
Chunhe Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6763138/publications.pdf Version: 2024-02-01

Снимне Ц

55

#	Article	IF	CITATIONS
1	Energy Landscape Analysis of the Epithelial-Mesenchymal Transition Network. Methods in Molecular Biology, 2022, 2488, 145-157.	0.9	Ο
2	Landscape and flux quantify the stochastic transition dynamics for p53 cell fate decision. Journal of Chemical Physics, 2021, 154, 025101.	3.0	7
3	Revealing the mechanism of lymphoid and myeloid cell differentiation and transdifferentiation through landscape quantification. Physical Review Research, 2021, 3, .	3.6	2
4	A Dimension Reduction Approach for Energy Landscape: Identifying Intermediate States in Metabolismâ€EMT Network. Advanced Science, 2021, 8, 2003133.	11.2	24
5	Landscape and kinetic path quantify critical transitions in epithelial-mesenchymal transition. Biophysical Journal, 2021, 120, 4484-4500.	0.5	23
6	Quantifying the Landscape of Decision Making From Spiking Neural Networks. Frontiers in Computational Neuroscience, 2021, 15, 740601.	2.1	7
7	Uncovering the cell fate decision in lysis–lysogeny transition and stem cell development via Markov state modeling. Journal of Chemical Physics, 2021, 155, 245101.	3.0	2
8	Quantifying the Landscape and Transition Paths for Proliferation–Quiescence Fate Decisions. Journal of Clinical Medicine, 2020, 9, 2582.	2.4	2
9	Landscape inferred from gene expression data governs pluripotency in embryonic stem cells. Computational and Structural Biotechnology Journal, 2020, 18, 366-374.	4.1	6
10	Quantifying the interplay between genetic and epigenetic regulations in stem cell development. New Journal of Physics, 2019, 21, 103042.	2.9	12
11	Landscape and flux govern cellular mode-hopping between oscillations. Journal of Chemical Physics, 2019, 151, 175101.	3.0	6
12	An enriched network motif family regulates multistep cell fate transitions with restricted reversibility. PLoS Computational Biology, 2019, 15, e1006855.	3.2	37
13	Exposing the Underlying Relationship of Cancer Metastasis to Metabolism and Epithelial-Mesenchymal Transitions. IScience, 2019, 21, 754-772.	4.1	33
14	Landscape of gene networks for random parameter perturbation. Integrative Biology (United) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 222
15	A landscape view on the interplay between EMT and cancer metastasis. Npj Systems Biology and Applications, 2018, 4, 34.	3.0	66
16	Landscape reveals critical network structures for sharpening gene expression boundaries. BMC Systems Biology, 2018, 12, 67.	3.0	18
17	Identifying the optimal anticancer targets from the landscape of a cancer–immunity interaction network. Physical Chemistry Chemical Physics, 2017, 19, 7642-7651.	2.8	22

18Quantifying the landscape and kinetic paths for epithelial–mesenchymal transition from a core
circuit. Physical Chemistry Chemical Physics, 2016, 18, 17949-17956.2.8

Chunhe Li

#	Article	IF	CITATIONS
19	A self-enhanced transport mechanism through long noncoding RNAs for X chromosome inactivation. Scientific Reports, 2016, 6, 31517.	3.3	8
20	An isomer of a POM-based hybrid compound formed through different linkage between Cul ions and pyrazine. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 84, 203-208.	1.6	2
21	Quantifying the Landscape for Development and Cancer from a Core Cancer Stem Cell Circuit. Cancer Research, 2015, 75, 2607-2618.	0.9	77
22	Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14130-14135.	7.1	115
23	Quantifying the underlying landscape and paths of cancer. Journal of the Royal Society Interface, 2014, 11, 20140774.	3.4	68
24	Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths. PLoS Computational Biology, 2013, 9, e1003165.	3.2	155
25	Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation. Journal of the Royal Society Interface, 2013, 10, 20130787.	3.4	73
26	Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations. Journal of Chemical Physics, 2012, 136, 194108.	3.0	20
27	Landscape Topography Determines Global Stability and Robustness of a Metabolic Network. ACS Synthetic Biology, 2012, 1, 229-239.	3.8	10
28	Landscape, Flux, Correlation, Resonance, Coherence, Stability, and Key Network Wirings of Stochastic Circadian Oscillation. Biophysical Journal, 2011, 101, 1335-1344.	0.5	22
29	An FPT Approach for Predicting Protein Localization from Yeast Genomic Data. PLoS ONE, 2011, 6, e14449.	2.5	3
30	Potential Landscape and Probabilistic Flux of a Predator Prey Network. PLoS ONE, 2011, 6, e17888.	2.5	17
31	Landscape and flux decomposition for exploring global natures of non-equilibrium dynamical systems under intrinsic statistical fluctuations. Chemical Physics Letters, 2011, 505, 75-80.	2.6	22
32	Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8195-8200.	7.1	93
33	Uncovering the rules for protein-protein interactions from yeast genomic data. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3752-3757.	7.1	19
34	Unraveling the stochastic transition mechanism between oscillation states by landscape and minimum action path theory. Physical Chemistry Chemical Physics, 0, , .	2.8	0