
Xiang-Guo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6758915/publications.pdf Version: 2024-02-01

XIANG-CUOLI

#	Article	IF	CITATIONS
1	Exploiting Glutamine Consumption in Atherosclerotic Lesions by Positron Emission Tomography Tracer (2S,4R)-4-18F-Fluoroglutamine. Frontiers in Immunology, 2022, 13, 821423.	4.8	1
2	⁶⁸ Ga-Citrate Positron Emission Tomography of Healthy Men: Whole-Body Biodistribution Kinetics and Radiation Dose Estimates. Journal of Nuclear Medicine, 2022, , jnumed.122.263884.	5.0	0
3	First-in-Humans Study of ⁶⁸ Ga-DOTA-Siglec-9, a PET Ligand Targeting Vascular Adhesion Protein 1. Journal of Nuclear Medicine, 2021, 62, 577-583.	5.0	13
4	Efficacy and tolerability of folate-aminopterin therapy in a rat focal model of multiple sclerosis. Journal of Neuroinflammation, 2021, 18, 30.	7.2	6
5	Evaluation of glucagon-like peptide-1 receptor expression in nondiabetic and diabetic atherosclerotic mice using PET tracer ⁶⁸ Ga-NODAGA-exendin-4. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E989-E998.	3.5	5
6	Association between [68Ga]NODAGA-RGDyK uptake and dynamics of angiogenesis in a human cell-based 3D model. Molecular Biology Reports, 2021, 48, 5347-5353.	2.3	1
7	Comparison of: (2S,4R)-4-[18F]Fluoroglutamine, [11C]Methionine, and 2-Deoxy-2-[18F]Fluoro-D-Glucose and Two Small-Animal PET/CT Systems Imaging Rat Gliomas. Frontiers in Oncology, 2021, 11, 730358.	2.8	3
8	PET radiopharmaceuticals for imaging inflammatory diseases. , 2021, , .		0
9	Evaluation of [68Ga]Ga-NODAGA-RGD for PET Imaging of Rat Autoimmune Myocarditis. Frontiers in Medicine, 2021, 8, 783596.	2.6	2
10	Glucagon-like peptide-1 receptor expression after myocardial infarction: Imaging study using 68Ga-NODAGA-exendin-4 positron emission tomography. Journal of Nuclear Cardiology, 2020, 27, 2386-2397.	2.1	12
11	Radiosynthesis and preclinical evaluation of [68Ga]Ga-NOTA-folate for PET imaging of folate receptor β-positive macrophages. Scientific Reports, 2020, 10, 13593.	3.3	10
12	Candida antarctica Lipase A-Based Enantiorecognition of a Highly Strained 4-Dibenzocyclooctynol (DIBO) Used for PET Imaging. Molecules, 2020, 25, 879.	3.8	4
13	In Vivo Imaging of Inflammation and Infection 2019. Contrast Media and Molecular Imaging, 2020, 2020, 1-2.	0.8	1
14	Folate Receptor β–Targeted PET Imaging of Macrophages in Autoimmune Myocarditis. Journal of Nuclear Medicine, 2020, 61, 1643-1649.	5.0	31
15	(2S, 4R)-4-[18F]Fluoroglutamine for In vivo PET Imaging of Glioma Xenografts in Mice: an Evaluation of Multiple Pharmacokinetic Models. Molecular Imaging and Biology, 2020, 22, 969-978.	2.6	16
16	Safety Study of Single-Dose Intravenously Administered DOTA-Siglec-9 Peptide in Sprague Dawley Rats. International Journal of Toxicology, 2019, 38, 4-11.	1.2	1
17	Folate receptor-targeted positron emission tomography of experimental autoimmune encephalomyelitis in rats. Journal of Neuroinflammation, 2019, 16, 252.	7.2	10
18	Extrasynaptic δâ€ <scp>GABA_A</scp> receptors are highâ€affinity muscimol receptors. Journal of Neurochemistry, 2019, 149, 41-53.	3.9	15

XIANG-GUO LI

#	Article	IF	CITATIONS
19	Rapid spread of mannan to the immune system, skin and joints within 6 hours after local exposure. Clinical and Experimental Immunology, 2019, 196, 383-391.	2.6	7
20	Adventures in radiosynthesis of clinical grade [⁶⁸ Ga]Ga-DOTA-Siglec-9. RSC Advances, 2018, 8, 8051-8056.	3.6	5
21	Evaluation of 68Ga-labeled peptide tracer for detection of gelatinase expression after myocardial infarction in rat. Journal of Nuclear Cardiology, 2018, 25, 1114-1123.	2.1	9
22	Evaluation of [68Ga]Ga-DOTA-TCTP-1 for the Detection of Metalloproteinase 2/9 Expression in Mouse Atherosclerotic Plaques. Molecules, 2018, 23, 3168.	3.8	13
23	Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography. Scientific Reports, 2018, 8, 9720.	3.3	39
24	In Vivo Imaging of Inflammation and Infection. Contrast Media and Molecular Imaging, 2018, 2018, 1-2.	0.8	1
25	Exploring Alternative Radiolabeling Strategies for Sialic Acid-Binding Immunoglobulin-Like Lectin 9 Peptide: [68Ga]Ga- and [18F]AlF-NOTA-Siglec-9. Molecules, 2018, 23, 305.	3.8	7
26	18-kDa translocator protein ligand 18F-FEMPA: Biodistribution and uptake into atherosclerotic plaques in mice. Journal of Nuclear Cardiology, 2017, 24, 862-871.	2.1	39
27	Comparison of 68Ga-DOTA-Siglec-9 and 18F-Fluorodeoxyribose-Siglec-9: Inflammation Imaging and Radiation Dosimetry. Contrast Media and Molecular Imaging, 2017, 2017, 1-10.	0.8	7
28	18F-Labeling of Mannan for Inflammation Research with Positron Emission Tomography. ACS Medicinal Chemistry Letters, 2016, 7, 826-830.	2.8	11
29	A New Highly Reactive and Low Lipophilicity Fluorine-18 Labeled Tetrazine Derivative for Pretargeted PET Imaging. ACS Medicinal Chemistry Letters, 2016, 7, 62-66.	2.8	50
30	Comparison of Somatostatin Receptor 2-Targeting PET Tracers in the Detection of Mouse Atherosclerotic Plaques. Molecular Imaging and Biology, 2016, 18, 99-108.	2.6	48
31	Enabling [¹⁸ F]-bicyclo[6.1.0]nonyne for oligonucleotide conjugation for positron emission tomography applications: [¹⁸ F]-anti-microRNA-21 as an example. Chemical Communications, 2015, 51, 9821-9824.	4.1	16
32	Feasibility of experimental BT4C glioma models for somatostatin receptor 2-targeted therapies. Acta Oncológica, 2014, 53, 1125-1134.	1.8	5
33	Using 5-deoxy-5-[18F]fluororibose to glycosylate peptides for positron emission tomography. Nature Protocols, 2014, 9, 138-145.	12.0	22
34	Translating the concept of peptidelabeling with 5-deoxy-5-[¹⁸ F]fluororibose into preclinical practice: ¹⁸ F-labeling of Siglec-9 peptide for PET imaging of inflammation. Chemical Communications, 2013, 49, 3682-3684.	4.1	33
35	[18F]-5-Fluoro-5-deoxyribose, an efficient peptide bioconjugation ligand for positron emission tomography (PET) imaging. Chemical Communications, 2012, 48, 5247.	4.1	39
36	New biocatalytic route for the production of enantioenriched β-alanine derivatives starting from 5- and 6-monosubstituted dihydrouracils. Process Biochemistry, 2012, 47, 2090-2096.	3.7	8

XIANG-GUO LI

#	Article	IF	CITATIONS
37	Oxime formation for fluorine-18 labeling of peptides and proteins for positron emission tomography (PET) imaging: A review. Journal of Fluorine Chemistry, 2012, 143, 49-56.	1.7	40
38	<i>Candida antarctica</i> Lipase B in a Chemoenzymatic Route to Cyclic αâ€Quaternary αâ€Amino Acid Enantiomers. European Journal of Organic Chemistry, 2011, 2011, 1755-1762.	2.4	6
39	Fluorinase mediated chemoenzymatic synthesis of [18F]-fluoroacetate. Chemical Communications, 2010, 46, 7819.	4.1	27
40	Enzymatic synthesis of carnosine derivatives catalysed by Burkholderia cepacia lipase. Tetrahedron: Asymmetry, 2009, 20, 1641-1645.	1.8	13
41	Burkholderia cepacia lipase and activated β-lactams in β-dipeptide and β-amino amide synthesis. Tetrahedron: Asymmetry, 2008, 19, 1857-1861.	1.8	26
42	Enantioselective acylation of alcohols with fluorinated β-phenyl-β-lactams in the presence of Burkholderia cepacia lipase. Tetrahedron: Asymmetry, 2007, 18, 1567-1573.	1.8	25
43	Chemoenzymatic preparation of fluorine-substituted β-lactam enantiomers exploiting Burkholderia cepacia lipase. Tetrahedron: Asymmetry, 2007, 18, 2468-2472.	1.8	11
44	Lipases in \hat{I}^2 -Dipeptide Synthesis in Organic Solvents. Organic Letters, 2006, 8, 5593-5596.	4.6	32
45	Lipase-Involved Strategy to the Enantiomers of 4-Benzyl-β-Lactam as a Key Intermediate in the Preparation of β-Phenylalanine Derivatives. Advanced Synthesis and Catalysis, 2006, 348, 197-205.	4.3	27
46	Chemoenzymatic preparation of the enantiomers of β-tryptophan ethyl ester and the β-amino nitrile analogue. Tetrahedron: Asymmetry, 2005, 16, 1709-1714.	1.8	13
47	Enantioselective Copper-catalysed Conjugate Addition of Diphenylzinc to Cyclohexenone. Letters in Organic Chemistry, 2005, 2, 65-67.	0.5	3
48	Enantioselective additions of diphenylzinc to aldehydes using chiral pyrrolidinylmethanol derivatives as catalysts. Tetrahedron: Asymmetry, 2001, 12, 399-403.	1.8	62