Ruowen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6764985/publications.pdf

Version: 2024-02-01

45 papers

2,758 citations

257450 24 h-index 254184 43 g-index

46 all docs

46 docs citations

46 times ranked

4039 citing authors

#	Article	IF	CITATIONS
1	Programmable manipulation of oligonucleotide–albumin interaction for elongated circulation time. Nucleic Acids Research, 2022, 50, 3083-3095.	14.5	14
2	Engineering Aptamers with Selectively Enhanced Biostability in the Tumor Microenvironment. Angewandte Chemie - International Edition, 2022, 61 , .	13.8	11
3	Programmable Repurposing of Existing Drugs as Pharmaceutical Elements for the Construction of Aptamer–Drug Conjugates. ACS Applied Materials & Therefaces, 2021, 13, 9457-9463.	8.0	11
4	Functionalization of amino acids with aryl fluorosulfate for prodrug construction by SuFEx chemistry. Tetrahedron, 2020, 76, 130926.	1.9	2
5	Polymeric Engineering of Aptamer–Drug Conjugates for Targeted Cancer Therapy. Bioconjugate Chemistry, 2020, 31, 37-42.	3.6	27
6	Conformational Conversion Enhances Cellular Uptake of F Base Double-Strand-Conjugated Oligonucleotides. Analytical Chemistry, 2020, 92, 10375-10380.	6.5	4
7	Aptamers as Versatile Molecular Tools for Antibody Production Monitoring and Quality Control. Journal of the American Chemical Society, 2020, 142, 12079-12086.	13.7	30
8	Molecular domino reactor built by automated modular synthesis for cancer treatment. Theranostics, 2020, 10, 4030-4041.	10.0	14
9	Construction of Bispecific Aptamer–Drug Conjugate by a Hybrid Chemical and Biological Approach. Bioconjugate Chemistry, 2020, 31, 1289-1294.	3.6	14
10	Dynamic colloidal nanoparticle assembly triggered by aptamer–receptor interactions on live cell membranes. Chemical Science, 2019, 10, 7466-7471.	7.4	15
11	Endocytic Pathways and Intracellular Transport of Aptamer-Drug Conjugates in Live Cells Monitored by Single-Particle Tracking. Analytical Chemistry, 2019, 91, 13818-13823.	6.5	16
12	Phosphorylated lipid-conjugated oligonucleotide selectively anchors on cell membranes with high alkaline phosphatase expression. Nature Communications, 2019, 10, 2704.	12.8	75
13	Single-molecule DNA logic nanomachines based on origami. Science China Chemistry, 2019, 62, 407-408.	8.2	5
14	Recent Progress in Small-Molecule Near-IR Probes for Bioimaging. Trends in Chemistry, 2019, 1, 224-234.	8.5	137
15	Artificial Sandwich Base for Monitoring Single-Nucleobase Changes and Charge-Transfer Rates in DNA. Analytical Chemistry, 2019, 91, 2074-2078.	6.5	6
16	Fluorinated DNA Micelles: Synthesis and Properties. Analytical Chemistry, 2018, 90, 6843-6850.	6.5	24
17	Floxuridine Homomeric Oligonucleotides "Hitchhike―with Albumin Inâ€Situ for Cancer Chemotherapy. Angewandte Chemie, 2018, 130, 9132-9135.	2.0	10
18	Crossâ€Linked Aptamer–Lipid Micelles for Excellent Stability and Specificity in Targetâ€Cell Recognition. Angewandte Chemie - International Edition, 2018, 57, 11589-11593.	13.8	33

#	Article	IF	Citations
19	Crossâ€Linked Aptamer–Lipid Micelles for Excellent Stability and Specificity in Targetâ€Cell Recognition. Angewandte Chemie, 2018, 130, 11763-11767.	2.0	8
20	A basic insight into aptamer-drug conjugates (ApDCs). Biomaterials, 2018, 182, 216-226.	11.4	75
21	Floxuridine Homomeric Oligonucleotides "Hitchhike―with Albumin Inâ€Situ for Cancer Chemotherapy. Angewandte Chemie - International Edition, 2018, 57, 8994-8997.	13.8	58
22	A two-photon fluorescent probe for endogenous superoxide anion radical detection and imaging in living cells and tissues. Sensors and Actuators B: Chemical, 2017, 250, 259-266.	7.8	49
23	Artificial Base zT as Functional "Element―for Constructing Photoresponsive DNA Nanomolecules. Journal of the American Chemical Society, 2017, 139, 9104-9107.	13.7	52
24	Recognitionâ€thenâ€Reaction Enables Siteâ€Selective Bioconjugation to Proteins on Liveâ€Cell Surfaces. Angewandte Chemie - International Edition, 2017, 56, 11954-11957.	13.8	37
25	Recognitionâ€thenâ€Reaction Enables Siteâ€Selective Bioconjugation to Proteins on Liveâ€Cell Surfaces. Angewandte Chemie, 2017, 129, 12116-12119.	2.0	17
26	Fluorinated molecular beacons as functional DNA nanomolecules for cellular imaging. Chemical Science, 2017, 8, 7082-7086.	7.4	22
27	Engineering Stability-Tunable DNA Micelles Using Photocontrollable Dissociation of an Intermolecular G-Quadruplex. ACS Nano, 2017, 11, 12087-12093.	14.6	49
28	Aptamer-assembled nanomaterials for fluorescent sensing and imaging. Nanophotonics, 2017, 6, 109-121.	6.0	43
29	Using modified aptamers for site specific protein–aptamer conjugations. Chemical Science, 2016, 7, 2157-2161.	7.4	46
30	Trifluoromethylated nucleic acid analogues capable of self-assembly through hydrophobic interactions. Chemical Science, 2014, 5, 4076-4081.	7.4	15
31	Activatable Fluorescence/MRI Bimodal Platform for Tumor Cell Imaging via MnO ₂ Nanosheet–Aptamer Nanoprobe. Journal of the American Chemical Society, 2014, 136, 11220-11223.	13.7	522
32	Automated Modular Synthesis of Aptamer–Drug Conjugates for Targeted Drug Delivery. Journal of the American Chemical Society, 2014, 136, 2731-2734.	13.7	159
33	Functional DNA-Containing Nanomaterials: Cellular Applications in Biosensing, Imaging, and Targeted Therapy. Accounts of Chemical Research, 2014, 47, 1891-1901.	15.6	317
34	One-Step Facile Surface Engineering of Hydrophobic Nanocrystals with Designer Molecular Recognition. Journal of the American Chemical Society, 2012, 134, 13164-13167.	13.7	56
35	Innenrýcktitelbild: An Autonomous and Controllable Light-Driven DNA Walking Device (Angew. Chem.) Tj ETQ	q1 1 0.784 2.0	4314 rgBT /C
36	An Autonomous and Controllable Lightâ€Driven DNA Walking Device. Angewandte Chemie - International Edition, 2012, 51, 2457-2460.	13.8	186

#	Article	IF	CITATIONS
37	Inside Back Cover: An Autonomous and Controllable Light-Driven DNA Walking Device (Angew. Chem.) Tj ETQq1	1 0,78431 13.8	4 _d gBT /Ove
38	Using Azobenzene Incorporated DNA Aptamers to Probe Molecular Binding Interactions. Bioconjugate Chemistry, 2011, 22, 282-288.	3.6	35
39	Smart Multifunctional Nanostructure for Targeted Cancer Chemotherapy and Magnetic Resonance Imaging. ACS Nano, 2011, 5, 7866-7873.	14.6	115
40	Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9331-9336.	7.1	33
41	DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5-10.	7.1	315
42	Pyrene-Assisted Efficient Photolysis of Disulfide Bonds in DNA-Based Molecular Engineering. ACS Applied Materials & Samp; Interfaces, 2010, 2, 3601-3605.	8.0	18
43	Synthesis and characterization of novel fluoropolymers containing sulfonyl and perfluorocyclobutyl units. Polymer, 2005, 46, 7590-7597.	3.8	20
44	Synthesis of 4,6-Disubstituted Pyrimidines via Suzuki and Kumada Coupling Reaction of 4,6-Dichloropyrimidine ChemInform, 2003, 34, no.	0.0	0
45	Synthesis of 4,6-disubstituted pyrimidines via Suzuki and Kumada coupling reaction of 4,6-dichloropyrimidine. Journal of Fluorine Chemistry, 2003, 120, 21-24.	1.7	25