Elisabeth Gulowsen Celius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6763255/publications.pdf

Version: 2024-02-01

121 9,111 36
papers citations h-index

90 g-index

136 all docs

136
docs citations

136 times ranked 13546 citing authors

#	Article	IF	Citations
1	Humoral immunity to SARS-CoV-2 mRNA vaccination in multiple sclerosis: the relevance of time since last rituximab infusion and first experience from sporadic revaccinations. Journal of Neurology, Neurosurgery and Psychiatry, 2023, 94, 19-22.	1.9	39
2	Effect of desire for pregnancy on decisions to escalate treatment in multiple sclerosis care: Differences between MS specialists and non-MS specialists. Multiple Sclerosis and Related Disorders, 2022, 57, 103389.	2.0	6
3	Oral Cladribine in Patients who Change From First-Line Disease Modifying Treatments for Multiple Sclerosis: Protocol of a Prospective Effectiveness and Safety Study (CLAD CROSS). Journal of Central Nervous System Disease, 2022, 14, 117957352110694.	1.9	1
4	Sensor-based gait analyses of the six-minute walk test identify qualitative improvement in gait parameters of people with multiple sclerosis after rehabilitation. Journal of Neurology, 2022, 269, 3723-3734.	3.6	6
5	Association of adverse childhood experiences with the development of multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 645-650.	1.9	4
6	The influence of socioeconomic factors on access to disease modifying treatment in a Norwegian multiple sclerosis cohort. Multiple Sclerosis and Related Disorders, 2022, 61, 103759.	2.0	3
7	Risk of fingolimod rebound after switching to cladribine or rituximab in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 62, 103812.	2.0	7
8	Deep neural networks learn general and clinically relevant representations of the ageing brain. NeuroImage, 2022, 256, 119210.	4.2	46
9	Exploring Retinal Blood Vessel Diameters as Biomarkers in Multiple Sclerosis. Journal of Clinical Medicine, 2022, 11, 3109.	2.4	3
10	Fatigue in multiple sclerosis is associated with socioeconomic factors. Multiple Sclerosis and Related Disorders, 2022, 64, 103955.	2.0	5
11	Abuse and revictimization in adulthood in multiple sclerosis: a cross-sectional study during pregnancy. Journal of Neurology, 2022, 269, 5901-5909.	3.6	1
12	Breastfeeding and treatment of multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 801-802.	3.0	0
13	The course of multiple sclerosis rewritten: a Norwegian population-based study on disease demographics and progression. Journal of Neurology, 2021, 268, 1330-1341.	3.6	17
14	High prevalence of fatigue in contemporary patients with multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732199982.	1.0	18
15	Disease Progression in Multiple Sclerosis: A Literature Review Exploring Patient Perspectives. Patient Preference and Adherence, 2021, Volume 15, 15-27.	1.8	18
16	Management of Severe Graves' Hyperthyroidism in Pregnancy Following Immune Reconstitution Therapy in Multiple Sclerosis. Journal of the Endocrine Society, 2021, 5, bvab044.	0.2	4
17	Early High Efficacy Treatment in Multiple Sclerosis Is the Best Predictor of Future Disease Activity Over 1 and 2 Years in a Norwegian Population-Based Registry. Frontiers in Neurology, 2021, 12, 693017.	2.4	45
18	Maternal education has significant influence on progression in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 53, 103052.	2.0	6

#	Article	IF	CITATIONS
19	No significant differences in absenteeism or academic achievements in a Norwegian multiple sclerosis case control study. Multiple Sclerosis and Related Disorders, 2021, 54, 103141.	2.0	2
20	Incidence of cancer in multiple sclerosis before and after the treatment era– a registry- based cohort study. Multiple Sclerosis and Related Disorders, 2021, 55, 103209.	2.0	15
21	Risk of cancer among multiple sclerosis patients, siblings, and population controls: A prospective cohort study. Multiple Sclerosis Journal, 2020, 26, 1569-1580.	3.0	26
22	Chronic fatigue and depression due to multiple sclerosis: Immune-inflammatory pathways, tryptophan catabolites and the gut-brain axis as possible shared pathways. Multiple Sclerosis and Related Disorders, 2020, 46, 102533.	2.0	27
23	State of the Art and Future Challenges in Multiple Sclerosis Research and Medical Management: An Insight into the 5th International Porto Congress of Multiple Sclerosis. Neurology and Therapy, 2020, 9, 281-300.	3.2	3
24	The genetic architecture of human brainstem structures and their involvement in common brain disorders. Nature Communications, 2020, 11 , 4016.	12.8	26
25	Normal antibody response after COVID-19 during treatment with cladribine. Multiple Sclerosis and Related Disorders, 2020, 46, 102476.	2.0	21
26	Prevalence of multiple sclerosis in rural and urban districts in Telemark county, Norway. Multiple Sclerosis and Related Disorders, 2020, 45, 102352.	2.0	8
27	CD8+ T cell gene expression analysis identifies differentially expressed genes between multiple sclerosis patients and healthy controls. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732097851.	1.0	2
28	Quality of Life Improves with Alemtuzumab Over 6ÂYears in Relapsing-Remitting Multiple Sclerosis Patients with or without Autoimmune Thyroid Adverse Events: Post Hoc Analysis of the CARE-MS Studies. Neurology and Therapy, 2020, 9, 443-457.	3.2	4
29	Pregnancy outcomes and postpartum relapse rates in women with RRMS treated with alemtuzumab in the phase 2 and 3 clinical development program over 16 years. Multiple Sclerosis and Related Disorders, 2020, 43, 102146.	2.0	23
30	The diagnostic value of IgG index versus oligoclonal bands in cerebrospinal fluid of patients with multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521731990129.	1.0	18
31	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
32	Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nature Neuroscience, 2019, 22, 1617-1623.	14.8	358
33	No differential gene expression for CD4+ T cells of MS patients and healthy controls. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731985690.	1.0	9
34	A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nature Communications, 2019, 10, 2236.	12.8	65
35	Neurodegenerative Interplay of Cardiovascular Autonomic Dysregulation and the Retina in Early Multiple Sclerosis. Frontiers in Neurology, 2019, 10, 507.	2.4	2
36	Best Practices for Long-Term Monitoring and Follow-Up of Alemtuzumab-Treated MS Patients in Real-World Clinical Settings. Frontiers in Neurology, 2019, 10, 253.	2.4	17

#	Article	IF	Citations
37	Two cases of diabetes mellitus type 1 after alemtuzumab treatment for multiple sclerosis: another probable secondary autoimmune disease. Journal of Neurology, 2019, 266, 1270-1271.	3.6	9
38	International consensus on quality standards for brain health-focused care in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 1809-1818.	3.0	55
39	Restriction spectrum imaging of white matter and its relation to neurological disability in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 687-698.	3.0	8
40	The influence of <scp>THC</scp> : <scp>CBD</scp> oromucosal spray on driving ability in patients with multiple sclerosisâ€related spasticity. Brain and Behavior, 2018, 8, e00962.	2.2	25
41	Increased DNA methylation of SLFN12 in CD4+ and CD8+ T cells from multiple sclerosis patients. PLoS ONE, 2018, 13, e0206511.	2.5	37
42	Gender Inequities in the Multiple Sclerosis Community: A Call for Action. Annals of Neurology, 2018, 84, 958-959.	5. 3	10
43	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	28.9	115
44	DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nature Communications, 2018, 9, 2397.	12.8	147
45	Level of education and multiple sclerosis risk over a 50-year period: Registry-based sibling study. Multiple Sclerosis Journal, 2017, 23, 213-219.	3.0	17
46	High prevalence and increasing incidence of multiple sclerosis in the Norwegian county of Buskerud. Acta Neurologica Scandinavica, 2017, 135, 412-418.	2.1	21
47	Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis. Neuroradiology, 2017, 59, 655-664.	2.2	11
48	Fourteen sequence variants that associate with multiple sclerosis discovered by meta-analysis informed by genetic correlations. Npj Genomic Medicine, 2017, 2, 24.	3.8	16
49	Fatigue and cognition: Pupillary responses to problemâ€solving in early multiple sclerosis patients. Brain and Behavior, 2017, 7, e00717.	2.2	24
50	Is the hygiene hypothesis relevant for the risk of multiple sclerosis?. Acta Neurologica Scandinavica, 2017, 136, 26-30.	2.1	17
51	Infections in patients with multiple sclerosis: Implications for disease-modifying therapy. Acta Neurologica Scandinavica, 2017, 136, 34-36.	2.1	29
52	From genetic associations to functional studies in multiple sclerosis. European Journal of Neurology, 2016, 23, 847-853.	3.3	8
53	Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurology: Genetics, 2016, 2, e87.	1.9	76
54	NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk. Neuron, 2016, 92, 333-335.	8.1	24

#	Article	IF	CITATIONS
55	Bone mineral density in patients with multiple sclerosis, hereditary ataxia or hereditary spastic paraplegia after at least 10Âyears of disease - a case control study. BMC Neurology, 2016, 16, 252.	1.8	16
56	The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by vitamin D in CD4+ T cells. Genes and Immunity, 2016 , 17 , 118 - 127 .	4.1	35
57	Socio-economic factors and immigrant population studies of multiple sclerosis. Acta Neurologica Scandinavica, 2015, 132, 37-41.	2.1	23
58	Comments on the review article â€Time trends in the incidence and prevalence of multiple sclerosis in Norway during eight decades'. Acta Neurologica Scandinavica, 2015, 132, 364-367.	2.1	3
59	Multiple Sclerosis Risk Allele in CLEC16A Acts as an Expression Quantitative Trait Locus for CLEC16A and SOCS1 in CD4+ T Cells. PLoS ONE, 2015, 10, e0132957.	2.5	16
60	A Longitudinal Study of Disability, Cognition and Gray Matter Atrophy in Early Multiple Sclerosis Patients According to Evidence of Disease Activity. PLoS ONE, 2015, 10, e0135974.	2.5	41
61	Genetic variants are major determinants of CSF antibody levels in multiple sclerosis. Brain, 2015, 138, 632-643.	7.6	54
62	No association between multiple sclerosis and periodontitis after adjusting for smoking habits. European Journal of Neurology, 2015, 22, 588-590.	3.3	12
63	Improvement in Fatigue during Natalizumab Treatment is Linked to Improvement in Depression and Day-Time Sleepiness. Frontiers in Neurology, 2015, 6, 18.	2.4	36
64	Eye and hand motor interactions with the Symbol Digit Modalities Test in early multiple sclerosis. Multiple Sclerosis and Related Disorders, 2015, 4, 585-589.	2.0	24
65	Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47, 1107-1113.	21.4	312
66	Reduced perfusion in white matter lesions in multiple sclerosis. European Journal of Radiology, 2015, 84, 2605-2612.	2.6	16
67	Identity-by-descent mapping in a Scandinavian multiple sclerosis cohort. European Journal of Human Genetics, 2015, 23, 688-692.	2.8	17
68	Prevalence of multiple sclerosis among immigrants in Norway. Multiple Sclerosis Journal, 2015, 21, 695-702.	3.0	43
69	Cortical thickness and surface area relate to specific symptoms in early relapsing–remitting multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 402-414.	3.0	79
70	Reply to comment: Month of birth and risk of multiple sclerosis: confounding and adjustments. Annals of Clinical and Translational Neurology, 2014, 1, 376-377.	3.7	1
71	Month of birth and risk of multiple sclerosis: confounding and adjustments. Annals of Clinical and Translational Neurology, 2014, 1, 141-144.	3.7	26
72	Environmental exposures and the risk of multiple sclerosis investigated in a Norwegian case-control study. BMC Neurology, 2014, 14, 196.	1.8	45

#	Article	IF	CITATIONS
73	Multiple sclerosis and seizures: incidence and prevalence over 40Âyears. Acta Neurologica Scandinavica, 2014, 130, 368-373.	2.1	39
74	Oligoclonal bands and age at onset correlate with genetic risk score in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 660-668.	3.0	42
75	High prevalence and no latitude gradient of multiple sclerosis in Norway. Multiple Sclerosis Journal, 2014, 20, 1780-1782.	3.0	41
76	Oligoclonal band phenotypes in MS differ in their HLA class II association, while specific KIR ligands at HLA class I show association to MS in general. Journal of Neuroimmunology, 2014, 274, 174-179.	2.3	7
77	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	21.4	1,213
78	Month of birth as a latitude-dependent risk factor for multiple sclerosis in Norway. Multiple Sclerosis Journal, 2013, 19, 1028-1034.	3.0	38
79	No evidence of association between mutant alleles of the <i>CYP27B1</i> gene and multiple sclerosis. Annals of Neurology, 2013, 73, 430-432.	5.3	46
80	Sex ratio of multiple sclerosis in persons born from 1930 to 1979 and its relation to latitude in Norway. Journal of Neurology, 2013, 260, 1481-1488.	3.6	50
81	Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls. American Journal of Human Genetics, 2013, 92, 854-865.	6.2	164
82	Increased disease severity in nonâ€∢scp>Western immigrants with multiple sclerosis in <scp>O</scp> slo, <scp>N</scp> orway. European Journal of Neurology, 2013, 20, 1546-1552.	3.3	22
83	Oligoclonal Band Status in Scandinavian Multiple Sclerosis Patients Is Associated with Specific Genetic Risk Alleles. PLoS ONE, 2013, 8, e58352.	2.5	45
84	Natalizumab Treatment Reduces Fatigue in Multiple Sclerosis. Results from the TYNERGY Trial; A Study in the Real Life Setting. PLoS ONE, 2013, 8, e58643.	2.5	91
85	Association of Genetic Markers with CSF Oligoclonal Bands in Multiple Sclerosis Patients. PLoS ONE, 2013, 8, e64408.	2.5	27
86	Association between DPP6 polymorphism and the risk of progressive multiple sclerosis in Northern and Southern Europeans. Neuroscience Letters, 2012, 530, 155-160.	2.1	17
87	Importance of Human Leukocyte Antigen (HLA) Class I and II Alleles on the Risk of Multiple Sclerosis. PLoS ONE, 2012, 7, e36779.	2.5	53
88	Bone Turnover and Metabolism in Patients with Early Multiple Sclerosis and Prevalent Bone Mass Deficit: A Population-Based Case-Control Study. PLoS ONE, 2012, 7, e45703.	2.5	28
89	Polymorphisms of the BDNF gene show neither association with multiple sclerosis susceptibility nor clinical course. Journal of Neuroimmunology, 2012, 244, 107-110.	2.3	15
90	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400

#	Article	IF	CITATIONS
91	Genetic Association of Multiple Sclerosis with the Marker rs391745 near the Endogenous Retroviral Locus HERV-Fc1: Analysis of Disease Subtypes. PLoS ONE, 2011, 6, e26438.	2.5	22
92	Alterations in KLRB1 gene expression and a Scandinavian multiple sclerosis association study of the KLRB1 SNP rs4763655. European Journal of Human Genetics, 2011, 19, 1100-1103.	2.8	9
93	Exploring the CLEC16A gene reveals a MS-associated variant with correlation to the relative expression of CLEC16A isoforms in thymus. Genes and Immunity, 2011, 12, 191-198.	4.1	40
94	No influence on disease progression of non-HLA susceptibility genes in MS. Journal of Neuroimmunology, 2011, 237, 98-100.	2.3	6
95	Involvement of the endogenous retroviral locus HERV-Fc1 on the human X-chromosome in multiple sclerosis. Retrovirology, 2011, 8, .	2.0	0
96	Methylprednisolone in combination with interferon beta-1a for relapsing-remitting multiple sclerosis (MECOMBIN study): a multicentre, double-blind, randomised, placebo-controlled, parallel-group trial. Lancet Neurology, The, 2010, 9, 672-680.	10.2	70
97	Association to the Glypican-5 gene in multiple sclerosis. Journal of Neuroimmunology, 2010, 226, 194-197.	2.3	20
98	Two HLA class I genes independently associated with multiple sclerosis. Journal of Neuroimmunology, 2010, 226, 172-176.	2.3	30
99	A rare variant of the TYK2 gene is confirmed to be associated with multiple sclerosis. European Journal of Human Genetics, 2010, 18, 502-504.	2.8	60
100	Lack of support for association between the KIF1B rs10492972[C] variant and multiple sclerosis. Nature Genetics, 2010, 42, 469-470.	21.4	23
101	<i>IL-22RA2</i> Associates with Multiple Sclerosis and Macrophage Effector Mechanisms in Experimental Neuroinflammation. Journal of Immunology, 2010, 185, 6883-6890.	0.8	68
102	Killer immunoglobulinâ€like receptor ligand HLAâ€Bw4 protects against multiple sclerosis. Annals of Neurology, 2009, 65, 658-666.	5.3	55
103	Perceptions of illness and its development in patients with multiple sclerosis: a prospective cohort study. Journal of Advanced Nursing, 2009, 65, 184-192.	3.3	17
104	MYO9B polymorphisms in multiple sclerosis. European Journal of Human Genetics, 2009, 17, 840-843.	2.8	1
105	Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor. European Journal of Human Genetics, 2009, 17, 1309-1313.	2.8	115
106	The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes and Immunity, 2009, 10, 11-14.	4.1	153
107	The SH2D2A gene and susceptibility to multiple sclerosis. Journal of Neuroimmunology, 2008, 197, 152-158.	2.3	14
108	A follow-up study of Nordic multiple sclerosis candidate gene regions. Multiple Sclerosis Journal, 2007, 13, 584-589.	3.0	0

#	Article	IF	CITATIONS
109	Variation in interleukin 7 receptor $\hat{l}\pm$ chain (IL7R) influences risk of multiple sclerosis. Nature Genetics, 2007, 39, 1108-1113.	21.4	441
110	Low frequency of the diseaseâ€associated DRB1*15â€DQB1*06 haplotype may contribute to the low prevalence of multiple sclerosis in Sami. Tissue Antigens, 2007, 69, 299-304.	1.0	34
111	The impact of HLA-A and -DRB1 on age at onset, disease course and severity in Scandinavian multiple sclerosis patients. European Journal of Neurology, 2007, 14, 835-840.	3.3	68
112	X chromosome inactivation in females with multiple sclerosis. European Journal of Neurology, 2007, 14, 1392-1396.	3.3	29
113	Coding region polymorphisms in T cell signal transduction genes. Prevalence and association to development of multiple sclerosis. Journal of Neuroimmunology, 2006, 177, 40-45.	2.3	2
114	Association analysis of the LAG3 and CD4 genes in multiple sclerosis in two independent populations. Journal of Neuroimmunology, 2006, 180, 193-198.	2.3	15
115	Lack of association with the CD28/CTLA4/ICOS gene region among Norwegian multiple sclerosis patients. Journal of Neuroimmunology, 2005, 166, 197-201.	2.3	27
116	Concordance for disease course and age of onset in Scandinavian multiple sclerosis coaffected sib pairs. Multiple Sclerosis Journal, 2004, 10, 5-8.	3.0	5
117	Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens, 2004, 63, 237-247.	1.0	130
118	Depressive symptoms account for deficient information processing speed but not for impaired working memory in early phase multiple sclerosis (MS). Journal of the Neurological Sciences, 2004, 217, 211-216.	0.6	93
119	Two genome-wide linkage disequilibrium screens in Scandinavian multiple sclerosis patients. Journal of Neuroimmunology, 2003, 143, 101-106.	2.3	15
120	The T cell regulator gene SH2D2A contributes to the genetic susceptibility of multiple sclerosis. Genes and Immunity, 2001, 2, 263-268.	4.1	44
121	Sex and age at diagnosis are correlated with the HLA-DR2, DQ6 haplotype in multiple sclerosis. Journal of the Neurological Sciences, 2000, 178, 132-135.	0.6	113