Graham Rena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6760091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The mechanisms of action of metformin. Diabetologia, 2017, 60, 1577-1585.	6.3	1,421
2	Phosphorylation of the Transcription Factor Forkhead Family Member FKHR by Protein Kinase B. Journal of Biological Chemistry, 1999, 274, 17179-17183.	3.4	639
3	Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circulation Research, 2016, 119, 652-665.	4.5	498
4	Phosphorylation of Serine 256 by Protein Kinase B Disrupts Transactivation by FKHR and Mediates Effects of Insulin on Insulin-like Growth Factor-binding Protein-1 Promoter Activity through a Conserved Insulin Response Sequence. Journal of Biological Chemistry, 1999, 274, 17184-17192.	3.4	491
5	Molecular mechanism of action of metformin: old or new insights?. Diabetologia, 2013, 56, 1898-1906.	6.3	376
6	The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochemical Journal, 2001, 355, 597-607.	3.7	247
7	D4476, a cellâ€permeant inhibitor of CK1, suppresses the siteâ€specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Reports, 2004, 5, 60-65.	4.5	232
8	Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochemical Journal, 2001, 354, 605-612.	3.7	227
9	Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO Journal, 2002, 21, 2263-2271.	7.8	205
10	Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association–European Society of Cardiology. European Heart Journal, 2018, 39, 4243-4254.	2.2	171
11	Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochemical Journal, 2001, 354, 605.	3.7	152
12	Metformin selectively targets redox control of complex I energy transduction. Redox Biology, 2018, 14, 187-197.	9.0	115
13	Repurposing Metformin for Cardiovascular Disease. Circulation, 2018, 137, 422-424.	1.6	100
14	Membrane Localization of Cyclic Nucleotide Phosphodiesterase 3 (PDE3). Journal of Biological Chemistry, 2000, 275, 38749-38761.	3.4	94
15	Cellular Responses to the Metal-Binding Properties of Metformin. Diabetes, 2012, 61, 1423-1433.	0.6	85
16	Molecular Cloning, Genomic Positioning, Promoter Identification, and Characterization of the Novel Cyclic AMP-Specific Phosphodiesterase PDE4A10. Molecular Pharmacology, 2001, 59, 996-1011.	2.3	70
17	Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1a and elicits cellular responses in the presence and absence of insulin. Cellular Signalling, 2007, 19, 378-383.	3.6	63
18	Black tea polyphenols mimic insulin/insulinâ€like growth factorâ€1 signalling to the longevity factor FOXO1a. Aging Cell, 2008, 7, 69-77.	6.7	50

GRAHAM RENA

#	Article	IF	CITATIONS
19	Biomolecular Mode of Action of Metformin in Relation to Its Copper Binding Properties. Biochemistry, 2014, 53, 787-795.	2.5	46
20	ldentification and characterization of the human homologue of the short PDE4A cAMP-specific phosphodiesterase RD1 (PDE4A1) by analysis of the human HSPDE4A gene locus located at chromosome 19p13.2. Biochemical Journal, 1998, 333, 693-703.	3.7	45
21	Insulin Regulation of Insulin-like Growth Factor-binding Protein-1 Gene Expression Is Dependent on the Mammalian Target of Rapamycin, but Independent of Ribosomal S6 Kinase Activity. Journal of Biological Chemistry, 2002, 277, 9889-9895.	3.4	40
22	Intracellular localization of the PDE4A cAMP-specific phosphodiesterase splice variant RD1 (RNPDE4A1A) in stably transfected human thyroid carcinoma FTC cell lines. Biochemical Journal, 1997, 321, 177-185.	3.7	36
23	Left Ventricular Hypertrophy in Diabetic Cardiomyopathy: A Target for Intervention. Frontiers in Cardiovascular Medicine, 2021, 8, 746382.	2.4	23
24	Zinc-dependent effects of small molecules on the insulin-sensitive transcription factor FOXO1a and gluconeogenic genes. Metallomics, 2010, 2, 195-203.	2.4	21
25	The copper binding properties of metformin – QCM-D, XPS and nanobead agglomeration. Chemical Communications, 2015, 51, 17313-17316.	4.1	20
26	Receptor-mediated stimulation of lipid signalling pathways in CHO cells elicits the rapid transient induction of the PDE1B isoform of Ca2+/calmodulin-stimulated cAMP phosphodiesterase. Biochemical Journal, 1997, 321, 157-163.	3.7	19
27	Salicylic acid: old and new implications for the treatment of type 2 diabetes?. Diabetology International, 2014, 5, 212-218.	1.4	16
28	Antagonistic effects of phorbol esters on insulin regulation of insulin-like growth factor-binding protein-1 (IGFBP-1) but not glucose-6-phosphatase gene expression. Biochemical Journal, 2001, 359, 611-619.	3.7	15
29	Molecular action and pharmacogenetics of metformin: current understanding of an old drug. Diabetes Management, 2012, 2, 439-452.	0.5	15
30	Editorial: Metformin: Beyond Diabetes. Frontiers in Endocrinology, 2019, 10, 851.	3.5	12
31	Metformin: still the sweet spot for CV protection in diabetes?. Current Opinion in Pharmacology, 2020, 54, 202-208.	3.5	11
32	Antagonistic effects of phorbol esters on insulin regulation of insulin-like growth factor-binding protein-1 (IGFBP-1) but not glucose-6-phosphatase gene expression. Biochemical Journal, 2001, 359, 611.	3.7	10
33	Regulation of hepatic glucose production and AMPK by AICAR but not by metformin depends on drug uptake through the equilibrative nucleoside transporter 1 (ENT1). Diabetes, Obesity and Metabolism, 2018, 20, 2748-2758.	4.4	10
34	Upregulation of cAMP-specific PDE-4 activity following ligation of the TCR complex on thymocytes is blocked by selective inhibitors of protein kinase C and tyrosyl kinases. Cell Biochemistry and Biophysics, 1998, 28, 161-185.	1.8	9
35	The anti-neurodegenerative agent clioquinol regulates the transcription factor FOXO1a. Biochemical Journal, 2012, 443, 57-64.	3.7	9
36	Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1412-1422.	3.8	8

#	Article	IF	CITATIONS
37	New Evidence for the Mechanism of Action of a Type-2 Diabetes Drug Using a Magnetic Bead-Based Automated Biosensing Platform. ACS Sensors, 2017, 2, 1329-1336.	7.8	7
38	In a cohort of individuals with type 2 diabetes using the drug sulfasalazine, HbA 1c lowering is associated with haematological changes. Diabetic Medicine, 2020, 38, e14463.	2.3	1