
Ines Heiland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6761741/publications.pdf Version: 2024-02-01

INES HEILAND

#	Article	IF	CITATIONS
1	Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nature Chemical Biology, 2013, 9, 693-700.	8.0	203
2	Proteomic Analysis of the Eyespot of Chlamydomonas reinhardtii Provides Novel Insights into Its Components and Tactic Movements. Plant Cell, 2006, 18, 1908-1930.	6.6	169
3	Biogenesis of peroxisomes. FEBS Journal, 2005, 272, 2362-2372.	4.7	132
4	Effect of substrate competition in kinetic models of metabolic networks. FEBS Letters, 2013, 587, 2818-2824.	2.8	65
5	G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling. Cell, 2021, 184, 655-674.e27.	28.9	65
6	Upregulation of tryptophanyl-tRNA synthethase adapts human cancer cells to nutritional stress caused by tryptophan degradation. Oncolmmunology, 2018, 7, e1486353.	4.6	62
7	Analysis of the Phosphoproteome of Chlamydomonas reinhardtii Provides New Insights into Various Cellular Pathways. Eukaryotic Cell, 2006, 5, 457-468.	3.4	60
8	Keeping the balance in NAD metabolism. Biochemical Society Transactions, 2019, 47, 119-130.	3.4	58
9	Human long intrinsically disordered protein regions are frequent targets of positive selection. Genome Research, 2018, 28, 975-982.	5.5	57
10	The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner. Life Science Alliance, 2019, 2, e201800257.	2.8	49
11	Model of Tryptophan Metabolism, Readily Scalable Using Tissue-specific Gene Expression Data. Journal of Biological Chemistry, 2013, 288, 34555-34566.	3.4	48
12	NAD ⁺ biosynthesis and salvage – a phylogenetic perspective. FEBS Journal, 2012, 279, 3355-3363.	4.7	47
13	Dynamics of NAD-metabolism: everything but constant. Biochemical Society Transactions, 2015, 43, 1127-1132.	3.4	45
14	Identification of evolutionary and kinetic drivers of NAD-dependent signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15957-15966.	7.1	43
15	Quantitative Model of Cell Cycle Arrest and Cellular Senescence in Primary Human Fibroblasts. PLoS ONE, 2012, 7, e42150.	2.5	31
16	Suppression of indoleamine-2,3-dioxygenase 1 expression by promoter hypermethylation in ER-positive breast cancer. Oncolmmunology, 2017, 6, e1274477.	4.6	30
17	Hypoxia Inducible Factor 1α Inhibits the Expression of Immunosuppressive Tryptophan-2,3-Dioxygenase in Glioblastoma. Frontiers in Immunology, 2019, 10, 2762.	4.8	22
18	Temperature compensation and entrainment in circadian rhythms. Physical Biology, 2012, 9, 036011.	1.8	21

INES HEILAND

#	Article	IF	CITATIONS
19	Multi-scale modeling of drug binding kinetics to predict drug efficacy. Cellular and Molecular Life Sciences, 2020, 77, 381-394.	5.4	19
20	Systems biology: current status and challenges. Cellular and Molecular Life Sciences, 2020, 77, 379-380.	5.4	18
21	Welcome to the Family: Identification of the NAD+ Transporter of Animal Mitochondria as Member of the Solute Carrier Family SLC25. Biomolecules, 2021, 11, 880.	4.0	18
22	Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma. Theranostics, 2021, 11, 9217-9233.	10.0	16
23	The evolution of the plastid phosphate translocator family. Planta, 2019, 250, 245-261.	3.2	11
24	Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii. Journal of Biological Physics, 2012, 38, 449-464.	1.5	9
25	SBMLmod: a Python-based web application and web service for efficient data integration and model simulation. BMC Bioinformatics, 2017, 18, 314.	2.6	8
26	Biochemical Frequency Control by Synchronisation of Coupled Repressilators: AnIn SilicoStudy of Modules for Circadian Clock Systems. Computational Intelligence and Neuroscience, 2011, 2011, 1-9.	1.7	7
27	Calculating activation energies for temperature compensation in circadian rhythms. Physical Biology, 2011, 8, 056007.	1.8	7
28	Hypoxia Routes Tryptophan Homeostasis Towards Increased Tryptamine Production. Frontiers in Immunology, 2021, 12, 590532.	4.8	6
29	Predicting the Physiological Role of Circadian Metabolic Regulation in the Green Alga Chlamydomonas reinhardtii. PLoS ONE, 2011, 6, e23026.	2.5	6
30	Topogenesis of peroxisomal proteins does not require a functional cytoplasm-to-vacuole transport. European Journal of Cell Biology, 2005, 84, 799-807.	3.6	5
31	Chemical Analog Computers for Clock Frequency Control Based on P Modules. Lecture Notes in Computer Science, 2012, , 182-202.	1.3	5
32	Improving the accuracy of expression data analysis in time course experiments using resampling. BMC Bioinformatics, 2014, 15, 352.	2.6	4
33	Modelling Signalling Networks with Incomplete Information about Protein Activation States: A P System Framework of the KaiABC Oscillator. Lecture Notes in Computer Science, 2010, , 316-334.	1.3	4
34	Early Evolutionary Selection of NAD Biosynthesis Pathway in Bacteria. Metabolites, 2022, 12, 569.	2.9	3
35	Combined Metabolic and Chemical (CoMetChem) Labeling Using Stable Isotopes—a Strategy to Reveal Site-Specific Histone Acetylation and Deacetylation Rates by LC–MS. Analytical Chemistry, 2021, 93, 12872-12880.	6.5	2
36	Natural isotope correction improves analysis of protein modification dynamics. Analytical and Bioanalytical Chemistry, 2021, 413, 7333-7340.	3.7	2

#	Article	IF	CITATIONS
37	Investigation of Peroxisome Biogenesis Revealed Possible New Roles for Autophagy Components. Autophagy, 2006, 2, 209-211.	9.1	1