List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6765367/publications.pdf Version: 2024-02-01

		1457	2940
269	38,249	107	189
papers	citations	h-index	g-index
272	272	272	20156
all docs	docs citations	times ranked	citing authors

FENC 7HANC

#	Article	IF	CITATIONS
1	Narrow-bandgap materials for optoelectronics applications. Frontiers of Physics, 2022, 17, 1.	2.4	28
2	Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2022, 122, 1127-1207.	23.0	103
3	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	3.5	9
4	Ultrafast photonics applications of emerging 2D-Xenes beyond graphene. Nanophotonics, 2022, 11, 1261-1284.	2.9	65
5	Nanocomposite hydrogels for biomedical applications. Bioengineering and Translational Medicine, 2022, 7, .	3.9	34
6	Photoelectronic properties and devices of 2D Xenes. Journal of Materials Science and Technology, 2022, 126, 44-59.	5.6	7
7	Recent advances and challenges on dark solitons in fiber lasers. Optics and Laser Technology, 2022, 152, 108116.	2.2	16
8	Recent Advances and Challenges in Ultrafast Photonics Enabled by Metal Nanomaterials. Advanced Optical Materials, 2022, 10, .	3.6	7
9	Gigahertz femtosecond laser-by a novel asymmetric one-dimensional photonic crystal saturable absorber device with defect layer. Nanophotonics, 2022, 11, 2939-2951.	2.9	11
10	Dynamics of broadband photoinduced species and enabled photodetection in MXenes. Nanophotonics, 2022, 11, 3139-3148.	2.9	6
11	Broadband saturable absorption in germanene for mode-locked Yb, Er, and Tm fiber lasers. Nanophotonics, 2022, 11, 3127-3137.	2.9	22
12	Optical-intensity modulators with PbTe thermoelectric nanopowders for ultrafast photonics. Applied Materials Today, 2022, 28, 101546.	2.3	38
13	Demonstration of high-stable self-mode-locking pulses based on self-focusing in fiber lasers. Infrared Physics and Technology, 2022, 125, 104244.	1.3	4
14	Mid-Infrared Optoelectronic Devices Based on Two-Dimensional Materials beyond Graphene: Status and Trends. Nanomaterials, 2022, 12, 2260.	1.9	16
15	Booming development and present advances of two dimensional MXenes for photodetectors. Chemical Engineering Journal, 2021, 403, 126336.	6.6	40
16	Status and Outlook of Metal–Inorganic Semiconductor–Metal Photodetectors. Laser and Photonics Reviews, 2021, 15, .	4.4	67
17	Low-dimensional nanomaterials enabled autoimmune disease treatments: Recent advances, strategies, and future challenges. Coordination Chemistry Reviews, 2021, 432, 213697.	9.5	5
18	Emerging Monoâ€Elemental Bismuth Nanostructures: Controlled Synthesis and Their Versatile Applications. Advanced Functional Materials, 2021, 31, 2007584.	7.8	102

#	Article	IF	CITATIONS
19	Twoâ€Dimensional Materials for Integrated Photonics: Recent Advances and Future Challenges. Small Science, 2021, 1, 2000053.	5.8	56
20	Recent advances in anisotropic two-dimensional materials and device applications. Nano Research, 2021, 14, 897-919.	5.8	69
21	Sensing Applications of Atomically Thin Group IV Carbon Siblings Xenes: Progress, Challenges, and Prospects. Advanced Functional Materials, 2021, 31, 2005957.	7.8	37
22	Recent Advances in Hybridization, Doping, and Functionalization of 2D Xenes. Advanced Functional Materials, 2021, 31, .	7.8	33
23	2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges. Advanced Healthcare Materials, 2021, 10, e2001743.	3.9	88
24	Boron quantum dots all-optical modulator based on efficient photothermal effect. Opto-Electronic Advances, 2021, 4, 200032-200032.	6.4	13
25	Ultraâ€Small 2D PbS Nanoplatelets: Liquidâ€Phase Exfoliation and Emerging Applications for Photoâ€Electrochemical Photodetectors. Small, 2021, 17, e2005913.	5.2	50
26	Berlin Green Framework-Based Gas Sensor for Room-Temperature and High-Selectivity Detection of Ammonia. Nano-Micro Letters, 2021, 13, 63.	14.4	21
27	Heteroâ€MXenes: Theory, Synthesis, and Emerging Applications. Advanced Materials, 2021, 33, e2004129.	11.1	150
28	MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small, 2021, 17, e2006054.	5.2	119
29	Nonlinear Photonics Using Lowâ€Dimensional Metalâ€Halide Perovskites: Recent Advances and Future Challenges. Advanced Materials, 2021, 33, e2004446.	11.1	58
30	PbSe Nanocrystals Produced by Facile Liquid Phase Exfoliation for Efficient UV–Vis Photodetectors. Advanced Functional Materials, 2021, 31, 2010401.	7.8	35
31	Phase Transitions and Water Splitting Applications of 2D Transition Metal Dichalcogenides and Metal Phosphorous Trichalcogenides. Advanced Science, 2021, 8, 2002284.	5.6	47
32	Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials, 2021, 270, 120682.	5.7	32
33	2D Materials Enabled Nextâ€Generation Integrated Optoelectronics: from Fabrication to Applications. Advanced Science, 2021, 8, e2003834.	5.6	70
34	An Insightful Picture of Nonlinear Photonics in 2DÂMaterials and their Applications: Recent Advances and Future Prospects. Advanced Optical Materials, 2021, 9, 2001671.	3.6	23
35	Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. Journal of Nanobiotechnology, 2021, 19, 160.	4.2	54
36	Magnetic black phosphorus microbubbles for targeted tumor theranostics. Nanophotonics, 2021, 10, 3339-3358.	2.9	12

#	Article	IF	CITATIONS
37	Broadband and ultrafast all-optical switching based on transition metal carbide. Nanophotonics, 2021, 10, 2617-2623.	2.9	9
38	Water-Dispersible CsPbBr3 Perovskite Nanocrystals with Ultra-Stability and its Application in Electrochemical CO2 Reduction. Nano-Micro Letters, 2021, 13, 172.	14.4	20
39	Performance analysis of photo-electrochemical photodetector based on liquid-phase exfoliation few-layered graphdiyne nanosheets. Nanophotonics, 2021, 10, 2833-2845.	2.9	8
40	2D materials for bone therapy. Advanced Drug Delivery Reviews, 2021, 178, 113970.	6.6	23
41	Applications of Few-Layer Nb ₂ C MXene: Narrow-Band Photodetectors and Femtosecond Mode-Locked Fiber Lasers. ACS Nano, 2021, 15, 954-965.	7.3	176
42	Material-based engineering of bacteria for cancer diagnosis and therapy. Applied Materials Today, 2021, 25, 101212.	2.3	4
43	Ultrafast photonics applications of zirconium carbide as a novel mode-locker for fiber lasers. Journal of Materials Chemistry C, 2021, 9, 16985-16990.	2.7	10
44	High-detectivity tin disulfide nanowire photodetectors with manipulation of localized ferroelectric polarization field. Nanophotonics, 2021, 10, 4637-4644.	2.9	4
45	Recent progress and strategies in photodetectors based on 2D inorganic/organic heterostructures. 2D Materials, 2021, 8, 012001.	2.0	21
46	MXene-Based Materials for Solar Cell Applications. Nanomaterials, 2021, 11, 3170.	1.9	19
47	Ultraeffective Cancer Therapy with an Antimoneneâ€Based Xâ€Ray Radiosensitizer. Advanced Functional Materials, 2020, 30, 1906010.	7.8	57
48	Selfâ€Powered Photodetectors Based on 2D Materials. Advanced Optical Materials, 2020, 8, 1900765.	3.6	245
49	Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale, 2020, 12, 2201-2227.	2.8	71
50	Recent Progress in 2D Materialâ€Based Saturable Absorbers for All Solid‣tate Pulsed Bulk Lasers. Laser and Photonics Reviews, 2020, 14, 1900240.	4.4	111
51	Solarâ€Inspired Water Purification Based on Emerging 2D Materials: Status and Challenges. Solar Rrl, 2020, 4, 1900400.	3.1	133
52	The visible nonlinear optical properties and passively Q-switched laser application of a layered PtSe ₂ material. Nanoscale, 2020, 12, 1061-1066.	2.8	28
53	Passive mode-locking operation of a diode-pumped Tm:YAG laser with a MoS2 saturable absorber. Optics and Laser Technology, 2020, 124, 105986.	2.2	19
54	Midâ€Infrared Photonics Using 2D Materials: Status and Challenges. Laser and Photonics Reviews, 2020, 14, 1900098.	4.4	106

#	Article	IF	CITATIONS
55	The codopant assisted tunable photoluminescence and highly efficient CW lasers in Nd3+:SrF2 crystal. Journal of Luminescence, 2020, 219, 116911.	1.5	8
56	Recent advances of low-dimensional materials in Mid- and Far-infrared photonics. Applied Materials Today, 2020, 21, 100800.	2.3	27
57	Two-Dimensional Black Arsenic Phosphorus for Ultrafast Photonics in Near- and Mid-Infrared Regimes. ACS Applied Materials & Interfaces, 2020, 12, 46509-46518.	4.0	47
58	Zeroâ€Dimensional MXeneâ€Based Optical Devices for Ultrafast and Ultranarrow Photonics Applications. Advanced Science, 2020, 7, 2002209.	5.6	60
59	Recent development and advances in Photodetectors based on two-dimensional topological insulators. Journal of Materials Chemistry C, 2020, 8, 15526-15574.	2.7	35
60	Niobium Carbide MXenes with Broad-Band Nonlinear Optical Response and Ultrafast Carrier Dynamics. ACS Nano, 2020, 14, 10492-10502.	7.3	96
61	Ti ₃ C ₂ T <i>_x</i> MXene Quantum Dots with Enhanced Stability for Ultrafast Photonics. ACS Applied Nano Materials, 2020, 3, 11850-11860.	2.4	38
62	Advancing Applications of Black Phosphorus and BPâ€Analog Materials in Photo/Electrocatalysis through Structure Engineering and Surface Modulation. Advanced Science, 2020, 7, 2001431.	5.6	51
63	Structures, properties and application of 2D monoelemental materials (Xenes) as graphene analogues under defect engineering. Nano Today, 2020, 35, 100906.	6.2	107
64	NiS2 as a broadband saturable absorber for ultrafast pulse lasers. Optics and Laser Technology, 2020, 132, 106492.	2.2	16
65	Janus nanoparticles for cellular delivery chemotherapy: Recent advances and challenges. Coordination Chemistry Reviews, 2020, 422, 213467.	9.5	34
66	Revival of Zeoliteâ€Templated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. Advanced Science, 2020, 7, 2001335.	5.6	42
67	Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease. Biomaterials, 2020, 260, 120339.	5.7	66
68	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Letters, 2020, 12, 167.	14.4	57
69	Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. Light: Science and Applications, 2020, 9, 161.	7.7	145
70	Recent Advances in Functional 2D MXeneâ€Based Nanostructures for Nextâ€Generation Devices. Advanced Functional Materials, 2020, 30, 2005223.	7.8	216
71	Recent Advances in Semiconducting Monoelemental Selenium Nanostructures for Device Applications. Advanced Functional Materials, 2020, 30, 2003301.	7.8	93
72	Prodrug‣oaded Zirconium Carbide Nanosheets as a Novel Biophotonic Nanoplatform for Effective Treatment of Cancer. Advanced Science, 2020, 7, 2001191.	5.6	35

#	Article	IF	CITATIONS
73	Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Research, 2020, 13, 1485-1508.	5.8	36
74	Ultrafast Relaxation Dynamics and Nonlinear Response of Few‣ayer Niobium Carbide MXene. Small Methods, 2020, 4, 2000250.	4.6	84
75	Bismuthene quantum dots based optical modulator for MIR lasers at 2Âμm. Optical Materials, 2020, 102, 109830.	1.7	22
76	Synthesis Techniques, Optoelectronic Properties, and Broadband Photodetection of Thinâ€Film Black Phosphorus. Advanced Optical Materials, 2020, 8, 2000045.	3.6	39
77	Ultrasensitive detection of microRNA using a bismuthene-enabled fluorescence quenching biosensor. Chemical Communications, 2020, 56, 7041-7044.	2.2	49
78	Emerging combination strategies with phototherapy in cancer nanomedicine. Chemical Society Reviews, 2020, 49, 8065-8087.	18.7	427
79	Emerging 2D pnictogens for catalytic applications: status and challenges. Journal of Materials Chemistry A, 2020, 8, 12887-12927.	5.2	32
80	Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes. Progress in Solid State Chemistry, 2020, 59, 100283.	3.9	65
81	Broadband nonlinear optical response in GeSe nanoplates and its applications in all-optical diode. Nanophotonics, 2020, 9, 2007-2015.	2.9	20
82	Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. Nano Research, 2020, 13, 891-918.	5.8	36
83	Quantum confinement-induced enhanced nonlinearity and carrier lifetime modulation in two-dimensional tin sulfide. Nanophotonics, 2020, 9, 1963-1972.	2.9	22
84	Graphdiyneâ€Polymer Nanocomposite as a Broadband and Robust Saturable Absorber for Ultrafast Photonics. Laser and Photonics Reviews, 2020, 14, 1900367.	4.4	99
85	Site‣elective Bi ₂ Te ₃ –FeTe ₂ Heterostructure as a Broadband Saturable Absorber for Ultrafast Photonics. Laser and Photonics Reviews, 2020, 14, 1900409.	4.4	43
86	Two-dimensional porous coordination polymers and nano-composites for electrocatalysis and electrically conductive applications. Journal of Materials Chemistry A, 2020, 8, 14356-14383.	5.2	33
87	A nano-lateral heterojunction of selenium-coated tellurium for infrared-band soliton fiber lasers. Nanoscale, 2020, 12, 15252-15260.	2.8	11
88	Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, 9, 1973-1979.	2.9	24
89	Few-layer hexagonal bismuth telluride (Bi ₂ Te ₃) nanoplates with high-performance UV-Vis photodetection. Nanoscale Advances, 2020, 2, 1333-1339.	2.2	33
90	Stability of Perovskite Light Sources: Status and Challenges. Advanced Optical Materials, 2020, 8, 1902012.	3.6	54

#	Article	IF	CITATIONS
91	Synthesis and optoelectronics of mixed-dimensional Bi/Te binary heterostructures. Nanoscale Horizons, 2020, 5, 847-856.	4.1	28
92	Low-dimensional saturable absorbers for ultrafast photonics in solid-state bulk lasers: status and prospects. Nanophotonics, 2020, 9, 2603-2639.	2.9	24
93	MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chemistry of Materials, 2020, 32, 1703-1747.	3.2	429
94	Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. Coordination Chemistry Reviews, 2020, 410, 213218.	9.5	74
95	Emerging black phosphorus analogue nanomaterials for high-performance device applications. Journal of Materials Chemistry C, 2020, 8, 1172-1197.	2.7	54
96	High Efficiency Mesoscopic Solar Cells Using CsPbI ₃ Perovskite Quantum Dots Enabled by Chemical Interface Engineering. Journal of the American Chemical Society, 2020, 142, 3775-3783.	6.6	156
97	2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. Advanced Science, 2020, 7, 2000058.	5.6	215
98	Photocarrier relaxation pathways in selenium quantum dots and their application in UV-Vis photodetection. Nanoscale, 2020, 12, 11232-11241.	2.8	23
99	Graphdiyneâ€Based Flexible Photodetectors with High Responsivity and Detectivity. Advanced Materials, 2020, 32, e2001082.	11.1	171
100	Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers. Progress in Quantum Electronics, 2020, 71, 100264.	3.5	89
101	Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications. Journal of Materials Chemistry A, 2020, 8, 8813-8830.	5.2	185
102	Passively Q-switched near-infrared lasers with bismuthene quantum dots as the saturable absorber. Optics and Laser Technology, 2020, 128, 106219.	2.2	23
103	Tellurium@Selenium core-shell hetero-junction: Facile synthesis, nonlinear optics, and ultrafast photonics applications towards mid-infrared regime. Applied Materials Today, 2020, 20, 100657.	2.3	9
104	The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. Coordination Chemistry Reviews, 2020, 418, 213333.	9.5	23
105	2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics. Materials Horizons, 2020, 7, 2903-2921.	6.4	44
106	Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Reports on Progress in Physics, 2020, 83, 116401.	8.1	35
107	Sub-hundred nanosecond pulse generation from a black phosphorus Q-switched Er-doped fiber laser. Optics Express, 2020, 28, 4708.	1.7	23
108	Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Research, 2020, 8, 78.	3.4	242

#	Article	IF	CITATIONS
109	Facile sonochemical-assisted synthesis of orthorhombic phase black phosphorus/rGO hybrids for effective photothermal therapy. Nanophotonics, 2020, 9, 3023-3034.	2.9	7
110	MXene saturable absorber enabled hybrid mode-locking technology: a new routine of advancing femtosecond fiber lasers performance. Nanophotonics, 2020, 9, 2451-2458.	2.9	50
111	Advances in photonics of recently developed Xenes. Nanophotonics, 2020, 9, 1621-1649.	2.9	11
112	MXene: two dimensional inorganic compounds, for generation of bound state soliton pulses in nonlinear optical system. Nanophotonics, 2020, 9, 2505-2513.	2.9	55
113	Recent investigations on nonlinear absorption properties of carbon nanotubes. Nanophotonics, 2020, 9, 761-781.	2.9	25
114	Highly stable MXene (V ₂ CT _x)-based harmonic pulse generation. Nanophotonics, 2020, 9, 2577-2585.	2.9	83
115	Manyâ€Body Complexes in 2D Semiconductors. Advanced Materials, 2019, 31, e1706945.	11.1	255
116	Fully photon modulated heterostructure for neuromorphic computing. Nano Energy, 2019, 65, 104000.	8.2	110
117	2D GeP as a Novel Broadband Nonlinear Optical Material for Ultrafast Photonics. Laser and Photonics Reviews, 2019, 13, 1900123.	4.4	76
118	<i>In situ</i> preparation of a CsPbBr ₃ /black phosphorus heterostructure with an optimized interface and photodetector application. Nanoscale, 2019, 11, 16852-16859.	2.8	55
119	Recent Developments in Stability and Passivation Techniques of Phosphorene toward Nextâ€Generation Device Applications. Advanced Functional Materials, 2019, 29, 1903419.	7.8	113
120	NiPS ₃ nanoflakes: a nonlinear optical material for ultrafast photonics. Nanoscale, 2019, 11, 14383-14391.	2.8	34
121	Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale, 2019, 11, 14491-14527.	2.8	239
122	Black phosphorus quantum dot based all-optical signal processing: ultrafast optical switching and wavelength converting. Nanotechnology, 2019, 30, 415202.	1.3	30
123	2D Vâ€V Binary Materials: Status and Challenges. Advanced Materials, 2019, 31, e1902352.	11.1	303
124	Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Applied Physics Reviews, 2019, 6, .	5.5	143
125	Epitaxial Growth of Topological Insulators on Semiconductors (Bi ₂ Se ₃ /Te@Se) toward Highâ€Performance Photodetectors. Small Methods, 2019, 3, 1900349.	4.6	45
126	Halogenated Antimonene: One‣tep Synthesis, Structural Simulation, Tunable Electronic and Photoresponse Property. Advanced Functional Materials, 2019, 29, 1905857.	7.8	33

#	Article	IF	CITATIONS
127	Selfâ€Healable Black Phosphorus Photodetectors. Advanced Functional Materials, 2019, 29, 1906610.	7.8	48
128	Van der Waals Integration of Bismuth Quantum Dots–Decorated Tellurium Nanotubes (Te@Bi) Heterojunctions and Plasmaâ€Enhanced Optoelectronic Applications. Small, 2019, 15, e1903233.	5.2	45
129	Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale, 2019, 11, 2577-2593.	2.8	236
130	2D group-VA fluorinated antimonene: synthesis and saturable absorption. Nanoscale, 2019, 11, 1762-1769.	2.8	49
131	A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. Journal of Materials Chemistry C, 2019, 7, 871-878.	2.7	67
132	Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors. Applied Materials Today, 2019, 15, 115-138.	2.3	82
133	An Allâ€Optical, Actively Qâ€Switched Fiber Laser by an Antimoneneâ€Based Optical Modulator. Laser and Photonics Reviews, 2019, 13, 1800313.	4.4	122
134	Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. Journal of Controlled Release, 2019, 296, 150-161.	4.8	303
135	2D Black Phosphorus–Based Biomedical Applications. Advanced Functional Materials, 2019, 29, 1808306.	7.8	438
136	Engineering ultrafast charge transfer in a bismuthene/perovskite nanohybrid. Nanoscale, 2019, 11, 2637-2643.	2.8	51
137	Nonlinear Fewâ€Layer MXeneâ€Assisted Allâ€Optical Wavelength Conversion at Telecommunication Band. Advanced Optical Materials, 2019, 7, 1801777.	3.6	86
138	Few-Layer Antimonene Nanosheet: A Metal-Free Bifunctional Electrocatalyst for Effective Water Splitting. ACS Applied Energy Materials, 2019, 2, 4774-4781.	2.5	46
139	Biocompatible Two-Dimensional Titanium Nanosheets for Multimodal Imaging-Guided Cancer Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 22129-22140.	4.0	147
140	Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chemical Society Reviews, 2019, 48, 2891-2912.	18.7	482
141	High‧peed and Highâ€Responsivity Hybrid Silicon/Blackâ€Phosphorus Waveguide Photodetectors at 2µm. Laser and Photonics Reviews, 2019, 13, 1900032.	4.4	91
142	MXene Ti ₃ C ₂ T <i>_x</i> : A Promising Photothermal Conversion Material and Application in Allâ€Optical Modulation and Allâ€Optical Information Loading. Advanced Optical Materials, 2019, 7, 1900060.	3.6	115
143	Enhanced Photodetection Properties of Tellurium@Selenium Rollâ€ŧoâ€Roll Nanotube Heterojunctions. Small, 2019, 15, e1900902.	5.2	120
144	Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Applied Materials Today, 2019, 15, 297-304.	2.3	86

#	Article	IF	CITATIONS
145	Beta-lead oxide quantum dot (β-PbO QD)/polystyrene (PS) composite films and their applications in ultrafast photonics. Nanoscale, 2019, 11, 6828-6837.	2.8	33
146	Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. Nano Today, 2019, 25, 135-155.	6.2	240
147	Two-dimensional tellurium–polymer membrane for ultrafast photonics. Nanoscale, 2019, 11, 6235-6242.	2.8	104
148	Allâ€Optical Active Qâ€5witching: An Allâ€Optical, Actively Qâ€5witched Fiber Laser by an Antimoneneâ€Based Optical Modulator (Laser Photonics Rev. 13(4)/2019). Laser and Photonics Reviews, 2019, 13, 1970020.	4.4	4
149	Kerr Nonlinearity in 2D Graphdiyne for Passive Photonic Diodes. Advanced Materials, 2019, 31, e1807981.	11.1	187
150	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Physics Reports, 2019, 795, 1-51.	10.3	303
151	2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser and Photonics Reviews, 2019, 13, 1800327.	4.4	353
152	Recent advances in multiphoton microscopy combined with nanomaterials in the field of disease evolution and clinical applications to liver cancer. Nanoscale, 2019, 11, 19619-19635.	2.8	20
153	Passively Q-switched operation of in-band pumped Ho:YLF based on Ti3C2Tx MXene. Infrared Physics and Technology, 2019, 103, 103076.	1.3	16
154	The emerging ferroic orderings in two dimensions. Science China Information Sciences, 2019, 62, 1.	2.7	8
155	Broadband Nonlinear Optical Response of InSe Nanosheets for the Pulse Generation From 1 to 2 μm. ACS Applied Materials & Interfaces, 2019, 11, 48281-48289.	4.0	51
156	2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics. Advanced Optical Materials, 2019, 7, 1800224.	3.6	235
157	A solid-state passively Q-switched Tm,Gd:CaF ₂ laser with a Ti ₃ C ₂ T _{<i>x</i>} MXene absorber near 2 <i>µ</i> m. Laser Physics Letters, 2019, 16, 015803.	0.6	69
158	Wideband tunable passively Q-switched fiber laser at 28  μm using a broadband carbon nanotube saturable absorber. Photonics Research, 2019, 7, 14.	3.4	37
159	Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nature Communications, 2019, 10, 28.	5.8	475
160	2D Tellurium Based Highâ€Performance Allâ€Optical Nonlinear Photonic Devices. Advanced Functional Materials, 2019, 29, 1806346.	7.8	165
161	Two-dimensional non-layered selenium nanoflakes: facile fabrications and applications for self-powered photo-detector. Nanotechnology, 2019, 30, 114002.	1.3	161
162	MZIâ€Based Allâ€Optical Modulator Using MXene Ti ₃ C ₂ T <i>_x</i> (T =) Tj	E <u>TO</u> q0 0	0 rgBT /Over

#	Article	IF	CITATIONS
163	Bismuth quantum dots as an optical saturable absorber for a 13  î¼m Q-switched solid-state laser. Appli Optics, 2019, 58, 1621.	ed 0.9	19
164	Continuous-wave and Q-switched Nd:BCSO lasers based on bismuth nanosheets absorber. Applied Optics, 2019, 58, 6545.	0.9	6
165	All-optical signal processing in few-layer bismuthene coated microfiber: towards applications in optical fiber systems. Optics Express, 2019, 27, 16798.	1.7	24
166	Ultrafast pulse lasers based on two-dimensinal nanomaterials. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 188101.	0.2	12
167	Broadband Nonlinear Photonics in Few‣ayer MXene Ti ₃ C ₂ T _x (T =) Tj ET	Qq110.7	84314 rgBT
168	Nonlinear Few‣ayer Antimoneneâ€Based Allâ€Optical Signal Processing: Ultrafast Optical Switching and Highâ€Speed Wavelength Conversion. Advanced Optical Materials, 2018, 6, 1701287.	3.6	97
169	Allâ€Optical Phosphorene Phase Modulator with Enhanced Stability Under Ambient Conditions. Laser and Photonics Reviews, 2018, 12, 1800016.	4.4	155
170	Ultrathin 2D Transition Metal Carbides for Ultrafast Pulsed Fiber Lasers. ACS Photonics, 2018, 5, 1808-1816.	3.2	148
171	Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquidâ€Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Advanced Functional Materials, 2018, 28, 1705833.	7.8	348
172	Broadband Nonlinear Photoresponse of 2D TiS ₂ for Ultrashort Pulse Generation and Allâ€Optical Thresholding Devices. Advanced Optical Materials, 2018, 6, 1701166.	3.6	248
173	Highâ€Performance Photoâ€Electrochemical Photodetector Based on Liquidâ€Exfoliated Few‣ayered InSe Nanosheets with Enhanced Stability. Advanced Functional Materials, 2018, 28, 1705237.	7.8	258
174	Fewâ€Layer Tin Sulfide: A Promising Blackâ€Phosphorusâ€Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in Allâ€Optical Switching and Wavelength Conversion. Advanced Optical Materials, 2018, 6, 1700985.	3.6	212
175	Facile fabrication and characterization of two-dimensional bismuth(<scp>iii</scp>) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale, 2018, 10, 2404-2412.	2.8	166
176	Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 501-506.	3.3	657
177	Highly efficient continuous-wave laser operation of LD-pumped Nd,Gd:CaF ₂ and Nd,Y:CaF ₂ crystals. Laser Physics Letters, 2018, 15, 055802.	0.6	8
178	Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance. Nanotechnology, 2018, 29, 235201.	1.3	98
179	Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser. Optics Communications, 2018, 406, 158-162.	1.0	44
180	Broadband Nonlinear Photonics in Few‣ayer MXene Ti ₃ C ₂ T _x (T =) Tj ET	Qq0,0 0 rg	gBT /Overlocl

#	Article	IF	CITATIONS
181	Fewâ€layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability. Laser and Photonics Reviews, 2018, 12, 1700221.	4.4	311
182	Ultrasmall Bismuth Quantum Dots: Facile Liquid-Phase Exfoliation, Characterization, and Application in High-Performance UV–Vis Photodetector. ACS Photonics, 2018, 5, 621-629.	3.2	230
183	Mode locked Nd3+ and Gd3+ co-doped calcium fluoride crystal laser at dual gain lines. Optics and Laser Technology, 2018, 100, 294-297.	2.2	40
184	Two-dimensional beta-lead oxide quantum dots. Nanoscale, 2018, 10, 20540-20547.	2.8	49
185	Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. Journal of Innovative Optical Health Sciences, 2018, 11, .	0.5	70
186	MXene Ti ₃ C ₂ <i> T _x </i> saturable absorber for pulsed laser at 1.3 μm. Chinese Physics B, 2018, 27, 094214.	0.7	37
187	MXeneâ€Based Nonlinear Optical Information Converter for Allâ€Optical Modulator and Switcher. Laser and Photonics Reviews, 2018, 12, 1800215.	4.4	117
188	Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10, 17617-17622.	2.8	189
189	Photonics and Optoelectronics of 2D Metalâ€Halide Perovskites. Small, 2018, 14, e1800682.	5.2	168
190	Perovskite CsPbX ₃ : A Promising Nonlinear Optical Material and Its Applications for Ambient Allâ€Optical Switching with Enhanced Stability. Advanced Optical Materials, 2018, 6, 1800400.	3.6	90
191	MXene Ti ₃ C ₂ T _{<i>x</i>} absorber for a 1.06 <i>î¼</i> m passively <i>Q</i> -switched ceramic laser. Laser Physics Letters, 2018, 15, 085805.	0.6	86
192	Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF ₂ laser. Photonics Research, 2018, 6, 762.	3.4	65
193	Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. Journal of Materials Chemistry C, 2018, 6, 9582-9593.	2.7	153
194	Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics. Advanced Materials, 2018, 30, e1802061.	11.1	314
195	A Novel Topâ€Đown Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imagingâ€Guided Cancer Therapy. Advanced Materials, 2018, 30, e1803031.	11.1	318
196	Monolayer tellurene–metal contacts. Journal of Materials Chemistry C, 2018, 6, 6153-6163.	2.7	81
197	Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Optics Express, 2018, 26, 22750.	1.7	289
198	Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. Journal of Materials Chemistry B, 2018, 6, 4747-4755.	2.9	137

#	Article	IF	CITATIONS
199	Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chemical Society Reviews, 2018, 47, 5588-5601.	18.7	352
200	Ultrathin Metal–Organic Framework: An Emerging Broadband Nonlinear Optical Material for Ultrafast Photonics. Advanced Optical Materials, 2018, 6, 1800561.	3.6	268
201	Black Phosphorus: Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics (Adv. Mater. 1/2017). Advanced Materials, 2017, 29, .	11.1	10
202	Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. Journal of Materials Chemistry C, 2017, 5, 3007-3013.	2.7	150
203	Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene. Chemistry of Materials, 2017, 29, 2191-2201.	3.2	244
204	A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. Journal of Materials Chemistry A, 2017, 5, 6581-6588.	5.2	160
205	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	5.6	285
206	Fewâ€Layer Phosphoreneâ€Decorated Microfiber for Allâ€Optical Thresholding and Optical Modulation. Advanced Optical Materials, 2017, 5, 1700026.	3.6	125
207	Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale, 2017, 9, 8096-8101.	2.8	207
208	Black Phosphorus Based All-Optical-Signal-Processing: Toward High Performances and Enhanced Stability. ACS Photonics, 2017, 4, 1466-1476.	3.2	173
209	Tuning of Interlayer Coupling in Large-Area Graphene/WSe ₂ van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications. ACS Photonics, 2017, 4, 1531-1538.	3.2	75
210	Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. Journal of Materials Chemistry C, 2017, 5, 6129-6135.	2.7	109
211	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 11896-11900.	7.2	465
212	Monolayer Bismuthene-Metal Contacts: A Theoretical Study. ACS Applied Materials & Interfaces, 2017, 9, 23128-23140.	4.0	73
213	Tunable Nd, La:SrF ₂ laser and passively Q-switched operation based on gold nanobipyramids saturable absorber. Chinese Physics B, 2017, 26, 024205.	0.7	17
214	Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Selfâ€Powered Photodetector. Advanced Functional Materials, 2017, 27, 1606834.	7.8	342
215	Two-Dimensional CH ₃ NH ₃ PbI ₃ Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. ACS Applied Materials & Interfaces, 2017, 9, 12759-12765.	4.0	296
216	All-Optical Switching of Two Continuous Waves in Few Layer Bismuthene Based on Spatial Cross-Phase Modulation. ACS Photonics, 2017, 4, 2852-2861.	3.2	164

#	Article	IF	CITATIONS
217	Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability. Small, 2017, 13, 1702739.	5.2	150
218	Metalâ€Ionâ€Modified Black Phosphorus with Enhanced Stability and Transistor Performance. Advanced Materials, 2017, 29, 1703811.	11.1	431
219	Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Materials, 2017, 4, 045010.	2.0	260
220	Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Materials Horizons, 2017, 4, 997-1019.	6.4	296
221	Stabilization of Black Phosphorous Quantum Dots in PMMA Nanofiber Film and Broadband Nonlinear Optics and Ultrafast Photonics Application. Advanced Functional Materials, 2017, 27, 1702437.	7.8	136
222	2D–Materialsâ€Based Quantum Dots: Gateway Towards Nextâ€Generation Optical Devices. Advanced Optical Materials, 2017, 5, 1700257.	3.6	64
223	2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics. Advanced Optical Materials, 2017, 5, 1700884.	3.6	162
224	Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. Advanced Materials, 2017, 29, 1603276.	11.1	721
225	Fundamental and harmonic mode-locking at 21 μm with black phosphorus saturable absorber. Optics Express, 2017, 25, 16916.	1.7	114
226	Broadband Nonlinear Optical Response in Fewâ€Layer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability. Advanced Optical Materials, 2017, 5, 1700301.	3.6	269
227	Tunable Yb:CaF_2–SrF_2 laser and femtosecond mode-locked performance based on semiconductor saturable absorber mirrors. Applied Optics, 2016, 55, 8359.	2.1	12
228	Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Optics Express, 2016, 24, 25933.	1.7	200
229	Dual-wavelength Q-switched Er:SrF_2 laser with a black phosphorus absorber in the mid-infrared region. Optics Express, 2016, 24, 30289.	1.7	88
230	Dual-wavelength mode-locked operation on a novel Nd^3+,Gd^3+:SrF_2 crystal laser. Optical Materials Express, 2016, 6, 1513.	1.6	20
231	Flexible Transparent Electronic Gas Sensors. Small, 2016, 12, 3748-3756.	5.2	234
232	2 μm passively Q-switched laser based on black phosphorus. Optical Materials Express, 2016, 6, 2374.	1.6	124
233	Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Scientific Reports, 2016, 6, 30361.	1.6	242
234	Efficient continuous-wave and 739 fs mode-locked laser on a novel Nd ³⁺ , La ³⁺ co-doped SrF ₂ disordered crystal. Laser Physics Letters, 2016, 13, 095802.	0.6	11

#	Article	IF	CITATIONS
235	Broadband third order nonlinear optical responses of bismuth telluride nanosheets. Optical Materials Express, 2016, 6, 2244.	1.6	52
236	Black Phosphorus Quantum Dots as an Efficient Saturable Absorber for Bound Soliton Operation in an Erbium Doped Fiber Laser. IEEE Photonics Journal, 2016, 8, 1-10.	1.0	42
237	Polarization domain wall pulses in a microfiber-based topological insulator fiber laser. Scientific Reports, 2016, 6, 29128.	1.6	29
238	Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7, 12967.	5.8	835
239	Dual-wavelength continuous-wave and passively Q-switched Nd,Y:SrF ₂ ceramic laser. Optical Engineering, 2016, 55, 106114.	0.5	26
240	Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots. Advanced Optical Materials, 2016, 4, 1223-1229.	3.6	326
241	Black phosphorus as broadband saturable absorber for pulsed lasers from 1 <i>μ</i> m to 2.7 <i>μ</i> m wavelength. Laser Physics Letters, 2016, 13, 045801.	0.6	154
242	Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Scientific Reports, 2015, 5, 16372.	1.6	174
243	Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie - International Edition, 2015, 54, 11526-11530.	7.2	906
244	Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for Highâ€Performance Gas Sensing. Small, 2015, 11, 5409-5415.	5.2	225
245	From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics. Advanced Functional Materials, 2015, 25, 6996-7002.	7.8	862
246	Black Phosphorus–Polymer Composites for Pulsed Lasers. Advanced Optical Materials, 2015, 3, 1447-1453.	3.6	228
247	Healable, Transparent, Roomâ€Temperature Electronic Sensors Based on Carbon Nanotube Networkâ€Coated Polyelectrolyte Multilayers. Small, 2015, 11, 5807-5813.	5.2	151
248	Fewâ€Layer Topological Insulator for Allâ€Optical Signal Processing Using the Nonlinear Kerr Effect. Advanced Optical Materials, 2015, 3, 1769-1778.	3.6	87
249	Topological Insulator Solution Filled in Photonic Crystal Fiber for Passive Mode-Locked Fiber Laser. IEEE Photonics Technology Letters, 2015, 27, 264-267.	1.3	96
250	Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 28 μm. Optics Express, 2015, 23, 24713.	1.7	259
251	Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Optics Express, 2015, 23, 12823.	1.7	866
252	Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Optics Express, 2015, 23, 20030.	1.7	399

#	Article	IF	CITATIONS
253	Continuous-wave and mode-locked operation of a diode-pumped Nd,La:CaF_2 laser. Optical Materials Express, 2015, 5, 1972.	1.6	22
254	Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers. Optics Express, 2015, 23, 22643.	1.7	220
255	Femtosecond pulse erbium-doped fiber laser by a few-layer MoS_2 saturable absorber. Optics Letters, 2014, 39, 4591.	1.7	356
256	Large-energy, narrow-bandwidth laser pulse at 1645  nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber. Applied Optics, 2014, 53, 254.	0.9	31
257	Large Energy, Wavelength Widely Tunable, Topological Insulator Q-Switched Erbium-Doped Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 315-322.	1.9	201
258	(Q) -Switched Mode-Locked Nd:YVO ₄ Laser by Topological Insulator Bi ₂ Te ₃ Saturable Absorber. IEEE Photonics Technology Letters, 2014, 26, 1912-1915.	1.3	49
259	Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Scientific Reports, 2014, 4, 6346.	1.6	407
260	Critical coupling with graphene-based hyperbolic metamaterials. Scientific Reports, 2014, 4, 5483.	1.6	158
261	Order–disorder transition in a two-dimensional boron–carbon–nitride alloy. Nature Communications, 2013, 4, 2681.	5.8	138
262	Third order nonlinear optical property of Bi_2Se_3. Optics Express, 2013, 21, 2072.	1.7	271
263	Topological Insulator: <formula formulatype="inline"><tex Notation="TeX">\$hbox{Bi}_{2}hbox{Te}_{3}\$ </tex </formula> Saturable Absorber for the Passive Q-Switching Operation of an in-Band Pumped 1645-nm Er:YAG Ceramic Laser. IEEE Photonics Journal, 2013, 5, 1500707-1500707.	1.0	132
264	Topological insulator as an optical modulator for pulsed solidâ€state lasers. Laser and Photonics Reviews, 2013, 7, L77.	4.4	208
265	Polarization rotation vector solitons in a graphene mode-locked fiber laser. Optics Express, 2012, 20, 27283.	1.7	118
266	Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi_2Se_3 as a mode locker. Optics Express, 2012, 20, 27888.	1.7	406
267	Ultra-short pulse generation by a topological insulator based saturable absorber. Applied Physics Letters, 2012, 101, 211106.	1.5	551
268	Atomic‣ayer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Advanced Functional Materials, 2009, 19, 3077-3083.	7.8	2,310
269	Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Applied Physics Letters, 2009, 95, .	1.5	450