Ivano Amelio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6762731/publications.pdf

Version: 2024-02-01

109321 13,539 80 35 citations h-index papers

80 g-index 81 81 81 26521 docs citations times ranked citing authors all docs

62596

#	Article	IF	Citations
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
3	Serine and glycine metabolism in cancer. Trends in Biochemical Sciences, 2014, 39, 191-198.	7.5	801
4	The hypoxic tumour microenvironment. Oncogenesis, 2018, 7, 10.	4.9	722
5	Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death and Disease, 2019, 10, 540.	6.3	339
6	Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death and Disease, 2014, 5, e1018-e1018.	6.3	160
7	The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression. Trends in Biochemical Sciences, 2015, 40, 425-434.	7.5	123
8	High throughput screening for inhibitors of the HECT ubiquitin E3 ligase ITCH identifies antidepressant drugs as regulators of autophagy. Cell Death and Disease, 2014, 5, e1203-e1203.	6.3	108
9	p73 regulates serine biosynthesis in cancer. Oncogene, 2014, 33, 5039-5046.	5.9	102
10	p53 mutants cooperate with HIF-1 in transcriptional regulation of extracellular matrix components to promote tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10869-E10878.	7.1	102
11	Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. Cancer Letters, 2017, 406, 93-104.	7.2	93
12	TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor $1\hat{l}_{\pm}$ degradation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 226-231.	7.1	91
13	TAp73 is required for spermatogenesis and the maintenance of male fertility. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1843-1848.	7.1	89
14	Vascular ageing and endothelial cell senescence: Molecular mechanisms of physiology and diseases. Mechanisms of Ageing and Development, 2016, 159, 14-21.	4.6	89
15	miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. Journal of Cell Biology, 2012, 199, 347-363.	5.2	87
16	DRUGSURV: a resource for repositioning of approved and experimental drugs in oncology based on patient survival information. Cell Death and Disease, 2014, 5, e1051-e1051.	6.3	85
17	Regulation of Adult Neurogenesis in Mammalian Brain. International Journal of Molecular Sciences, 2020, 21, 4869.	4.1	82
18	GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle, 2013, 12, 3564-3573.	2.6	78

#	Article	lF	CITATIONS
19	Cell death pathology: Cross-talk with autophagy and its clinical implications. Biochemical and Biophysical Research Communications, 2011, 414, 277-281.	2.1	72
20	Bioinformatics analysis of the serine and glycine pathway in cancer cells. Oncotarget, 2014, 5, 11004-11013.	1.8	71
21	miR-24 affects hair follicle morphogenesis targeting Tcf-3. Cell Death and Disease, 2013, 4, e922-e922.	6.3	63
22	MicroRNAs and p63 in epithelial stemness. Cell Death and Differentiation, 2015, 22, 12-21.	11.2	63
23	Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism. Cell Death and Differentiation, 2018, 25, 144-153.	11.2	63
24	Do Mutations Turn p53 into an Oncogene?. International Journal of Molecular Sciences, 2019, 20, 6241.	4.1	55
25	Global mapping of cancers: The Cancer Genome Atlas and beyond. Molecular Oncology, 2021, 15, 2823-2840.	4.6	55
26	p53-Mediated Tumor Suppression: DNA-Damage Response and Alternative Mechanisms. Cancers, 2019, 11, 1983.	3.7	53
27	Liquid biopsies and cancer omics. Cell Death Discovery, 2020, 6, 131.	4.7	52
28	Emerging roles of long non-coding RNAs in breast cancer biology and management. Seminars in Cancer Biology, 2021, 72, 36-45.	9.6	52
29	p63 the guardian of human reproduction. Cell Cycle, 2012, 11, 4545-4551.	2.6	51
30	p73 Alternative Splicing: Exploring a Biological Role for the C-Terminal Isoforms. Journal of Molecular Biology, 2018, 430, 1829-1838.	4.2	51
31	Metabolic effect of TAp63î±: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget, 2014, 5, 7722-7733.	1.8	50
32	Caspase-1 is a novel target of p63 in tumor suppression. Cell Death and Disease, 2013, 4, e645-e645.	6.3	46
33	SynTarget: an online tool to test the synergetic effect of genes on survival outcome in cancer. Cell Death and Differentiation, 2016, 23, 912-912.	11.2	46
34	TAp73 promotes anabolism. Oncotarget, 2014, 5, 12820-12834.	1.8	40
35	Cell death pathologies: targeting death pathways and the immune system for cancer therapy. Genes and Immunity, 2019, 20, 539-554.	4.1	39
36	Context is everything: extrinsic signalling and gain-of-function p53 mutants. Cell Death Discovery, 2020, 6, 16.	4.7	38

#	Article	IF	CITATIONS
37	Cancer predictive studies. Biology Direct, 2020, 15, 18.	4.6	37
38	Elevated Expression of the Tyrosine Phosphatase SHP-1 Defines a Subset of High-Grade Breast Tumors. Oncology, 2009, 77, 378-384.	1.9	35
39	TAp73 contributes to the oxidative stress response by regulating protein synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6219-6224.	7.1	32
40	ZNF750 represses breast cancer invasion via epigenetic control of prometastatic genes. Oncogene, 2020, 39, 4331-4343.	5.9	32
41	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	11.2	31
42	Understanding p53 tumour suppressor network. Biology Direct, 2021, 16, 14.	4.6	31
43	Skn-1a/Oct-11 and î"Np63î± exert antagonizing effects on human keratin expression. Biochemical and Biophysical Research Communications, 2010, 401, 568-573.	2.1	30
44	Tissue-specific expression of p73 C-terminal isoforms in mice. Cell Cycle, 2012, 11, 4474-4483.	2.6	28
45	TAp73 upregulates IL- \hat{l}^2 in cancer cells: Potential biomarker in lung and breast cancer?. Biochemical and Biophysical Research Communications, 2017, 482, 498-505.	2.1	25
46	p63 transcriptionally regulates the expression of matrix metallopeptidase 13. Oncotarget, 2014, 5, 1279-1289.	1.8	23
47	The p63 C-terminus is essential for murine oocyte integrity. Nature Communications, 2021, 12, 383.	12.8	23
48	Polypharmacology of Approved Anticancer Drugs. Current Drug Targets, 2017, 18, 534-543.	2.1	22
49	The sterile alpha-motif (SAM) domain of p63 binds in vitro monoasialoganglioside (GM1) micelles. Biochemical Pharmacology, 2011, 82, 1262-1268.	4.4	21
50	Peritoneal expression of matrilysin helps identify early post-operative recurrence of colorectal cancer. Oncotarget, 2015, 6, 13402-13415.	1.8	21
51	Integrin- \hat{l}^2 4 is a novel transcriptional target of TAp73. Cell Cycle, 2018, 17, 589-594.	2.6	19
52	The C terminus of p73 is essential for hippocampal development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15694-15701.	7.1	19
53	Thromboembolism after COVID-19 vaccine in patients with preexisting thrombocytopenia. Cell Death and Disease, 2021, 12, 762.	6.3	19
54	p53-driven lipidome influences non-cell-autonomous lysophospholipids in pancreatic cancer. Biology Direct, 2022, 17, 6.	4.6	19

#	Article	IF	CITATIONS
55	NUAK2 and RCan2 participate in the p53 mutant pro-tumorigenic network. Biology Direct, 2021, 16, 11.	4.6	16
56	The " <i>Sharpâ€</i> blade against HIF-mediated metastasis. Cell Cycle, 2012, 11, 4530-4535.	2.6	15
57	TAp73 transcriptionally represses BNIP3 expression. Cell Cycle, 2015, 14, 2484-2493.	2.6	14
58	Commensal microbes and p53 in cancer progression. Biology Direct, 2020, 15, 25.	4.6	14
59	Recent advances in cancer immunotherapy. Discover Oncology, 2021, 12, 27.	2.1	14
60	Exploiting tumour addiction with a serine and glycine-free diet. Cell Death and Differentiation, 2017, 24, 1311-1313.	11.2	13
61	Shp2 in PC12 cells: NGF versus EGF signalling. Cellular Signalling, 2007, 19, 1193-1200.	3.6	12
62	Epigenetic "Drivers―of Cancer. Journal of Molecular Biology, 2021, 433, 167094.	4.2	12
63	Serological determinants of COVID-19. Biology Direct, 2020, 15, 21.	4.6	11
64	Polypharmacology of small molecules targeting the ubiquitin-proteasome and ubiquitin-like systems. Oncotarget, 2015, 6, 9646-9656.	1.8	10
65	p53MutaGene: an online tool to estimate the effect of p53 mutational status on gene regulation in cancer. Cell Death and Disease, 2016, 7, e2148-e2148.	6.3	9
66	p53 mutations define the chromatin landscape to confer drug tolerance in pancreatic cancer. Molecular Oncology, 2022, 16, 1259-1271.	4.6	9
67	How mutant p53 empowers Foxh1 fostering leukaemogenesis?. Cell Death Discovery, 2019, 5, 108.	4.7	8
68	No Time to Die: How Kidney Cancer Evades Cell Death. International Journal of Molecular Sciences, 2022, 23, 6198.	4.1	8
69	p63 Adjusts Sugar Taste of EpidermalÂLayers. Journal of Investigative Dermatology, 2017, 137, 1204-1206.	0.7	7
70	Genes versus Environment: cytoplasmic BAP1 determines the toxic response to environmental stressors in mesothelioma. Cell Death and Disease, 2017, 8, e2907-e2907.	6.3	7
71	P73 C-terminus is dispensable for multiciliogenesis. Cell Cycle, 2020, 19, 1833-1845.	2.6	7
72	Serine and one-carbon metabolisms bring new therapeutic venues in prostate cancer. Discover Oncology, 2021, 12, 45.	2.1	7

#	Article	IF	Citations
73	CRISPR: a new method for genetic engineering – A prokaryotic immune component may potentially open a new era of gene silencing. Cell Death and Differentiation, 2015, 22, 3-5.	11.2	6
74	Glutathione–AllyIsulfur Conjugates as Mesenchymal Stem Cells Stimulating Agents for Potential Applications in Tissue Repair. International Journal of Molecular Sciences, 2020, 21, 1638.	4.1	5
75	TAp73 regulates ATP7A: possible implications for ageing-related diseases. Aging, 2018, 10, 3745-3760.	3.1	4
76	Sustained protein synthesis and reduced eEF2K levels in TAp73 ⁻ mice brain: a possible compensatory mechanism. Cell Cycle, 2018, 17, 2637-2643.	2.6	4
77	Bispecific antibodies come to the aid of cancer immunotherapy. Molecular Oncology, 2021, 15, 1759-1763.	4.6	3
78	Perspective on Multi-Target Antiplatelet Therapies: High Content Phenotypic Screening as an Unbiased Source of Novel Polypharmacological Strategies. Mini-Reviews in Medicinal Chemistry, 2015, 15, 622-629.	2.4	3
79	Similar Domains for Different Regulations of p53 Family. Structure, 2018, 26, 1047-1049.	3.3	1
80	Damage limitation. ELife, 2016, 5, .	6.0	0