Thorsten Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6763433/publications.pdf

Version: 2024-02-01

35 2,163 1
papers citations h-in

395702 19 33 h-index g-index

40 40 all docs citations

40 times ranked

2981 citing authors

#	Article	IF	CITATIONS
1	Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster. Science, 2007, 317, 1072-1076.	12.6	405
2	Role of Actin Cortex in the Subplasmalemmal Transport of Secretory Granules in PC-12 Cells. Biophysical Journal, 2000, 78, 2863-2877.	0.5	213
3	Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nature Methods, 2011, 8, 353-359.	19.0	206
4	The SNARE Motif Is Essential for the Formation of Syntaxin Clusters in the Plasma Membrane. Biophysical Journal, 2006, 90, 2843-2851.	0.5	168
5	Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nature Communications, 2014, 5, 4509.	12.8	157
6	The Translocon Protein Sec61 Mediates Antigen Transport from Endosomes in the Cytosol for Cross-Presentation to CD8+ T Cells. Immunity, 2015, 42, 850-863.	14.3	136
7	Munc18-Bound Syntaxin Readily Forms SNARE Complexes with Synaptobrevin in Native Plasma Membranes. PLoS Biology, 2006, 4, e330.	5.6	113
8	SNARE proteins and †membrane rafts'. Journal of Physiology, 2007, 585, 693-698.	2.9	98
9	Tetraspanin Assemblies in Virus Infection. Frontiers in Immunology, 2018, 9, 1140.	4.8	91
10	Alternative Splicing of SNAP-25 Regulates Secretion through Nonconservative Substitutions in the SNARE Domain. Molecular Biology of the Cell, 2005, 16, 5675-5685.	2.1	61
11	Membrane Protein Clusters at Nanoscale Resolution: More Than Pretty Pictures. Physiology, 2010, 25, 116-124.	3.1	56
12	Ca ²⁺ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions. EMBO Journal, 2011, 30, 1209-1220.	7.8	55
13	The Extracellular \hat{l} -Domain is Essential for the Formation of CD81 Tetraspanin Webs. Biophysical Journal, 2014, 107, 100-113.	0.5	42
14	Structure and Dynamics of a Two-Helix SNARE Complex in Live Cells. Traffic, 2010, 11, 394-404.	2.7	38
15	Microdomains of SNARE Proteins in the Plasma Membrane. Current Topics in Membranes, 2013, 72, 193-230.	0.9	34
16	Concentration Dependent Ion-Protein Interaction Patterns Underlying Protein Oligomerization Behaviours. Scientific Reports, 2016, 6, 24131.	3.3	30
17	Interplay between lipids and the proteinaceous membrane fusion machinery. Progress in Lipid Research, 2008, 47, 461-469.	11.6	26
18	ADAM17-dependent signaling is required for oncogenic human papillomavirus entry platform assembly. ELife, 2019, 8, .	6.0	25

#	Article	IF	CITATIONS
19	Where Biology Meets Physicsâ€"A Converging View on Membrane Microdomain Dynamics. Current Topics in Membranes, 2016, 77, 27-65.	0.9	23
20	Electrostatic anchoring precedes stable membrane attachment of SNAP25/SNAP23 to the plasma membrane. ELife, 2017, 6 , .	6.0	22
21	Tetraspanins in infections by human cytomegalo- and papillomaviruses. Biochemical Society Transactions, 2017, 45, 489-497.	3.4	21
22	The packing density of a supramolecular membrane protein cluster is controlled by cytoplasmic interactions. ELife, 2017, 6, .	6.0	20
23	Tetraspanins. Current Biology, 2020, 30, R204-R206.	3.9	19
24	The Amyloid Precursor Protein Forms Plasmalemmal Clusters via Its Pathogenic Amyloid- \hat{l}^2 Domain. Biophysical Journal, 2012, 102, 1411-1417.	0.5	16
25	Classes of non-conventional tetraspanins defined by alternative splicing. Scientific Reports, 2019, 9, 14075.	3 . 3	16
26	Misdirection of endosomal trafficking mediated by herpes simplex virus–encoded glycoprotein B. FASEB Journal, 2017, 31, 1650-1667.	0.5	13
27	Anatomy of a viral entry platform differentially functionalized by integrins $\hat{l}\pm 3$ and $\hat{l}\pm 6$. Scientific Reports, 2020, 10, 5356.	3. 3	12
28	No Evidence for Spontaneous Lipid Transfer at ER–PM Membrane Contact Sites. Journal of Membrane Biology, 2016, 249, 41-56.	2.1	10
29	Packing Density of the Amyloid Precursor Protein inÂthe Cell Membrane. Biophysical Journal, 2018, 114, 1128-1141.	0.5	10
30	HPV caught in the tetraspanin web?. Medical Microbiology and Immunology, 2020, 209, 447-459.	4.8	10
31	Liver Sinusoidal Endothelial Cell-Mediated CD8 T Cell Priming Depends on Co-Inhibitory Signal Integration over Time. PLoS ONE, 2014, 9, e99574.	2.5	8
32	The mesoscale organization of syntaxin 1A and SNAP25 is determined by SNARE–SNARE interactions. ELife, 2021, 10, .	6.0	5
33	The transmembrane domain of the amyloid precursor protein is required for anti-amyloidogenic processing by α-secretase ADAM10. Journal of Biological Chemistry, 2022, , 101911.	3.4	4
34	Monitoring Intracellular Routing of Internalized Antigens by Immunofluorescence Microscopy. Methods in Molecular Biology, 2019, 1988, 249-257.	0.9	0
35	A conserved sequence in the small intracellular loop of tetraspanins forms an M-shaped inter-helix turn. Scientific Reports, 2022, 12, 4494.	3.3	0