
Nicolas L Dzamko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6760036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemoselective Bioconjugation of Amyloidogenic Protein Antigens to PEGylated Microspheres Enables Detection of α-Synuclein Autoantibodies in Human Plasma. Bioconjugate Chemistry, 2022, , .	3.6	0
2	Effect of LRRK2 protein and activity on stimulated cytokines in human monocytes and macrophages. Npj Parkinson's Disease, 2022, 8, 34.	5.3	18
3	Immune responses in the Parkinson's disease brain. Neurobiology of Disease, 2022, 168, 105700.	4.4	30
4	Sex-specific lipid dysregulation in the <i>Abca7</i> knockout mouse brain. Brain Communications, 2022, 4, .	3.3	4
5	Lipid pathway dysfunction is prevalent in patients with Parkinson's disease. Brain, 2022, 145, 3472-3487.	7.6	25
6	A small molecule toll-like receptor antagonist rescues α-synuclein fibril pathology. Journal of Biological Chemistry, 2022, 298, 102260.	3.4	6
7	Cytokines and Gaucher Biomarkers in Glucocerebrosidase Carriers with and Without Parkinson Disease. Movement Disorders, 2021, 36, 1451-1455.	3.9	17
8	Singleâ€Molecule Counting Coupled to Rapid Amplification Enables Detection of αâ€&ynuclein Aggregates in Cerebrospinal Fluid of Parkinson's Disease Patients. Angewandte Chemie - International Edition, 2021, 60, 11874-11883.	13.8	17
9	Singleâ€Molecule Counting Coupled to Rapid Amplification Enables Detection of αâ€Synuclein Aggregates in Cerebrospinal Fluid of Parkinson's Disease Patients. Angewandte Chemie, 2021, 133, 11981-11990.	2.0	11
10	Comparison of Different Platform Immunoassays for the Measurement of Plasma Alpha-Synuclein in Parkinson's Disease Patients. Journal of Parkinson's Disease, 2021, 11, 1761-1772.	2.8	15
11	Glucocerebrosidase Activity is Reduced in Cryopreserved Parkinson's Disease Patient Monocytes and Inversely Correlates with Motor Severity. Journal of Parkinson's Disease, 2021, 11, 1157-1165.	2.8	11
12	Protein phosphatase 2A holoenzymes regulate leucine-rich repeat kinase 2 phosphorylation and accumulation. Neurobiology of Disease, 2021, 157, 105426.	4.4	7
13	Evaluation of Strategies for Measuring Lysosomal Glucocerebrosidase Activity. Movement Disorders, 2021, 36, 2719-2730.	3.9	22
14	LRRK2 kinase inhibitors reduce alpha-synuclein in human neuronal cell lines with the G2019S mutation. Neurobiology of Disease, 2020, 144, 105049.	4.4	10
15	Leucine Rich Repeat Kinase 2 and Innate Immunity. Frontiers in Neuroscience, 2020, 14, 193.	2.8	36
16	Flow Cytometry Measurement of Glucocerebrosidase Activity in Human Monocytes. Bio-protocol, 2020, 10, e3572.	0.4	2
17	Investigating lymphocyte populations in patients with Parkinson's disease. Annals of Translational Medicine, 2020, 8, 276-276.	1.7	1
18	Autophagy activation promotes clearance of α-synuclein inclusions in fibril-seeded human neural cells. Journal of Biological Chemistry, 2019, 294, 14241-14256.	3.4	76

NICOLAS L DZAMKO

#	Article	IF	CITATIONS
19	Parkinson's progression prediction using machine learning and serum cytokines. Npj Parkinson's Disease, 2019, 5, 14.	5.3	63
20	Recent Developments in LRRK2-Targeted Therapy for Parkinson's Disease. Drugs, 2019, 79, 1037-1051.	10.9	48
21	LRRK2â€mediated Rab10 phosphorylation in immune cells from Parkinson's disease patients. Movement Disorders, 2019, 34, 406-415.	3.9	83
22	Reduced LRRK2 in association with retromer dysfunction in post-mortem brain tissue from LRRK2 mutation carriers. Brain, 2018, 141, 486-495.	7.6	36
23	Reduced glucocerebrosidase activity in monocytes from patients with Parkinson's disease. Scientific Reports, 2018, 8, 15446.	3.3	82
24	Nigrostriatal pathology with reduced astrocytes in LRRK2 S910/S935 phosphorylation deficient knockin mice. Neurobiology of Disease, 2018, 120, 76-87.	4.4	16
25	LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Movement Disorders, 2017, 32, 423-432.	3.9	39
26	LRRK2 and the Immune System. Advances in Neurobiology, 2017, 14, 123-143.	1.8	42
27	Toll-like receptor 2 is increased in neurons in Parkinson's disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathologica, 2017, 133, 303-319.	7.7	200
28	Mannose 6-Phosphate Receptor Is Reduced in -Synuclein Overexpressing Models of Parkinsons Disease. PLoS ONE, 2016, 11, e0160501.	2.5	19
29	LRRK2 inhibitors and their potential in the treatment of Parkinson's disease: current perspectives. Clinical Pharmacology: Advances and Applications, 2016, Volume 8, 177-189.	1.2	49
30	Increased peripheral inflammation in asymptomatic leucineâ€rich repeat kinase 2 mutation carriers. Movement Disorders, 2016, 31, 889-897.	3.9	76
31	Inhibitor treatment of peripheral mononuclear cells from Parkinson's disease patients further validates LRRK2 dephosphorylation as a pharmacodynamic biomarker. Scientific Reports, 2016, 6, 31391.	3.3	32
32	Optimisation of LRRK2 inhibitors and assessment of functional efficacy in cell-based models of neuroinflammation. European Journal of Medicinal Chemistry, 2015, 95, 29-34.	5.5	31
33	Inflammation is genetically implicated in Parkinson's disease. Neuroscience, 2015, 302, 89-102.	2.3	182
34	Parkinsonââ,¬â"¢s disease-implicated kinases in the brain; insights into disease pathogenesis. Frontiers in Molecular Neuroscience, 2014, 7, 57.	2.9	73
35	Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones. European Journal of Medicinal Chemistry, 2013, 70, 758-767.	5.5	45
36	DNA extraction from fresh-frozen and formalin-fixed, paraffinembedded human brain tissue. Neuroscience Bulletin, 2013, 29, 649-654.	2.9	25

NICOLAS L DZAMKO

#	Article	IF	CITATIONS
37	Unlocking the secrets of LRRK2 function with selective kinase inhibitors. Future Neurology, 2013, 8, 347-357.	0.5	4
38	Measurement of LRRK2 and Ser910/935 Phosphorylated LRRK2 in Peripheral Blood Mononuclear Cells from Idiopathic Parkinson's Disease Patients. Journal of Parkinson's Disease, 2013, 3, 145-152.	2.8	44
39	An emerging role for LRRK2 in the immune system. Biochemical Society Transactions, 2012, 40, 1134-1139.	3.4	36
40	The IkappaB Kinase Family Phosphorylates the Parkinson's Disease Kinase LRRK2 at Ser935 and Ser910 during Toll-Like Receptor Signaling. PLoS ONE, 2012, 7, e39132.	2.5	183
41	Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent. Journal of Lipid Research, 2011, 52, 699-711.	4.2	67
42	LRRK2 mutations, regulation and 14–3–3 protein interaction: implications for Parkinson's disease. Future Neurology, 2011, 6, 5-8.	0.5	0
43	Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2. Nature Chemical Biology, 2011, 7, 203-205.	8.0	380
44	14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization. Biochemical Journal, 2010, 430, 393-404.	3.7	355
45	Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser910/Ser935, disruption of 14-3-3 binding and altered cytoplasmic localization. Biochemical Journal, 2010, 430, 405-413.	3.7	355
46	Liver-specific suppressor of cytokine signaling-3 deletion in mice enhances hepatic insulin sensitivity and lipogenesis resulting in fatty liver and obesity1. Hepatology, 2010, 52, 1632-1642.	7.3	89
47	AMPK β1 Deletion Reduces Appetite, Preventing Obesity and Hepatic Insulin Resistance. Journal of Biological Chemistry, 2010, 285, 115-122.	3.4	154
48	Whole Body Deletion of AMP-activated Protein Kinase β2 Reduces Muscle AMPK Activity and Exercise Capacity. Journal of Biological Chemistry, 2010, 285, 37198-37209.	3.4	145
49	AMPKâ€dependent hormonal regulation of wholeâ€body energy metabolism. Acta Physiologica, 2009, 196, 115-127.	3.8	75
50	Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease. Biochemical Journal, 2009, 424, 47-60.	3.7	186
51	AMPKâ€independent pathways regulate skeletal muscle fatty acid oxidation. Journal of Physiology, 2008, 586, 5819-5831.	2.9	121
52	CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nature Medicine, 2006, 12, 541-548.	30.7	250
53	Rosiglitazone Treatment Enhances Acute AMP-Activated Protein Kinase-Mediated Muscle and Adipose Tissue Glucose Uptake in High-Fat-Fed Rats. Diabetes, 2006, 55, 2797-2804.	0.6	59
54	Metformin Prevents the Development of Acute Lipid-Induced Insulin Resistance in the Rat Through Altered Hepatic Signaling Mechanisms. Diabetes, 2004, 53, 3258-3266.	0.6	71

#	Article	IF	CITATIONS
55	Direct demonstration of lipid sequestration as a mechanism by which rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with metformin. Diabetologia, 2004, 47, 1306-1313.	6.3	126
56	WHOPPA Enables Parallel Assessment of Leucine-Rich Repeat Kinase 2 and Glucocerebrosidase Enzymatic Activity in Parkinson's Disease Monocytes. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	13