
Yehia Daaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6764254/publications.pdf Version: 2024-02-01

Υεμιλ Πλλκλ

#	Article	IF	CITATIONS
1	Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature, 1997, 390, 88-91.	27.8	1,176
2	Essential Role for G Protein-coupled Receptor Endocytosis in the Activation of Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1998, 273, 685-688.	3.4	491
3	Molecular Basis for Interactions of G Protein βγ Subunits with Effectors. Science, 1998, 280, 1271-1274.	12.6	409
4	The Role of Sequestration in G Protein-coupled Receptor Resensitization. Journal of Biological Chemistry, 1997, 272, 5-8.	3.4	305
5	Regulation of β-Adrenergic Receptor Signaling by S-Nitrosylation of G-Protein-Coupled Receptor Kinase 2. Cell, 2007, 129, 511-522.	28.9	274
6	Src-mediated Tyrosine Phosphorylation of Dynamin Is Required for β2-Adrenergic Receptor Internalization and Mitogen-activated Protein Kinase Signaling. Journal of Biological Chemistry, 1999, 274, 1185-1188.	3.4	243
7	Clathrin-mediated Endocytosis of the β-Adrenergic Receptor Is Regulated by Phosphorylation/Dephosphorylation of β-Arrestin1. Journal of Biological Chemistry, 1997, 272, 31051-31057.	3.4	216
8	G Protein-coupled Receptors Mediate Two Functionally Distinct Pathways of Tyrosine Phosphorylation in Rat 1a Fibroblasts. Journal of Biological Chemistry, 1997, 272, 31648-31656.	3.4	193
9	Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1295-1300.	7.1	169
10	The G Protein-coupled Receptor Kinase 2 Is a Microtubule-associated Protein Kinase That Phosphorylates Tubulin. Journal of Biological Chemistry, 1998, 273, 12316-12324.	3.4	144
11	Src-dependent Tyrosine Phosphorylation Regulates Dynamin Self-assembly and Ligand-induced Endocytosis of the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 2002, 277, 26642-26651.	3.4	130
12	PGE2 promotes angiogenesis through EP4 and PKA $\hat{Cl^3}$ pathway. Blood, 2011, 118, 5355-5364.	1.4	109
13	G Proteins in Cancer: The Prostate Cancer Paradigm. Science Signaling, 2004, 2004, re2-re2.	3.6	92
14	Mitogenic action of LPA in prostate. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 265-269.	2.4	75
15	Identification of βArrestin2 as a corepressor of androgen receptor signaling in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9379-9384.	7.1	73
16	ESSENTIAL ROLE FOR G PROTEINS IN PROSTATE CANCER CELL GROWTH AND SIGNALING. Journal of Urology, 2000, 164, 2162-2167.	0.4	62
17	G Protein–Coupled Receptor Kinase GRK5 Phosphorylates Moesin and Regulates Metastasis in Prostate Cancer. Cancer Research, 2014, 74, 3489-3500.	0.9	51
18	The stress response neuropeptide <scp>CRF</scp> increases amyloidâ€Ĵ² production by regulating γâ€secretase activity. EMBO Journal, 2015, 34, 1674-1686.	7.8	47

Υεηιά Ολακά

#	Article	IF	CITATIONS
19	Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins. Seminars in Cell and Developmental Biology, 2016, 50, 95-104.	5.0	46
20	Prostaglandin E2 Regulates Renal Cell Carcinoma Invasion through the EP4 Receptor-Rap GTPase Signal Transduction Pathway. Journal of Biological Chemistry, 2011, 286, 33954-33962.	3.4	44
21	Production of the Escherichia coli Common Pilus by Uropathogenic E. coli Is Associated with Adherence to HeLa and HTB-4 Cells and Invasion of Mouse Bladder Urothelium. PLoS ONE, 2014, 9, e101200.	2.5	40
22	G-Protein Coupled Receptor Kinase 5 Regulates Prostate Tumor Growth. Journal of Urology, 2012, 187, 322-329.	0.4	36
23	Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer. Science Translational Medicine, 2019, 11, .	12.4	36
24	Acute Activation of β2-Adrenergic Receptor Regulates Focal Adhesions through βArrestin2- and p115RhoGEF Protein-mediated Activation of RhoA. Journal of Biological Chemistry, 2012, 287, 18925-18936.	3.4	33
25	S-nitrosylation-regulated GPCR signaling. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 743-751.	2.4	30
26	Dynamin2- and endothelial nitric oxide synthase–regulated invasion of bladder epithelial cells by uropathogenic Escherichia coli. Journal of Cell Biology, 2011, 192, 101-110.	5.2	25
27	βArrestin1 Regulates the Guanine Nucleotide Exchange Factor RasGRF2 Expression and the Small GTPase Rac-mediated Formation of Membrane Protrusion and Cell Motility. Journal of Biological Chemistry, 2014, 289, 13638-13650.	3.4	22
28	Prostaglandin E2 receptor 4 mediates renal cell carcinoma intravasation and metastasis. Cancer Letters, 2017, 391, 50-58.	7.2	19
29	βArrestin2 Mediates Renal Cell Carcinoma Tumor Growth. Scientific Reports, 2018, 8, 4879.	3.3	18
30	Protein S-Nitrosylation Measurement. Methods in Enzymology, 2013, 522, 409-425.	1.0	14
31	Dynamin2 S-nitrosylation regulates adenovirus type 5 infection of epithelial cells. Journal of General Virology, 2012, 93, 2109-2117.	2.9	13
32	Uropathogenic Escherichia coli invades bladder epithelial cells by activating kinase networks in host cells. Journal of Biological Chemistry, 2018, 293, 16518-16527.	3.4	11
33	β-Arrestin1 mediates hMENA expression and ovarian cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2856-2858.	7.1	6
34	Nuclear βArrestin1 regulates androgen receptor function in castration resistant prostate cancer. Oncogene, 2021, 40, 2610-2620.	5.9	6
35	Inhibition of androgen receptor transactivation function by adenovirus type 12 E1A undermines prostate cancer cell survival. Prostate, 2018, 78, 1140-1156.	2.3	5
36	βArrestin1 regulates glucocorticoid receptor mitogenic signaling in castrationâ€resistant prostate cancer. Prostate, 2022, 82, 816-825.	2.3	4

#	Article	IF	CITATIONS
37	Biased α-adrenergic receptor and βarrestin signaling in a cell culture model of benign prostatic hyperplasia. Biochemical and Biophysical Research Communications, 2016, 471, 41-46.	2.1	3