 9.                                                                    | 5.0 | 11        |
| 46 | Increased Transendothelial Transport of CCL3 Is Insufficient to Drive Immune Cell Transmigration<br>through the Blood–Brain Barrier under Inflammatory Conditions In Vitro. Mediators of<br>Inflammation, 2017, 2017, 1-11.          | 3.0 | 16        |
| 47 | Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. Oncotarget, 2017, 8, 13652-13665.                                                                                                            | 1.8 | 18        |
| 48 | Immunomodulatory Effects of 1,25-Dihydroxyvitamin D3on Dendritic Cells Promote Induction of T Cell Hyporesponsiveness to Myelin-Derived Antigens. Journal of Immunology Research, 2016, 2016, 1-16.                                  | 2.2 | 18        |
| 49 | 12 Weeks of Combined Endurance and Resistance Training Reduces Innate Markers of Inflammation in a<br>Randomized Controlled Clinical Trial in Patients with Multiple Sclerosis. Mediators of Inflammation,<br>2016, 2016, 1-13.      | 3.0 | 46        |
| 50 | GMP-Grade mRNA Electroporation of Dendritic Cells for Clinical Use. Methods in Molecular Biology, 2016, 1428, 139-150.                                                                                                               | 0.9 | 12        |
| 51 | The Toughest Nut to Crack: Will We Ever Have a Preventive and Effective HIV-1 Vaccine?. Molecular Therapy, 2016, 24, 1896-1897.                                                                                                      | 8.2 | 0         |
| 52 | Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis,<br>oligodendrocyte loss and demyelination in the cuprizone mouse model. Journal of<br>Neuroinflammation, 2016, 13, 288.        | 7.2 | 34        |
| 53 | Altered molecular expression of TLR-signaling pathways affects the steady-state release of IL-12p70 and IFN-α in patients with relapsing-remitting multiple sclerosis. Innate Immunity, 2016, 22, 266-273.                           | 2.4 | 9         |
| 54 | Generation and Cryopreservation of Clinical Grade Wilms' Tumor 1 mRNA-Loaded Dendritic Cell<br>Vaccines for Cancer Immunotherapy. Methods in Molecular Biology, 2016, 1393, 27-35.                                                   | 0.9 | 6         |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia, 2016, 64, 2181-2200.                                                                                     | 4.9  | 53        |
| 56 | In Vivo Interleukin-13-Primed Macrophages Contribute to Reduced Alloantigen-Specific T Cell<br>Activation and Prolong Immunological Survival of Allogeneic Mesenchymal Stem Cell Implants. Stem<br>Cells, 2016, 34, 1971-1984.                         | 3.2  | 17        |
| 57 | Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human gamma delta T cells. Journal of Hematology and Oncology, 2016, 9, 101.                                                                     | 17.0 | 96        |
| 58 | Cryopreserved vitamin D3-tolerogenic dendritic cells pulsed with autoantigens as a potential therapy for multiple sclerosis patients. Journal of Neuroinflammation, 2016, 13, 113.                                                                     | 7.2  | 42        |
| 59 | CMRF-56 <sup>+</sup> blood dendritic cells loaded with mRNA induce effective antigen-specific cytotoxic T-lymphocyte responses. Oncolmmunology, 2016, 5, e1168555.                                                                                     | 4.6  | 17        |
| 60 | The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells. Oncotarget, 2016, 7, 73960-73970.                                                                                           | 1.8  | 17        |
| 61 | Optical Coherence Tomography in Cultivated Limbal Epithelial Stem Cell Transplantation Surgery.<br>Asia-Pacific Journal of Ophthalmology, 2015, 4, 339-345.                                                                                            | 2.5  | 17        |
| 62 | Early Inflammatory Responses following Cell Grafting in the CNS Trigger Activation of the<br>Subventricular Zone: A Proposed Model of Sequential Cellular Events. Cell Transplantation, 2015, 24,<br>1481-1492.                                        | 2.5  | 19        |
| 63 | Distinct In Vitro Properties of Embryonic and Extraembryonic Fibroblast-Like Cells are Reflected in their in Vivo Behavior following Grafting in the Adult Mouse Brain. Cell Transplantation, 2015, 24, 223-233.                                       | 2.5  | 6         |
| 64 | Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner. PLoS ONE, 2015, 10, e0123340.                                                                                                     | 2.5  | 47        |
| 65 | Rapid Exercise-Induced Mobilization of Dendritic Cells Is Potentially Mediated by a Flt3L- and MMP-9-Dependent Process in Multiple Sclerosis. Mediators of Inflammation, 2015, 2015, 1-10.                                                             | 3.0  | 8         |
| 66 | Cuprizoneâ€induced demyelination and demyelinationâ€associated inflammation result in different<br>proton magnetic resonance metabolite spectra. NMR in Biomedicine, 2015, 28, 505-513.                                                                | 2.8  | 20        |
| 67 | Induction of Cytomegalovirus-Specific T Cell Responses in Healthy Volunteers and Allogeneic Stem<br>Cell Recipients Using Vaccination With Messenger RNA–Transfected Dendritic Cells. Transplantation,<br>2015, 99, 120-127.                           | 1.0  | 36        |
| 68 | OP043D CULTURE OF MURINE NEURAL STEM CELLS ON DECELLULARIZED MOUSE BRAIN SECTIONS.<br>Neuro-Oncology, 2015, 17, viii16.4-viii16.                                                                                                                       | 1.2  | 1         |
| 69 | Changing Concepts of Diagnostic Criteria of Myeloproliferative Disorders and the Molecular<br>Etiology and Classification of Myeloproliferative Neoplasms: From Dameshek 1950 to Vainchenker 2005<br>and Beyond. Acta Haematologica, 2015, 133, 36-51. | 1.4  | 39        |
| 70 | Bone matrix vesicle-bound alkaline phosphatase for the assessment of peripheral blood admixture to human bone marrow aspirates. Clinica Chimica Acta, 2015, 446, 253-260.                                                                              | 1.1  | 6         |
| 71 | Engineering monocyte-derived dendritic cells to secrete interferon-α enhances their ability to promote adaptive and innate anti-tumor immune effector functions. Cancer Immunology, Immunotherapy, 2015, 64, 831-842.                                  | 4.2  | 27        |
| 72 | Aspirin-Responsive, Migraine-Like Transient Cerebral and Ocular Ischemic Attacks and Erythromelalgia<br>in JAK2 <sup>V617F</sup> -Positive Essential Thrombocythemia and Polycythemia Vera. Acta<br>Haematologica, 2015, 133, 56-63.                   | 1.4  | 26        |

| #  | Article                                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacological Reviews, 2015, 67, 731-753.                                                                                                                                                                                            | 16.0 | 129       |
| 74 | 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials, 2015, 41, 122-131.                                                                                                                                                                                           | 11.4 | 75        |
| 75 | Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget, 2015, 6, 44123-44133.                                                                                                                             | 1.8  | 39        |
| 76 | Distinct spatial distribution of microglia and macrophages following mesenchymal stem cell implantation in mouse brain. Immunology and Cell Biology, 2014, 92, 650-658.                                                                                                                                   | 2.3  | 30        |
| 77 | The European Clinical, Molecular, and Pathological (ECMP) Criteria and the 2007/2008 Revisions of the World Health Organization for the Diagnosis, Classification, and Staging of Prefibrotic Myeloproliferative Neoplasms Carrying the JAK2V617F Mutation. Turkish Journal of Haematology, 2014, 239-254 | 0.5  | 5         |
| 78 | Clinical and microbiological impact of discontinuation of fluoroquinolone prophylaxis in patients with prolonged profound neutropenia. European Journal of Haematology, 2014, 93, 302-308.                                                                                                                | 2.2  | 25        |
| 79 | Circulating dendritic cells of multiple sclerosis patients are proinflammatory and their frequency is correlated with MS-associated genetic risk factors. Multiple Sclerosis Journal, 2014, 20, 548-557.                                                                                                  | 3.0  | 31        |
| 80 | Electroporating Human Corneal Epithelial Cells With Interleukin 10 and Fas Ligand pDNA. Asia-Pacific<br>Journal of Ophthalmology, 2014, 3, 56-63.                                                                                                                                                         | 2.5  | 0         |
| 81 | Results of a phase I/II clinical trial: standardized, non-xenogenic, cultivated limbal stem cell transplantation. Journal of Translational Medicine, 2014, 12, 58.                                                                                                                                        | 4.4  | 96        |
| 82 | Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. Neuroscience and Biobehavioral Reviews, 2014, 47, 485-505.                                                                                                                                 | 6.1  | 352       |
| 83 | High-Dose Cytarabine in Induction Treatment Improves the Outcome of Adult Patients Younger Than<br>Age 46 Years With Acute Myeloid Leukemia: Results of the EORTC-GIMEMA AML-12 Trial. Journal of<br>Clinical Oncology, 2014, 32, 219-228.                                                                | 1.6  | 145       |
| 84 | Except for C-C chemokine receptor 7 expression, monocyte-derived dendritic cells from patients with<br>multiple sclerosis are functionally comparable to those of healthy controls. Cytotherapy, 2014, 16,<br>1024-1030.                                                                                  | 0.7  | 8         |
| 85 | Clinical use of dendritic cells for cancer therapy. Lancet Oncology, The, 2014, 15, e257-e267.                                                                                                                                                                                                            | 10.7 | 565       |
| 86 | Histological Characterization and Quantification of Cellular Events Following Neural and<br>Fibroblast(-Like) Stem Cell Grafting in Healthy and Demyelinated CNS Tissue. Methods in Molecular<br>Biology, 2014, 1213, 265-283.                                                                            | 0.9  | 7         |
| 87 | Vaccination with WT1 mRNA-Electroporated Dendritic Cells: Report of Clinical Outcome in 66 Cancer<br>Patients. Blood, 2014, 124, 310-310.                                                                                                                                                                 | 1.4  | 5         |
| 88 | Quantitative and phenotypic analysis of mesenchymal stromal cell graft survival and recognition by microglia and astrocytes in mouse brain. Immunobiology, 2013, 218, 696-705.                                                                                                                            | 1.9  | 37        |
| 89 | mRNA Electroporation as a Tool for Immunomonitoring. Methods in Molecular Biology, 2013, 969, 293-303.                                                                                                                                                                                                    | 0.9  | 5         |
| 90 | Sequential Combination of Gemtuzumab Ozogamicin and Standard Chemotherapy in Older Patients<br>With Newly Diagnosed Acute Myeloid Leukemia: Results of a Randomized Phase III Trial by the EORTC<br>and GIMEMA Consortium (AML-17). Journal of Clinical Oncology, 2013, 31, 4424-4430.                    | 1.6  | 78        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Quantitative Evaluation of Stem Cell Grafting in the Central Nervous System of Mice by In Vivo<br>Bioluminescence Imaging and Postmortem Multicolor Histological Analysis. Methods in Molecular<br>Biology, 2013, 1052, 125-141. | 0.9 | 6         |
| 92  | Tackling the physiological barriers for successful mesenchymal stem cell transplantation into the central nervous system. Stem Cell Research and Therapy, 2013, 4, 101.                                                          | 5.5 | 23        |
| 93  | Interleukin-15 dendritic cells as vaccine candidates for cancer immunotherapy. Human Vaccines and<br>Immunotherapeutics, 2013, 9, 1956-1961.                                                                                     | 3.3 | 28        |
| 94  | Interferon Î $\pm$ may be back on track to treat acute myeloid leukemia. OncoImmunology, 2013, 2, e23619.                                                                                                                        | 4.6 | 33        |
| 95  | Dendritic Cells: Cellular Mediators for Immunological Tolerance. Clinical and Developmental<br>Immunology, 2013, 2013, 1-8.                                                                                                      | 3.3 | 56        |
| 96  | Injury-Dependent Retention of Intraportally Administered Mesenchymal Stromal Cells Following<br>Partial Hepatectomy of Steatotic Liver Does Not Lead to Improved Liver Recovery. PLoS ONE, 2013, 8,<br>e69092.                   | 2.5 | 8         |
| 97  | Neuroendocrine Immunoregulation in Multiple Sclerosis. Clinical and Developmental Immunology, 2013, 2013, 1-23.                                                                                                                  | 3.3 | 46        |
| 98  | Lymphangiogenesis May Play a Role in Cultivated Limbal Stem Cell Transplant Rejection. Ocular<br>Immunology and Inflammation, 2012, 20, 381-383.                                                                                 | 1.8 | 3         |
| 99  | Interleukin-12p70 Expression by Dendritic Cells of HIV-1-Infected Patients Fails to Stimulategag-Specific Immune Responses. Clinical and Developmental Immunology, 2012, 2012, 1-11.                                             | 3.3 | 5         |
| 100 | Optimizing Dendritic Cell-Based Immunotherapy: Tackling the Complexity of Different Arms of the<br>Immune System. Mediators of Inflammation, 2012, 2012, 1-14.                                                                   | 3.0 | 42        |
| 101 | NK Cells: Key to Success of DC-Based Cancer Vaccines?. Oncologist, 2012, 17, 1256-1270.                                                                                                                                          | 3.7 | 76        |
| 102 | Active Specific Immunotherapy Targeting the Wilms' Tumor Protein 1 (WT1) for Patients with<br>Hematological Malignancies and Solid Tumors: Lessons from Early Clinical Trials. Oncologist, 2012, 17,<br>250-259.                 | 3.7 | 75        |
| 103 | Multimodal Imaging of Stem Cell Implantation in the Central Nervous System of Mice. Journal of Visualized Experiments, 2012, , e3906.                                                                                            | 0.3 | 6         |
| 104 | Cell Type-Associated Differences in Migration, Survival, and Immunogenicity following Grafting in CNS Tissue. Cell Transplantation, 2012, 21, 1867-1881.                                                                         | 2.5 | 36        |
| 105 | mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. Aids, 2012, 26, F1-F12.                                                                                              | 2.2 | 88        |
| 106 | RHAMM/HMMR (CD168) is not an ideal target antigen for immunotherapy of acute myeloid leukemia.<br>Haematologica, 2012, 97, 1539-1547.                                                                                            | 3.5 | 32        |
| 107 | Autologous T cells on the attack against AML. Blood, 2012, 120, 1151-1152.                                                                                                                                                       | 1.4 | 6         |
| 108 | Dendritic cell vaccination in acute myeloid leukemia. Cytotherapy, 2012, 14, 647-656.                                                                                                                                            | 0.7 | 49        |

| #   | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Stem cell therapy for multiple sclerosis: preclinical evidence beyond all doubt?. Regenerative<br>Medicine, 2012, 7, 245-259.                                                                                                                                              | 1.7 | 16        |
| 110 | Spatiotemporal evolution of early innate immune responses triggered by neural stem cell grafting.<br>Stem Cell Research and Therapy, 2012, 3, 56.                                                                                                                          | 5.5 | 34        |
| 111 | Human Tears Reveal Insights into Corneal Neovascularization. PLoS ONE, 2012, 7, e36451.                                                                                                                                                                                    | 2.5 | 34        |
| 112 | Current Challenges for the Advancement of Neural Stem Cell Biology and Transplantation Research.<br>Stem Cell Reviews and Reports, 2012, 8, 262-278.                                                                                                                       | 5.6 | 75        |
| 113 | Open label phase I/II study of Wilms' tumor gene 1 (WT1) mRNA-transfected autologous dendritic cell vaccination in patients with solid tumors Journal of Clinical Oncology, 2012, 30, e13051-e13051.                                                                       | 1.6 | 2         |
| 114 | Interleukin-15-Induced CD56+ Myeloid Dendritic Cells Combine Potent Tumor Antigen Presentation with Direct Tumoricidal Potential. PLoS ONE, 2012, 7, e51851.                                                                                                               | 2.5 | 48        |
| 115 | Poly(I:C) Enhances the Susceptibility of Leukemic Cells to NK Cell Cytotoxicity and Phagocytosis by DC. PLoS ONE, 2011, 6, e20952.                                                                                                                                         | 2.5 | 31        |
| 116 | Clinical Potential of Intravenous Neural Stem Cell Delivery for Treatment of Neuroinflammatory<br>Disease in Mice?. Cell Transplantation, 2011, 20, 851-870.                                                                                                               | 2.5 | 45        |
| 117 | Labeling of Luciferase/eCFP-Expressing Bone Marrow-Derived Stromal Cells with Fluorescent<br>Micron-Sized Iron Oxide Particles Improves Quantitative and Qualitative Multimodal Imaging of<br>Cellular Grafts In Vivo. Molecular Imaging and Biology, 2011, 13, 1133-1145. | 2.6 | 21        |
| 118 | Stimulation of antiviral cellular immune responses by therapeutic vaccination of HIV-1-infected patients with dendritic cells transfected with gag, tat, rev and nef mRNA. Retrovirology, 2011, 8, P76.                                                                    | 2.0 | 0         |
| 119 | Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons?. Immunotherapy, 2011, 3, 1203-1222.                                                                                                                                                  | 2.0 | 34        |
| 120 | Dendritic cell vaccine therapy for acute myeloid leukemia: Questions and answers. Hum Vaccin, 2011, 7, 579-584.                                                                                                                                                            | 2.4 | 30        |
| 121 | Recognition of cellular implants by the brain's innate immune system. Immunology and Cell Biology, 2011, 89, 511-516.                                                                                                                                                      | 2.3 | 23        |
| 122 | Role of Dendritic Cells in HIV-Immunotherapy. Current HIV Research, 2010, 8, 310-322.                                                                                                                                                                                      | 0.5 | 17        |
| 123 | The Toll-like receptor 7/8 agonist resiquimod greatly increases the immunostimulatory capacity of human acute myeloid leukemia cells. Cancer Immunology, Immunotherapy, 2010, 59, 35-46.                                                                                   | 4.2 | 51        |
| 124 | The effect of apoptotic cells on virus-specific immune responses detected using IFN-gamma ELISPOT.<br>Journal of Immunological Methods, 2010, 357, 51-54.                                                                                                                  | 1.4 | 12        |
| 125 | Induction of complete remission of acute myeloid leukaemia by pegylated interferonâ€Î±â€2a in a patient<br>with transformed primary myelofibrosis. British Journal of Haematology, 2010, 149, 152-155.                                                                     | 2.5 | 27        |
| 126 | Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1<br>antigen-targeted dendritic cell vaccination. Proceedings of the National Academy of Sciences of the<br>United States of America, 2010, 107, 13824-13829.                     | 7.1 | 341       |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Standardized Limbal Epithelial Stem Cell Graft Generation and Transplantation. Tissue Engineering -<br>Part C: Methods, 2010, 16, 921-927.                                                                                                            | 2.1 | 54        |
| 128 | Viral infections following allogeneic stem cell transplantation: how to cure the cure?. Leukemia and Lymphoma, 2010, 51, 965-966.                                                                                                                     | 1.3 | 4         |
| 129 | WT1-Targeted Dendritic Cell Vaccination as A Post-Remission Treatment to Prevent Full Relapse In<br>Acute Myeloid Leukemia. Blood, 2010, 116, 16-16.                                                                                                  | 1.4 | 6         |
| 130 | Immunological response after therapeutic vaccination with WT1 mRNA-loaded dendritic cells in end-stage endometrial carcinoma. Anticancer Research, 2010, 30, 3709-14.                                                                                 | 1.1 | 20        |
| 131 | Recessive von Willebrand Disease Type 2 Normandy: Variable Expression of Mild Hemophilia and VWD<br>Type 1. Acta Haematologica, 2009, 121, 119-127.                                                                                                   | 1.4 | 7         |
| 132 | Dominant von Willebrand Disease Type 2M and 2U Are Variable Expressions of One Distinct Disease<br>Entity Caused by Loss-of-Function Mutations in the A1 Domain of the von Willebrand Factor Gene. Acta<br>Haematologica, 2009, 121, 145-153.         | 1.4 | 16        |
| 133 | Laboratory Diagnosis and Molecular Basis of Mild von Willebrand Disease Type 1. Acta Haematologica, 2009, 121, 85-97.                                                                                                                                 | 1.4 | 8         |
| 134 | Managing Patients with von Willebrand Disease Type 1, 2 and 3 with Desmopressin and von Willebrand<br>Factor-Factor VIII Concentrate in Surgical Settings. Acta Haematologica, 2009, 121, 167-176.                                                    | 1.4 | 22        |
| 135 | Immunotherapy of Acute Myeloid Leukemia: Current Approaches. Oncologist, 2009, 14, 240-252.                                                                                                                                                           | 3.7 | 47        |
| 136 | Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following<br>implantation in the central nervous system of syngeneic immunocompetent mice. BMC Biotechnology,<br>2009, 9, 1.                                          | 3.3 | 78        |
| 137 | Allogeneic stromal cell implantation in brain tissue leads to robust microglial activation.<br>Immunology and Cell Biology, 2009, 87, 267-273.                                                                                                        | 2.3 | 35        |
| 138 | Acute myeloid leukemic cell lines loaded with synthetic dsRNA trigger IFN-Î <sup>3</sup> secretion by human NK<br>cells. Leukemia Research, 2009, 33, 539-546.                                                                                        | 0.8 | 11        |
| 139 | Laboratory and Molecular Characteristics of Recessive von Willebrand Disease Type 2C (2A Subtype IIC) of Variable Severity due to Homozygous or Double Heterozygous Mutations in the D1 and D2 Domains. Acta Haematologica, 2009, 121, 111-118.       | 1.4 | 8         |
| 140 | Dendritic Cell-Based Cancer Gene Therapy. Human Gene Therapy, 2009, 20, 1106-1118.                                                                                                                                                                    | 2.7 | 68        |
| 141 | Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. Journal of Translational Medicine, 2009, 7, 109.                                                                                         | 4.4 | 74        |
| 142 | Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety<br>testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy, 2009,<br>11, 653-668.                        | 0.7 | 98        |
| 143 | Laboratory Diagnosis of von Willebrand Disease Type 1/2E (2A Subtype IIE), Type 1 Vicenza and Mild Type 1<br>Caused by Mutations in the D3, D4, B1–B3 and C1–C2 Domains of the von Willebrand Factor Gene. Acta<br>Haematologica, 2009, 121, 128-138. | 1.4 | 21        |
| 144 | Laboratory Diagnosis and Molecular Classification of von Willebrand Disease. Acta Haematologica,<br>2009, 121, 71-84.                                                                                                                                 | 1.4 | 41        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Prevalence, determinants, and outcomes of nonadherence to imatinib therapy in patients with chronic myeloid leukemia: the ADAGIO study. Blood, 2009, 113, 5401-5411.                                              | 1.4 | 540       |
| 146 | Cefepime and mortality. Lancet Infectious Diseases, The, 2009, 9, 585-586.                                                                                                                                        | 9.1 | 1         |
| 147 | The Use of TLR7 and TLR8 Ligands for the Enhancement of Cancer Immunotherapy. Oncologist, 2008, 13, 859-875.                                                                                                      | 3.7 | 192       |
| 148 | Immunogenicity and Antileukemic Activity of Dendritic Cells Electroporated with Wilms' Tumor WT1<br>mRNA: A Phase I/II Trial in Acute Myeloid Leukemia. Blood, 2008, 112, 830-830.                                | 1.4 | 8         |
| 149 | Immunotherapy of hematological malignancies using dendritic cells. Bulletin Du Cancer, 2008, 95, 320-6.                                                                                                           | 1.6 | 10        |
| 150 | Regulatory T Cells and Human Disease. Clinical and Developmental Immunology, 2007, 2007, 1-10.                                                                                                                    | 3.3 | 139       |
| 151 | Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Molecular Immunology, 2007, 44, 3222-3233.                                                            | 2.2 | 59        |
| 152 | Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells,<br>and effector T cells. Journal of Leukocyte Biology, 2007, 82, 1365-1374.                                   | 3.3 | 192       |
| 153 | WHO bone marrow features and European clinical, molecular, and pathological (ECMP) criteria for the diagnosis of myeloproliferative disorders. Leukemia Research, 2007, 31, 1031-1038.                            | 0.8 | 46        |
| 154 | Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell<br>survival and transgene expression after transplantation in rat spinal cord. BMC Biotechnology, 2007,<br>7, 90. | 3.3 | 50        |
| 155 | Expression and localization of CHODLΔE/CHODLfΔE, the soluble isoform of chondrolectin. Cell Biology<br>International, 2007, 31, 1323-1330.                                                                        | 3.0 | 5         |
| 156 | Vaccination of Acute Myeloid Leukemia Patients with Dendritic Cells Electroporated with mRNA<br>Encoding the Wilms' Tumor Protein WT1: A Phase I/II Trial Blood, 2007, 110, 158-158.                              | 1.4 | 2         |
| 157 | mRNA-based gene transfer as a tool for gene and cell therapy. Current Opinion in Molecular<br>Therapeutics, 2007, 9, 423-31.                                                                                      | 2.8 | 61        |
| 158 | Induction of HIV-specific T-cell responses by gag. Retrovirology, 2006, 3, S78.                                                                                                                                   | 2.0 | 0         |
| 159 | Platelet-mediated thrombotic complications in patients with ET: Reversal by aspirin, platelet reduction, and not by coumadin. Blood Cells, Molecules, and Diseases, 2006, 36, 199-205.                            | 1.4 | 26        |
| 160 | Efficient stimulation of HIV-1-specific T cells using dendritic cells electroporated with mRNA encoding autologous HIV-1 Gag and Env proteins. Blood, 2006, 107, 1818-1827.                                       | 1.4 | 56        |
| 161 | Simultaneous Activation of Viral Antigen-specific Memory CD4+ and CD8+ T-cells Using<br>mRNA-electroporated CD40-activated Autologous B-cells. Journal of Immunotherapy, 2006, 29, 512-523.                       | 2.4 | 12        |
| 162 | Cellular Immunotherapy for Cytomegalovirus and HIV-1 Infection. Journal of Immunotherapy, 2006, 29, 107-121.                                                                                                      | 2.4 | 10        |

ZWI N BERNEMAN

| #   | Article                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Gene expression signatures in CD34+-progenitor-derived dendritic cells exposed to the chemical contact allergen nickel sulfate. Toxicology and Applied Pharmacology, 2006, 216, 131-149.                                                                                                 | 2.8 | 33        |
| 164 | The Paradox of Platelet Activation and Impaired Function: Platelet-von Willebrand Factor<br>Interactions, and the Etiology of Thrombotic and Hemorrhagic Manifestations in Essential<br>Thrombocythemia and Polycythemia Vera. Seminars in Thrombosis and Hemostasis, 2006, 32, 589-604. | 2.7 | 139       |
| 165 | Clinical and Laboratory Features, Pathobiology of Platelet-Mediated Thrombosis and Bleeding<br>Complications, and the Molecular Etiology of Essential Thrombocythemia and Polycythemia Vera:<br>Therapeutic Implications. Seminars in Thrombosis and Hemostasis, 2006, 32, 174-207.      | 2.7 | 94        |
| 166 | The 2001 World Health Organization and Updated European Clinical and Pathological Criteria for the<br>Diagnosis, Classification, and Staging of the Philadelphia Chromosome-Negative Chronic<br>Myeloproliferative Disorders. Seminars in Thrombosis and Hemostasis, 2006, 32, 307-340.  | 2.7 | 55        |
| 167 | Guidelines for the Evaluation of Intravenous Desmopressin and von Willebrand Factor/Factor VIII<br>Concentrate in the Treatment and Prophylaxis of Bleedings in von Willebrand Disease Types 1, 2, and 3.<br>Seminars in Thrombosis and Hemostasis, 2006, 32, 636-645.                   | 2.7 | 10        |
| 168 | Cytokine transcript profiling in CD34+-progenitor derived dendritic cells exposed to contact allergens and irritants. Toxicology Letters, 2005, 155, 187-194.                                                                                                                            | 0.8 | 26        |
| 169 | Capacity of CD34+ progenitor-derived dendritic cells to distinguish between sensitizers and irritants.<br>Toxicology Letters, 2005, 156, 377-389.                                                                                                                                        | 0.8 | 25        |
| 170 | Activation of HIV-1-Specific CD8+ and CD4+ Autologous Memory T-Cells by Dendritic Cells and B-Cells<br>Electroporated with mRNA Encoding Consensus or Autologous HIV-1 Proteins Blood, 2005, 106,<br>326-326.                                                                            | 1.4 | 0         |
| 171 | Highly Efficient mRNA-Based Gene Transfer in Feeder-Free Cultured H9 Human Embryonic Stem Cells.<br>Cloning and Stem Cells, 2004, 6, 211-216.                                                                                                                                            | 2.6 | 18        |
| 172 | Immunotargetting of the Wilms' Tumor WT1 Antigen for Dendritic Cell and B-Cell-Based Vaccination of Leukemia Blood, 2004, 104, 2541-2541.                                                                                                                                                | 1.4 | 0         |
| 173 | The Survival of Multiple Myeloma Patients: A Single Institution Study Blood, 2004, 104, 5223-5223.                                                                                                                                                                                       | 1.4 | Ο         |
| 174 | RNA Electroporation as a New Gene Transfer Method in Hematopoietic Progenitor Cells, Mesenchymal Cells and Activated T-Cells Blood, 2004, 104, 5269-5269.                                                                                                                                | 1.4 | 0         |
| 175 | Efficient removal of LoxP-flanked genes by electroporation of Cre-recombinase mRNA. Biochemical and Biophysical Research Communications, 2003, 305, 10-15.                                                                                                                               | 2.1 | 17        |
| 176 | Messenger RNA Electroporation of Human Monocytes, Followed by Rapid In Vitro Differentiation,<br>Leads to Highly Stimulatory Antigen-Loaded Mature Dendritic Cells. Journal of Immunology, 2002, 169,<br>1669-1675.                                                                      | 0.8 | 56        |
| 177 | Response of von Willebrand Factor Parameters to Desmopressin in Patients with Type 1 and Type 2<br>Congenital von Willebrand Disease: Diagnostic and Therapeutic Implications. Seminars in Thrombosis<br>and Hemostasis, 2002, 28, 111-132.                                              | 2.7 | 50        |
| 178 | Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to<br>lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen<br>loading of dendritic cells. Blood, 2001, 98, 49-56.                           | 1.4 | 438       |
| 179 | Efficient generation of stably electrotransfected human hematopoietic cell lines without drug selection by consecutive FACsorting. Cytometry, 2000, 41, 31-35.                                                                                                                           | 1.8 | 17        |
| 180 | Enhancement of TAT-induced transactivation of the HIV-1 LTR by two genomic fragments of HHV-6. ,<br>1996, 50, 20-24.                                                                                                                                                                     |     | 14        |

| #   | Article                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Flow ytometric Analysis of Erythrocytic Blood Group A Antigen Density Profile. Vox Sanguinis, 1991,<br>61, 265-274. | 1.5 | 37        |
| 182 | Flow cytometric analysis of hairy cell leukemia using right-angle light scatter. Cytometry, 1986, 7,<br>217-220.    | 1.8 | 13        |
| 183 | Flow Cytometric Analysis of Erythrocytic D Antigen Density Profile. Vox Sanguinis, 1986, 51, 40-46.                 | 1.5 | 34        |
| 184 | Dendritic Cells in Hematopoietic Stem Cell Transplantation. , 0, , .                                                |     | 0         |