## Elisabeth Gulowsen Celius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6763255/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.                                                                                                                                   | 27.8 | 2,400     |
| 2  | Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature<br>Genetics, 2013, 45, 1353-1360.                                                                                                               | 21.4 | 1,213     |
| 3  | Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility.<br>Science, 2019, 365, .                                                                                                                              | 12.6 | 710       |
| 4  | Variation in interleukin 7 receptor α chain (IL7R) influences risk of multiple sclerosis. Nature Genetics,<br>2007, 39, 1108-1113.                                                                                                                       | 21.4 | 441       |
| 5  | Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nature<br>Neuroscience, 2019, 22, 1617-1623.                                                                                                               | 14.8 | 358       |
| 6  | Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47, 1107-1113.                                                                                                                                            | 21.4 | 312       |
| 7  | Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls. American Journal of Human Genetics, 2013, 92, 854-865.                                                                                           | 6.2  | 164       |
| 8  | The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes and Immunity, 2009,<br>10, 11-14.                                                                                                                                    | 4.1  | 153       |
| 9  | DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nature Communications, 2018, 9, 2397.                                                                                                                    | 12.8 | 147       |
| 10 | Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens, 2004, 63, 237-247.                                                                                          | 1.0  | 130       |
| 11 | Replication analysis identifies TYK2 as a multiple sclerosis susceptibility factor. European Journal of<br>Human Genetics, 2009, 17, 1309-1313.                                                                                                          | 2.8  | 115       |
| 12 | Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.                                                                                                                                           | 28.9 | 115       |
| 13 | Sex and age at diagnosis are correlated with the HLA-DR2, DQ6 haplotype in multiple sclerosis. Journal of the Neurological Sciences, 2000, 178, 132-135.                                                                                                 | 0.6  | 113       |
| 14 | Depressive symptoms account for deficient information processing speed but not for impaired<br>working memory in early phase multiple sclerosis (MS). Journal of the Neurological Sciences, 2004,<br>217, 211-216.                                       | 0.6  | 93        |
| 15 | Natalizumab Treatment Reduces Fatigue in Multiple Sclerosis. Results from the TYNERGY Trial; A Study<br>in the Real Life Setting. PLoS ONE, 2013, 8, e58643.                                                                                             | 2.5  | 91        |
| 16 | Cortical thickness and surface area relate to specific symptoms in early relapsing–remitting multiple sclerosis Journal, 2015, 21, 402-414.                                                                                                              | 3.0  | 79        |
| 17 | Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurology:<br>Genetics, 2016, 2, e87.                                                                                                                            | 1.9  | 76        |
| 18 | Methylprednisolone in combination with interferon beta-1a for relapsing-remitting multiple sclerosis<br>(MECOMBIN study): a multicentre, double-blind, randomised, placebo-controlled, parallel-group trial.<br>Lancet Neurology, The, 2010, 9, 672-680. | 10.2 | 70        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The impact of HLA-A and -DRB1 on age at onset, disease course and severity in Scandinavian multiple sclerosis patients. European Journal of Neurology, 2007, 14, 835-840.                                      | 3.3  | 68        |
| 20 | <i>IL-22RA2</i> Associates with Multiple Sclerosis and Macrophage Effector Mechanisms in Experimental Neuroinflammation. Journal of Immunology, 2010, 185, 6883-6890.                                          | 0.8  | 68        |
| 21 | A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nature Communications, 2019, 10, 2236.                                                | 12.8 | 65        |
| 22 | A rare variant of the TYK2 gene is confirmed to be associated with multiple sclerosis. European<br>Journal of Human Genetics, 2010, 18, 502-504.                                                               | 2.8  | 60        |
| 23 | Killer immunoglobulinâ€like receptor ligand HLAâ€Bw4 protects against multiple sclerosis. Annals of<br>Neurology, 2009, 65, 658-666.                                                                           | 5.3  | 55        |
| 24 | International consensus on quality standards for brain health-focused care in multiple sclerosis.<br>Multiple Sclerosis Journal, 2019, 25, 1809-1818.                                                          | 3.0  | 55        |
| 25 | Genetic variants are major determinants of CSF antibody levels in multiple sclerosis. Brain, 2015, 138, 632-643.                                                                                               | 7.6  | 54        |
| 26 | Importance of Human Leukocyte Antigen (HLA) Class I and II Alleles on the Risk of Multiple Sclerosis.<br>PLoS ONE, 2012, 7, e36779.                                                                            | 2.5  | 53        |
| 27 | Sex ratio of multiple sclerosis in persons born from 1930 to 1979 and its relation to latitude in Norway. Journal of Neurology, 2013, 260, 1481-1488.                                                          | 3.6  | 50        |
| 28 | No evidence of association between mutant alleles of the <i>CYP27B1</i> gene and multiple sclerosis.<br>Annals of Neurology, 2013, 73, 430-432.                                                                | 5.3  | 46        |
| 29 | Deep neural networks learn general and clinically relevant representations of the ageing brain.<br>Neurolmage, 2022, 256, 119210.                                                                              | 4.2  | 46        |
| 30 | Oligoclonal Band Status in Scandinavian Multiple Sclerosis Patients Is Associated with Specific<br>Genetic Risk Alleles. PLoS ONE, 2013, 8, e58352.                                                            | 2.5  | 45        |
| 31 | Environmental exposures and the risk of multiple sclerosis investigated in a Norwegian case-control study. BMC Neurology, 2014, 14, 196.                                                                       | 1.8  | 45        |
| 32 | Early High Efficacy Treatment in Multiple Sclerosis Is the Best Predictor of Future Disease Activity<br>Over 1 and 2 Years in a Norwegian Population-Based Registry. Frontiers in Neurology, 2021, 12, 693017. | 2.4  | 45        |
| 33 | The T cell regulator gene SH2D2A contributes to the genetic susceptibility of multiple sclerosis. Genes and Immunity, 2001, 2, 263-268.                                                                        | 4.1  | 44        |
| 34 | Prevalence of multiple sclerosis among immigrants in Norway. Multiple Sclerosis Journal, 2015, 21,<br>695-702.                                                                                                 | 3.0  | 43        |
| 35 | Oligoclonal bands and age at onset correlate with genetic risk score in multiple sclerosis. Multiple<br>Sclerosis Journal, 2014, 20, 660-668.                                                                  | 3.0  | 42        |
| 36 | High prevalence and no latitude gradient of multiple sclerosis in Norway. Multiple Sclerosis Journal,<br>2014, 20, 1780-1782.                                                                                  | 3.0  | 41        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Longitudinal Study of Disability, Cognition and Gray Matter Atrophy in Early Multiple Sclerosis<br>Patients According to Evidence of Disease Activity. PLoS ONE, 2015, 10, e0135974.                                                                  | 2.5 | 41        |
| 38 | Exploring the CLEC16A gene reveals a MS-associated variant with correlation to the relative expression of CLEC16A isoforms in thymus. Genes and Immunity, 2011, 12, 191-198.                                                                            | 4.1 | 40        |
| 39 | Multiple sclerosis and seizures: incidence and prevalence over 40Âyears. Acta Neurologica<br>Scandinavica, 2014, 130, 368-373.                                                                                                                          | 2.1 | 39        |
| 40 | Humoral immunity to SARS-CoV-2 mRNA vaccination in multiple sclerosis: the relevance of time since<br>last rituximab infusion and first experience from sporadic revaccinations. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2023, 94, 19-22. | 1.9 | 39        |
| 41 | Month of birth as a latitude-dependent risk factor for multiple sclerosis in Norway. Multiple<br>Sclerosis Journal, 2013, 19, 1028-1034.                                                                                                                | 3.0 | 38        |
| 42 | Increased DNA methylation of SLFN12 in CD4+ and CD8+ T cells from multiple sclerosis patients. PLoS ONE, 2018, 13, e0206511.                                                                                                                            | 2.5 | 37        |
| 43 | Improvement in Fatigue during Natalizumab Treatment is Linked to Improvement in Depression and Day-Time Sleepiness. Frontiers in Neurology, 2015, 6, 18.                                                                                                | 2.4 | 36        |
| 44 | The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by vitamin D in CD4+ T cells.<br>Genes and Immunity, 2016, 17, 118-127.                                                                                                       | 4.1 | 35        |
| 45 | Low frequency of the diseaseâ€associated DRB1*15â€DQB1*06 haplotype may contribute to the low prevalence of multiple sclerosis in Sami. Tissue Antigens, 2007, 69, 299-304.                                                                             | 1.0 | 34        |
| 46 | Two HLA class I genes independently associated with multiple sclerosis. Journal of Neuroimmunology, 2010, 226, 172-176.                                                                                                                                 | 2.3 | 30        |
| 47 | X chromosome inactivation in females with multiple sclerosis. European Journal of Neurology, 2007, 14, 1392-1396.                                                                                                                                       | 3.3 | 29        |
| 48 | Infections in patients with multiple sclerosis: Implications for disease-modifying therapy. Acta<br>Neurologica Scandinavica, 2017, 136, 34-36.                                                                                                         | 2.1 | 29        |
| 49 | Bone Turnover and Metabolism in Patients with Early Multiple Sclerosis and Prevalent Bone Mass<br>Deficit: A Population-Based Case-Control Study. PLoS ONE, 2012, 7, e45703.                                                                            | 2.5 | 28        |
| 50 | Lack of association with the CD28/CTLA4/ICOS gene region among Norwegian multiple sclerosis patients. Journal of Neuroimmunology, 2005, 166, 197-201.                                                                                                   | 2.3 | 27        |
| 51 | Chronic fatigue and depression due to multiple sclerosis: Immune-inflammatory pathways, tryptophan<br>catabolites and the gut-brain axis as possible shared pathways. Multiple Sclerosis and Related<br>Disorders, 2020, 46, 102533.                    | 2.0 | 27        |
| 52 | Association of Genetic Markers with CSF Oligoclonal Bands in Multiple Sclerosis Patients. PLoS ONE, 2013, 8, e64408.                                                                                                                                    | 2.5 | 27        |
| 53 | Month of birth and risk of multiple sclerosis: confounding and adjustments. Annals of Clinical and<br>Translational Neurology, 2014, 1, 141-144.                                                                                                        | 3.7 | 26        |
| 54 | Risk of cancer among multiple sclerosis patients, siblings, and population controls: A prospective cohort study. Multiple Sclerosis Journal, 2020, 26, 1569-1580.                                                                                       | 3.0 | 26        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The genetic architecture of human brainstem structures and their involvement in common brain disorders. Nature Communications, 2020, 11, 4016.                                                                                 | 12.8 | 26        |
| 56 | The influence of <scp>THC</scp> : <scp>CBD</scp> oromucosal spray on driving ability in patients with multiple sclerosisâ€related spasticity. Brain and Behavior, 2018, 8, e00962.                                             | 2.2  | 25        |
| 57 | Eye and hand motor interactions with the Symbol Digit Modalities Test in early multiple sclerosis.<br>Multiple Sclerosis and Related Disorders, 2015, 4, 585-589.                                                              | 2.0  | 24        |
| 58 | NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk. Neuron, 2016, 92, 333-335.                                                                                                                                     | 8.1  | 24        |
| 59 | Fatigue and cognition: Pupillary responses to problemâ€solving in early multiple sclerosis patients.<br>Brain and Behavior, 2017, 7, e00717.                                                                                   | 2.2  | 24        |
| 60 | Lack of support for association between the KIF1B rs10492972[C] variant and multiple sclerosis. Nature Genetics, 2010, 42, 469-470.                                                                                            | 21.4 | 23        |
| 61 | Socio-economic factors and immigrant population studies of multiple sclerosis. Acta Neurologica Scandinavica, 2015, 132, 37-41.                                                                                                | 2.1  | 23        |
| 62 | Pregnancy outcomes and postpartum relapse rates in women with RRMS treated with alemtuzumab in<br>the phase 2 and 3 clinical development program over 16 years. Multiple Sclerosis and Related<br>Disorders, 2020, 43, 102146. | 2.0  | 23        |
| 63 | Genetic Association of Multiple Sclerosis with the Marker rs391745 near the Endogenous Retroviral<br>Locus HERV-Fc1: Analysis of Disease Subtypes. PLoS ONE, 2011, 6, e26438.                                                  | 2.5  | 22        |
| 64 | Increased disease severity in nonâ€ <scp>W</scp> estern immigrants with multiple sclerosis in<br><scp>O</scp> slo, <scp>N</scp> orway. European Journal of Neurology, 2013, 20, 1546-1552.                                     | 3.3  | 22        |
| 65 | High prevalence and increasing incidence of multiple sclerosis in the Norwegian county of Buskerud.<br>Acta Neurologica Scandinavica, 2017, 135, 412-418.                                                                      | 2.1  | 21        |
| 66 | Normal antibody response after COVID-19 during treatment with cladribine. Multiple Sclerosis and Related Disorders, 2020, 46, 102476.                                                                                          | 2.0  | 21        |
| 67 | Association to the Glypican-5 gene in multiple sclerosis. Journal of Neuroimmunology, 2010, 226, 194-197.                                                                                                                      | 2.3  | 20        |
| 68 | The diagnostic value of IgG index versus oligoclonal bands in cerebrospinal fluid of patients with<br>multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6,<br>205521731990129.  | 1.0  | 18        |
| 69 | High prevalence of fatigue in contemporary patients with multiple sclerosis. Multiple Sclerosis<br>Journal - Experimental, Translational and Clinical, 2021, 7, 205521732199982.                                               | 1.0  | 18        |
| 70 | Disease Progression in Multiple Sclerosis: A Literature Review Exploring Patient Perspectives. Patient<br>Preference and Adherence, 2021, Volume 15, 15-27.                                                                    | 1.8  | 18        |
| 71 | Perceptions of illness and its development in patients with multiple sclerosis: a prospective cohort study. Journal of Advanced Nursing, 2009, 65, 184-192.                                                                    | 3.3  | 17        |
| 72 | Association between DPP6 polymorphism and the risk of progressive multiple sclerosis in Northern and Southern Europeans. Neuroscience Letters, 2012, 530, 155-160.                                                             | 2.1  | 17        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Identity-by-descent mapping in a Scandinavian multiple sclerosis cohort. European Journal of Human<br>Genetics, 2015, 23, 688-692.                                                                       | 2.8 | 17        |
| 74 | Level of education and multiple sclerosis risk over a 50-year period: Registry-based sibling study.<br>Multiple Sclerosis Journal, 2017, 23, 213-219.                                                    | 3.0 | 17        |
| 75 | Is the hygiene hypothesis relevant for the risk of multiple sclerosis?. Acta Neurologica Scandinavica,<br>2017, 136, 26-30.                                                                              | 2.1 | 17        |
| 76 | Best Practices for Long-Term Monitoring and Follow-Up of Alemtuzumab-Treated MS Patients in Real-World Clinical Settings. Frontiers in Neurology, 2019, 10, 253.                                         | 2.4 | 17        |
| 77 | The course of multiple sclerosis rewritten: a Norwegian population-based study on disease demographics and progression. Journal of Neurology, 2021, 268, 1330-1341.                                      | 3.6 | 17        |
| 78 | Multiple Sclerosis Risk Allele in CLEC16A Acts as an Expression Quantitative Trait Locus for CLEC16A and SOCS1 in CD4+ T Cells. PLoS ONE, 2015, 10, e0132957.                                            | 2.5 | 16        |
| 79 | Reduced perfusion in white matter lesions in multiple sclerosis. European Journal of Radiology, 2015, 84, 2605-2612.                                                                                     | 2.6 | 16        |
| 80 | Bone mineral density in patients with multiple sclerosis, hereditary ataxia or hereditary spastic<br>paraplegia after at least 10Âyears of disease - a case control study. BMC Neurology, 2016, 16, 252. | 1.8 | 16        |
| 81 | Fourteen sequence variants that associate with multiple sclerosis discovered by meta-analysis informed by genetic correlations. Npj Genomic Medicine, 2017, 2, 24.                                       | 3.8 | 16        |
| 82 | Two genome-wide linkage disequilibrium screens in Scandinavian multiple sclerosis patients. Journal of Neuroimmunology, 2003, 143, 101-106.                                                              | 2.3 | 15        |
| 83 | Association analysis of the LAG3 and CD4 genes in multiple sclerosis in two independent populations.<br>Journal of Neuroimmunology, 2006, 180, 193-198.                                                  | 2.3 | 15        |
| 84 | Polymorphisms of the BDNF gene show neither association with multiple sclerosis susceptibility nor clinical course. Journal of Neuroimmunology, 2012, 244, 107-110.                                      | 2.3 | 15        |
| 85 | Incidence of cancer in multiple sclerosis before and after the treatment era– a registry- based cohort study. Multiple Sclerosis and Related Disorders, 2021, 55, 103209.                                | 2.0 | 15        |
| 86 | The SH2D2A gene and susceptibility to multiple sclerosis. Journal of Neuroimmunology, 2008, 197, 152-158.                                                                                                | 2.3 | 14        |
| 87 | No association between multiple sclerosis and periodontitis after adjusting for smoking habits.<br>European Journal of Neurology, 2015, 22, 588-590.                                                     | 3.3 | 12        |
| 88 | Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis. Neuroradiology, 2017, 59, 655-664.                                                          | 2.2 | 11        |
| 89 | Gender Inequities in the Multiple Sclerosis Community: A Call for Action. Annals of Neurology, 2018, 84, 958-959.                                                                                        | 5.3 | 10        |
| 90 | Alterations in KLRB1 gene expression and a Scandinavian multiple sclerosis association study of the<br>KLRB1 SNP rs4763655. European Journal of Human Genetics, 2011, 19, 1100-1103.                     | 2.8 | 9         |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | No differential gene expression for CD4+ T cells of MS patients and healthy controls. Multiple<br>Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731985690.                                                             | 1.0 | 9         |
| 92  | Two cases of diabetes mellitus type 1 after alemtuzumab treatment for multiple sclerosis: another probable secondary autoimmune disease. Journal of Neurology, 2019, 266, 1270-1271.                                                                  | 3.6 | 9         |
| 93  | From genetic associations to functional studies in multiple sclerosis. European Journal of Neurology, 2016, 23, 847-853.                                                                                                                              | 3.3 | 8         |
| 94  | Restriction spectrum imaging of white matter and its relation to neurological disability in multiple sclerosis Journal, 2019, 25, 687-698.                                                                                                            | 3.0 | 8         |
| 95  | Prevalence of multiple sclerosis in rural and urban districts in Telemark county, Norway. Multiple<br>Sclerosis and Related Disorders, 2020, 45, 102352.                                                                                              | 2.0 | 8         |
| 96  | Oligoclonal band phenotypes in MS differ in their HLA class II association, while specific KIR ligands at<br>HLA class I show association to MS in general. Journal of Neuroimmunology, 2014, 274, 174-179.                                           | 2.3 | 7         |
| 97  | Risk of fingolimod rebound after switching to cladribine or rituximab in multiple sclerosis. Multiple<br>Sclerosis and Related Disorders, 2022, 62, 103812.                                                                                           | 2.0 | 7         |
| 98  | No influence on disease progression of non-HLA susceptibility genes in MS. Journal of Neuroimmunology, 2011, 237, 98-100.                                                                                                                             | 2.3 | 6         |
| 99  | Maternal education has significant influence on progression in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 53, 103052.                                                                                                        | 2.0 | 6         |
| 100 | Effect of desire for pregnancy on decisions to escalate treatment in multiple sclerosis care:<br>Differences between MS specialists and non-MS specialists. Multiple Sclerosis and Related Disorders,<br>2022, 57, 103389.                            | 2.0 | 6         |
| 101 | Sensor-based gait analyses of the six-minute walk test identify qualitative improvement in gait<br>parameters of people with multiple sclerosis after rehabilitation. Journal of Neurology, 2022, 269,<br>3723-3734.                                  | 3.6 | 6         |
| 102 | Concordance for disease course and age of onset in Scandinavian multiple sclerosis coaffected sib<br>pairs. Multiple Sclerosis Journal, 2004, 10, 5-8.                                                                                                | 3.0 | 5         |
| 103 | Fatigue in multiple sclerosis is associated with socioeconomic factors. Multiple Sclerosis and Related Disorders, 2022, 64, 103955.                                                                                                                   | 2.0 | 5         |
| 104 | Quality of Life Improves with Alemtuzumab Over 6ÂYears in Relapsing-Remitting Multiple Sclerosis<br>Patients with or without Autoimmune Thyroid Adverse Events: Post Hoc Analysis of the CARE-MS<br>Studies. Neurology and Therapy, 2020, 9, 443-457. | 3.2 | 4         |
| 105 | Management of Severe Graves' Hyperthyroidism in Pregnancy Following Immune Reconstitution<br>Therapy in Multiple Sclerosis. Journal of the Endocrine Society, 2021, 5, bvab044.                                                                       | 0.2 | 4         |
| 106 | Association of adverse childhood experiences with the development of multiple sclerosis. Journal of<br>Neurology, Neurosurgery and Psychiatry, 2022, 93, 645-650.                                                                                     | 1.9 | 4         |
| 107 | Comments on the review article â€~Time trends in the incidence and prevalence of multiple sclerosis in<br>Norway during eight decades'. Acta Neurologica Scandinavica, 2015, 132, 364-367.                                                            | 2.1 | 3         |
| 108 | State of the Art and Future Challenges in Multiple Sclerosis Research and Medical Management: An<br>Insight into the 5th International Porto Congress of Multiple Sclerosis. Neurology and Therapy, 2020,<br>9, 281-300.                              | 3.2 | 3         |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The influence of socioeconomic factors on access to disease modifying treatment in a Norwegian multiple sclerosis cohort. Multiple Sclerosis and Related Disorders, 2022, 61, 103759.                                                                          | 2.0 | 3         |
| 110 | Exploring Retinal Blood Vessel Diameters as Biomarkers in Multiple Sclerosis. Journal of Clinical Medicine, 2022, 11, 3109.                                                                                                                                    | 2.4 | 3         |
| 111 | Coding region polymorphisms in T cell signal transduction genes. Prevalence and association to development of multiple sclerosis. Journal of Neuroimmunology, 2006, 177, 40-45.                                                                                | 2.3 | 2         |
| 112 | Neurodegenerative Interplay of Cardiovascular Autonomic Dysregulation and the Retina in Early<br>Multiple Sclerosis. Frontiers in Neurology, 2019, 10, 507.                                                                                                    | 2.4 | 2         |
| 113 | CD8+ T cell gene expression analysis identifies differentially expressed genes between multiple<br>sclerosis patients and healthy controls. Multiple Sclerosis Journal - Experimental, Translational and<br>Clinical, 2020, 6, 205521732097851.                | 1.0 | 2         |
| 114 | No significant differences in absenteeism or academic achievements in a Norwegian multiple sclerosis case control study. Multiple Sclerosis and Related Disorders, 2021, 54, 103141.                                                                           | 2.0 | 2         |
| 115 | MYO9B polymorphisms in multiple sclerosis. European Journal of Human Genetics, 2009, 17, 840-843.                                                                                                                                                              | 2.8 | 1         |
| 116 | Reply to comment: Month of birth and risk of multiple sclerosis: confounding and adjustments.<br>Annals of Clinical and Translational Neurology, 2014, 1, 376-377.                                                                                             | 3.7 | 1         |
| 117 | Oral Cladribine in Patients who Change From First-Line Disease Modifying Treatments for Multiple<br>Sclerosis: Protocol of a Prospective Effectiveness and Safety Study (CLAD CROSS). Journal of Central<br>Nervous System Disease, 2022, 14, 117957352110694. | 1.9 | 1         |
| 118 | Abuse and revictimization in adulthood in multiple sclerosis: a cross-sectional study during pregnancy. Journal of Neurology, 2022, 269, 5901-5909.                                                                                                            | 3.6 | 1         |
| 119 | A follow-up study of Nordic multiple sclerosis candidate gene regions. Multiple Sclerosis Journal, 2007, 13, 584-589.                                                                                                                                          | 3.0 | 0         |
| 120 | Involvement of the endogenous retroviral locus HERV-Fc1 on the human X-chromosome in multiple sclerosis. Retrovirology, 2011, 8, .                                                                                                                             | 2.0 | 0         |
| 121 | Breastfeeding and treatment of multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 801-802.                                                                                                                                                              | 3.0 | 0         |