Roy A Wise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6757463/publications.pdf

Version: 2024-02-01

201 30,811 79
papers citations h-index

206 206 206 17516
all docs docs citations times ranked citing authors

5347

170

g-index

#	Article	IF	CITATIONS
1	Involvement of the ghrelin system in the maintenance and reinstatement of cocaine-motivated behaviors: a role of adrenergic action at peripheral \hat{l}^21 receptors. Neuropsychopharmacology, 2022, 47, 1449-1460.	2.8	13
2	Dopamine, behavior, and addiction. Journal of Biomedical Science, 2021, 28, 83.	2.6	25
3	Dopamine and Addiction. Annual Review of Psychology, 2020, 71, 79-106.	9.9	180
4	Control of food approach and eating by a GABAergic projection from lateral hypothalamus to dorsal pons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8611-8615.	3.3	41
5	Cocaine and cocaine expectancy increase growth hormone, ghrelin, GLP-1, IGF-1, adiponectin, and corticosterone while decreasing leptin, insulin, GIP, and prolactin. Pharmacology Biochemistry and Behavior, 2019, 176, 53-56.	1.3	25
6	Drive and Reinforcement Circuitry in the Brain: Origins, Neurotransmitters, and Projection Fields. Neuropsychopharmacology, 2018, 43, 680-689.	2.8	28
7	The dopamine motive system: implications for drug and food addiction. Nature Reviews Neuroscience, 2017, 18, 741-752.	4.9	658
8	Drugs Addiction: Actions â~†., 2017,,.		0
9	Optogenetic Activation of a Lateral Hypothalamic-Ventral Tegmental Drive-Reward Pathway. PLoS ONE, 2016, 11, e0158885.	1.1	20
			ļ
10	Lateral hypothalamic circuits for feeding and reward. Nature Neuroscience, 2016, 19, 198-205.	7.1	386
10	Lateral hypothalamic circuits for feeding and reward. Nature Neuroscience, 2016, 19, 198-205. Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic Projections to VTA. Journal of Neuroscience, 2016, 36, 2975-2985.	7.1	386 95
	Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic		
11	Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic Projections to VTA. Journal of Neuroscience, 2016, 36, 2975-2985. Reciprocal Inhibitory Interactions Between the Reward-Related Effects of Leptin and Cocaine.	1.7	95
11 12	Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic Projections to VTA. Journal of Neuroscience, 2016, 36, 2975-2985. Reciprocal Inhibitory Interactions Between the Reward-Related Effects of Leptin and Cocaine. Neuropsychopharmacology, 2016, 41, 1024-1033. Increased latencies to initiate cocaine self-administration following laterodorsal tegmental nucleus	2.8	95 37
11 12 13	Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic Projections to VTA. Journal of Neuroscience, 2016, 36, 2975-2985. Reciprocal Inhibitory Interactions Between the Reward-Related Effects of Leptin and Cocaine. Neuropsychopharmacology, 2016, 41, 1024-1033. Increased latencies to initiate cocaine self-administration following laterodorsal tegmental nucleus lesions. Behavioural Brain Research, 2015, 287, 82-88. Dopamine in the Dorsal Hippocampus Impairs the Late Consolidation of Cocaine-Associated Memory.	1.7 2.8 1.2	95 37 9
11 12 13	Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic Projections to VTA. Journal of Neuroscience, 2016, 36, 2975-2985. Reciprocal Inhibitory Interactions Between the Reward-Related Effects of Leptin and Cocaine. Neuropsychopharmacology, 2016, 41, 1024-1033. Increased latencies to initiate cocaine self-administration following laterodorsal tegmental nucleus lesions. Behavioural Brain Research, 2015, 287, 82-88. Dopamine in the Dorsal Hippocampus Impairs the Late Consolidation of Cocaine-Associated Memory. Neuropsychopharmacology, 2014, 39, 1645-1653.	1.7 2.8 1.2 2.8	9537947
11 12 13 14	Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic Projections to VTA. Journal of Neuroscience, 2016, 36, 2975-2985. Reciprocal Inhibitory Interactions Between the Reward-Related Effects of Leptin and Cocaine. Neuropsychopharmacology, 2016, 41, 1024-1033. Increased latencies to initiate cocaine self-administration following laterodorsal tegmental nucleus lesions. Behavioural Brain Research, 2015, 287, 82-88. Dopamine in the Dorsal Hippocampus Impairs the Late Consolidation of Cocaine-Associated Memory. Neuropsychopharmacology, 2014, 39, 1645-1653. The Development and Maintenance of Drug Addiction. Neuropsychopharmacology, 2014, 39, 254-262. Lesions of Cholinergic Pedunculopontine Tegmental Nucleus Neurons Fail to Affect Cocaine or	1.7 2.8 1.2 2.8	95 37 9 47 440

#	Article	IF	CITATIONS
19	Conditioned Contribution of Peripheral Cocaine Actions to Cocaine Reward and Cocaine-Seeking. Neuropsychopharmacology, 2013, 38, 1763-1769.	2.8	20
20	Bidirectional Modulation of Cocaine Expectancy by Phasic Glutamate Fluctuations in the Nucleus Accumbens. Journal of Neuroscience, 2013, 33, 9050-9055.	1.7	12
21	Heroin Self-Administration Experience Establishes Control of Ventral Tegmental Glutamate Release by Stress and Environmental Stimuli. Neuropsychopharmacology, 2012, 37, 2863-2869.	2.8	16
22	Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens. Neuron, 2012, 76, 790-803.	3.8	632
23	Differentiating the rapid actions of cocaine. Nature Reviews Neuroscience, 2011, 12, 479-484.	4.9	43
24	Dorsal as well as ventral striatal lesions affect levels of intravenous cocaine and morphine self-administration in rats. Neuroscience Letters, 2011, 493, 29-32.	1.0	30
25	Linking Context with Reward: A Functional Circuit from Hippocampal CA3 to Ventral Tegmental Area. Science, 2011, 333, 353-357.	6.0	343
26	On the speed of cocaine. Nature Reviews Neuroscience, 2011, 12, 700-700.	4.9	4
27	Satiating Effects of Cocaine Are Controlled by Dopamine Actions in the Nucleus Accumbens Core. Journal of Neuroscience, 2011, 31, 17917-17922.	1.7	30
28	Qualitative differences between C57BL/6J and DBA/2J mice in morphine potentiation of brain stimulation reward and intravenous self-administration. Psychopharmacology, 2010, 208, 309-321.	1.5	39
29	Extracellular fluctuations of dopamine and glutamate in the nucleus accumbens core and shell associated with lever-pressing during cocaine self-administration, extinction, and yoked cocaine administration. Psychopharmacology, 2010, 211, 267-275.	1.5	50
30	A ventral tegmental CRF–glutamate–dopamine interaction in addiction. Brain Research, 2010, 1314, 38-43.	1.1	94
31	Control of within-binge cocaine-seeking by dopamine and glutamate in the core of nucleus accumbens. Psychopharmacology, 2009, 205, 431-439.	1.5	34
32	Roles for nigrostriatalâ€"not just mesocorticolimbicâ€"dopamine in reward and addiction. Trends in Neurosciences, 2009, 32, 517-524.	4.2	393
33	Ventral tegmental glutamate: A role in stress-, cue-, and cocaine-induced reinstatement of cocaine-seeking. Neuropharmacology, 2009, 56, 174-176.	2.0	38
34	Reinstatement of Cocaine Seeking by Hypocretin (Orexin) in the Ventral Tegmental Area: Independence from the Local Corticotropin-Releasing Factor Network. Biological Psychiatry, 2009, 65, 857-862.	0.7	125
35	Dopamine and reward: The anhedonia hypothesis 30 years on. Neurotoxicity Research, 2008, 14, 169-183.	1.3	496
36	Functional Implications of Glutamatergic Projections to the Ventral Tegmental Area. Reviews in the Neurosciences, 2008, 19, 227-44.	1.4	89

#	Article	lF	Citations
37	Acetylcholine Release in the Mesocorticolimbic Dopamine System during Cocaine Seeking: Conditioned and Unconditioned Contributions to Reward and Motivation. Journal of Neuroscience, 2008, 28, 9021-9029.	1.7	62
38	Cocaine Serves as a Peripheral Interoceptive Conditioned Stimulus for Central Glutamate and Dopamine Release. PLoS ONE, 2008, 3, e2846.	1.1	80
39	Long-Term Upregulation of Protein Kinase A and Adenylate Cyclase Levels in Human Smokers. Journal of Neuroscience, 2007, 27, 1964-1972.	1.7	30
40	A Role for Conditioned Ventral Tegmental Glutamate Release in Cocaine Seeking. Journal of Neuroscience, 2007, 27, 10546-10555.	1.7	98
41	Stress-induced relapse to cocaine seeking: roles for the CRF2 receptor and CRF-binding protein in the ventral tegmental area of the rat. Psychopharmacology, 2007, 193, 283-294.	1.5	191
42	Role of brain dopamine in food reward and reinforcement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1149-1158.	1.8	358
43	A New Peptide Input to Learning and Addiction. Neuron, 2006, 49, 483-484.	3.8	2
44	The high specific activity tritium labeling of the ganglion-blocking nicotinic antagonist chlorisondamine. Journal of Labelled Compounds and Radiopharmaceuticals, 2006, 49, 471-478.	0.5	1
45	Two Brain Sites for Cannabinoid Reward. Journal of Neuroscience, 2006, 26, 4901-4907.	1.7	164
46	How can drug addiction help us understand obesity?. Nature Neuroscience, 2005, 8, 555-560.	7.1	967
47	Forebrain substrates of reward and motivation. Journal of Comparative Neurology, 2005, 493, 115-121.	0.9	250
48	Cocaine Experience Establishes Control of Midbrain Glutamate and Dopamine by Corticotropin-Releasing Factor: A Role in Stress-Induced Relapse to Drug Seeking. Journal of Neuroscience, 2005, 25, 5389-5396.	1.7	342
49	Study of the Interaction of Chlorisondamine and Chlorisondamine Analogues with an Epitope of the α-2 Neuronal Acetylcholine Nicotinic Receptor Subunit. Journal of Proteome Research, 2005, 4, 532-539.	1.8	8
50	Rewarding Effects of AMPA Administration into the Supramammillary or Posterior Hypothalamic Nuclei But Not the Ventral Tegmental Area. Journal of Neuroscience, 2004, 24, 5758-5765.	1.7	60
51	Dopamine, learning and motivation. Nature Reviews Neuroscience, 2004, 5, 483-494.	4.9	2,955
52	Blockade of substantia nigra dopamine D1 receptors reduces intravenous cocaine reward in rats. Psychopharmacology, 2004, 175, 53-9.	1.5	20
53	Mapping of chemical trigger zones for reward. Neuropharmacology, 2004, 47, 190-201.	2.0	119
54	Drive, incentive, and reinforcement: the antecedents and consequences of motivation. Nebraska Symposium on Motivation, 2004, 50, 159-95.	0.9	13

#	Article	IF	CITATIONS
55	Rewards wanted: Molecular mechanisms of motivation. Discovery Medicine, 2004, 4, 180-6.	0.5	24
56	Unmet expectations: The brain minds. Nature Medicine, 2003, 9, 15-16.	15.2	6
57	Interaction of Chlorisondamine with the Neuronal Nicotinic Acetylcholine Receptor. Journal of Proteome Research, 2003, 2, 207-212.	1.8	19
58	Brain Hyperthermia Is Induced by Methamphetamine and Exacerbated by Social Interaction. Journal of Neuroscience, 2003, 23, 3924-3929.	1.7	75
59	Brain Reward Circuitry. Neuron, 2002, 36, 229-240.	3.8	831
60	Elevated Expression of 5-HT $<$ sub $>$ 1B $<$ /sub $>$ Receptors in Nucleus Accumbens Efferents Sensitizes Animals to Cocaine. Journal of Neuroscience, 2002, 22, 10856-10863.	1.7	107
61	Brain and Body Hyperthermia Associated with Heroin Self-Administration in Rats. Journal of Neuroscience, 2002, 22, 1072-1080.	1.7	35
62	Failure of Intravenous Morphine to Serve as an Effective Instrumental Reinforcer in Dopamine D2 Receptor Knock-Out Mice. Journal of Neuroscience, 2002, 22, RC224-RC224.	1.7	78
63	Rewarding and Psychomotor Stimulant Effects of Endomorphin-1: Anteroposterior Differences within the Ventral Tegmental Area and Lack of Effect in Nucleus Accumbens. Journal of Neuroscience, 2002, 22, 7225-7233.	1.7	123
64	Rewarding Effects of the Cholinergic Agents Carbachol and Neostigmine in the Posterior Ventral Tegmental Area. Journal of Neuroscience, 2002, 22, 9895-9904.	1.7	108
65	Dopamine Uptake through the Norepinephrine Transporter in Brain Regions with Low Levels of the Dopamine Transporter: Evidence from Knock-Out Mouse Lines. Journal of Neuroscience, 2002, 22, 389-395.	1.7	557
66	Endomorphin-1 and -2 immunoreactive cells in the hypothalamus are labeled by fluoro-gold injections to the ventral tegmental area. Journal of Comparative Neurology, 2002, 454, 320-328.	0.9	21
67	Brain temperature fluctuation: a reflection of functional neural activation. European Journal of Neuroscience, 2002, 16, 164-168.	1.2	161
68	Increase of Extracellular Glutamate and Expression of Fos-Like Immunoreactivity in the Ventral Tegmental Area in Response to Electrical Stimulation of the Prefrontal Cortex. Journal of Neurochemistry, 2002, 70, 1503-1512.	2.1	54
69	Blockade of D1 Dopamine Receptors in the Ventral Tegmental Area Decreases Cocaine Reward: Possible Role for Dendritically Released Dopamine. Journal of Neuroscience, 2001, 21, 5841-5846.	1.7	85
70	Novelty-evoked elevations of nucleus accumbens dopamine: dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area. European Journal of Neuroscience, 2001, 13, 819-828.	1.2	162
71	Incubation of cocaine craving after withdrawal. Nature, 2001, 412, 141-142.	13.7	930
72	Striatal hyperthermia associated with arousal: intracranial thermorecordings in behaving rats. Brain Research, 2001, 918, 141-152.	1.1	27

#	Article	IF	CITATIONS
73	Chemical Stimulation of the Ventral Hippocampus Elevates Nucleus Accumbens Dopamine by Activating Dopaminergic Neurons of the Ventral Tegmental Area. Journal of Neuroscience, 2000, 20, 1635-1642.	1.7	188
74	Intravenous self-administration of methamphetamine-heroin (speedball) combinations under a progressive-ratio schedule of reinforcement in rats. NeuroReport, 2000, 11, 2621-2623.	0.6	27
75	Fos expression following self-stimulation of the medial prefrontal cortex. Behavioural Brain Research, 2000, 107, 123-132.	1.2	33
76	Interactions between medial prefrontal cortex and meso-limbic components of brain reward circuitry. Progress in Brain Research, 2000, 126, 255-262.	0.9	20
77	Dopamine Fluctuations in the Nucleus Accumbens during Maintenance, Extinction, and Reinstatement of Intravenous d-Amphetamine Self-Administration. Journal of Neuroscience, 1999, 19, 4102-4109.	1.7	127
78	Injections of N-methyl-D-aspartate into the ventral hippocampus increase extracellular dopamine in the ventral tegmental area and nucleus accumbens., 1999, 31, 241-249.		116
79	Cognitive factors in addiction and nucleus accumbens function: Some hints from rodent models. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 300-310.	1.2	21
80	Drug-activation of brain reward pathways. Drug and Alcohol Dependence, 1998, 51, 13-22.	1.6	610
81	Electrical Stimulation of the Prefrontal Cortex Increases Cholecystokinin, Glutamate, and Dopamine Release in the Nucleus Accumbens: an <i>In Vivo</i> Microdialysis Study in Freely Moving Rats. Journal of Neuroscience, 1998, 18, 6492-6500.	1.7	146
82	Effects of Pedunculopontine Tegmental Nucleus Lesions on Responding for Intravenous Heroin under Different Schedules of Reinforcement. Journal of Neuroscience, 1998, 18, 5035-5044.	1.7	108
83	Drug Self-Administration Viewed as Ingestive Behaviour. Appetite, 1997, 28, 1-5.	1.8	42
84	Synergistic effects of cocaine and dizocilpine (MK-801) on brain stimulation reward. Brain Research, 1997, 760, 231-237.	1.1	37
85	Influence of novel and habituated testing conditions on cocaine sensitization. European Journal of Pharmacology, 1996, 307, 15-19.	1.7	16
86	Neurobiology of addiction. Current Opinion in Neurobiology, 1996, 6, 243-251.	2.0	828
87	Rewarding Actions of Phencyclidine and Related Drugs in Nucleus Accumbens Shell and Frontal Cortex. Journal of Neuroscience, 1996, 16, 3112-3122.	1.7	331
88	Microinjections of phencyclidine (PCP) and related drugs into nucleus accumbens shell potentiate medial forebrain bundle brain stimulation reward. Psychopharmacology, 1996, 128, 413-420.	1.5	113
89	MK-801 (Dizocilpine): Synergist and conditioned stimulus in bromocriptine-induced psychomotor sensitization., 1996, 22, 362-368.		43
90	Cocaine vaccines revisited. Nature Medicine, 1996, 2, 1073-1074.	15.2	13

#	Article	IF	Citations
91	MK-801 Disrupts the expression but not the development of bromocriptine sensitization: A state-dependency interpretation. Synapse, 1995, 20, 1-9.	0.6	71
92	Elevations of nucleus accumbens dopamine and DOPAC levels during intravenous heroin self-administration. Synapse, 1995, 21, 140-148.	0.6	203
93	Cytisine-induced behavioral activation: delineation of neuroanatomical locus of action. Brain Research, 1995, 670, 257-263.	1.1	31
94	Ventral tegmental injections of a selective \hat{l} 4 or \hat{l} 7 opioid enhance feeding in food-deprived rats. Brain Research, 1995, 673, 304-312.	1.1	53
95	Attenuation of the locomotor-sensitizing effects of the D2 dopamine agonist bromocriptine by either the D1 antagonist SCH 23390 or the D2 antagonist raclopride. Synapse, 1994, 17, 155-159.	0.6	18
96	Sensitization of locomotion following repeated ventral tegmental injections of cytisine. Pharmacology Biochemistry and Behavior, 1994, 48, 521-524.	1.3	16
97	Place preference conditioning with ventral tegmental injections of cytisine. Life Sciences, 1994, 55, 1179-1186.	2.0	47
98	Drug- and behavior-associated changes in dopamine-related electrochemical signals during intravenous heroin self-administration in rats. Synapse, 1993, 14, 60-72.	0.6	118
99	Striatal Tissue Preparation Facilitates Early Sampling in Microdialysis and Reveals an Index of Neuronal Damage. Journal of Neurochemistry, 1993, 61, 1246-1254.	2.1	21
100	In vivo estimates of extracellular dopamine and dopamine metabolite levels during intravenous cocaine or heroin self-administration. Seminars in Neuroscience, 1993, 5, 337-342.	2.3	10
101	Lack of cross-sensitization between the locomotor-activating effects of bromocriptine and those of cocaine or heroin. Psychopharmacology, 1993, 110, 402-408.	1.5	26
102	Phencyclidine-induced potentiation of brain stimulation reward: acute effects are not altered by repeated administration. Psychopharmacology, 1993, 111, 402-408.	1.5	34
103	Morphine-induced potentiation of brain stimulation reward is enhanced by MK-801. Brain Research, 1993, 620, 339-342.	1.1	56
104	Ventral mesencephalic â^, opioid receptors are involved in modulation of basal mesolimbic dopamine neurotransmission: an anatomical localization study. Brain Research, 1993, 622, 348-352.	1.1	28
105	Lack of sensitization or tolerance to the facilitating effect of ventral tegmental area morphine on lateral hypothalamic brain stimulation reward. Brain Research, 1993, 617, 303-308.	1.1	27
106	Ventral tegmental injections of morphine but not U-50,488H enhance feeding in food-deprived rats. Brain Research, 1993, 632, 68-73.	1.1	37
107	Mesolimbic dopamine neurotransmission is increased by administration of \hat{l} 4-opioid receptor antagonists. European Journal of Pharmacology, 1993, 243, 55-64.	1.7	73
108	Self-Stimulation and Drug Reward Mechanisms. Annals of the New York Academy of Sciences, 1992, 654, 192-198.	1.8	95

#	Article	IF	CITATIONS
109	Acute depolarization block of A10 dopamine neurons: interactions of morphine with dopamine antagonists. Brain Research, 1992, 596, 231-237.	1.1	31
110	Localization of drug reward mechanisms by intracranial injections. Synapse, 1992, 10, 247-263.	0.6	254
111	Locomotor-activating effects of the D2 agonist bromocriptine show environment-specific sensitization following repeated injections. Psychopharmacology, 1992, 107, 277-284.	1.5	77
112	Reinstatement of heroin self-administration habits: morphine prompts and naltrexone discourages renewed responding after extinction. Psychopharmacology, 1992, 108, 79-84.	1.5	126
113	Ventral pallidal microinjections of receptor-selective opioid agonists produce differential effects on circling and locomotor activity in rats. Brain Research, 1991, 550, 205-212.	1.1	37
114	Facilitory effect of î"9-tetrahydrocannabinol on hypothalamically induced feeding. Psychopharmacology, 1991, 103, 172-176.	1.5	66
115	Circling induced by intra-accumbens amphetamine injections. Psychopharmacology, 1991, 105, 157-161.	1.5	23
116	Microinjections of a nicotinic agonist into dopamine terminal fields: Effects on locomotion. Pharmacology Biochemistry and Behavior, 1990, 37, 113-116.	1.3	46
117	Locomotion induced by ventral tegmental microinjections of a nicotinic agonist. Pharmacology Biochemistry and Behavior, 1990, 35, 735-737.	1.3	63
118	Facilitation of feeding by nucleus accumbens amphetamine injections: Latency and speed measures. Pharmacology Biochemistry and Behavior, 1989, 32, 769-772.	1.3	19
119	Pharmacological regulation of intravenous cocaine and heroin self-administration in rats: A variable dose paradigm. Pharmacology Biochemistry and Behavior, 1989, 32, 527-531.	1.3	111
120	Environment-specific cross-sensitization between the locomotor activating effects of morphine and amphetamine. Pharmacology Biochemistry and Behavior, 1989, 32, 581-584.	1.3	87
121	Influence of housing conditions on the acquisition of intravenous heroin and cocaine self-administration in rats. Pharmacology Biochemistry and Behavior, 1989, 33, 903-907.	1.3	128
122	Opiate reward: Sites and substrates. Neuroscience and Biobehavioral Reviews, 1989, 13, 129-133.	2.9	272
123	Anatomical mapping of brain stimulation reward sites in the anterior hypothalamic area: special attention to the stria medullaris. Brain Research, 1989, 483, 12-16.	1.1	19
124	Opioid-neuroleptic interaction in brainstem self-stimulation. Brain Research, 1989, 477, 144-151.	1.1	46
125	Behavioral evidence for midbrain dopamine depolarization inactivation. Brain Research, 1989, 477, 152-156.	1.1	37
126	Potentiation of morphine-elicited circling by dopaminergic uptake blockade. Pharmacology Biochemistry and Behavior, 1988, 30, 1077-1079.	1.3	4

#	Article	IF	CITATIONS
127	Effects of naltrexone on nucleus accumbens, lateral hypothalamic and ventral tegmental self-stimulation rate—frequency functions. Brain Research, 1988, 462, 126-133.	1.1	35
128	Concurrent facilitory and inhibitory effects of amphetamine on stimulation-induced eating. Brain Research, 1988, 459, 356-360.	1.1	20
129	Effects of nucleus accumbens amphetamine on lateral hypothalamic brain stimulation reward. Brain Research, 1988, 459, 361-368.	1.1	98
130	Comparisons of refractory periods for medial forebrain bundle fibers subserving stimulation-induced feeding and brain stimulation reward: a psychophysical study. Brain Research, 1988, 438, 256-263.	1.1	28
131	Comparisons of connectivity and conduction velocities for medial forebrain bundle fibers subserving stimulation-induced feeding and brain stimulation reward. Brain Research, 1988, 438, 264-270.	1.1	39
132	Contraversive circling induced by ventral tegmental microinjections of moderate doses of morphine and [d-Pen2,d-Pen5]enkephalin. Brain Research, 1988, 450, 382-386.	1.1	21
133	Psychomotor Stimulant Properties of Addictive Drugs. Annals of the New York Academy of Sciences, 1988, 537, 228-234.	1.8	66
134	Facilitory and Inhibitory Effects of Nucleus Accumbens Amphetamine on Feeding. Annals of the New York Academy of Sciences, 1988, 537, 491-492.	1.8	18
135	A Study of the Interactions of Pimozide, Morphine, and Muscimol on Brain Stimulation Reward: Behavioral Evidence for Depolarization Inactivation of A10 Dopaminergic Neurons. Annals of the New York Academy of Sciences, 1988, 537, 525-528.	1.8	4
136	The neurobiology of craving: Implications for the understanding and treatment of addiction Journal of Abnormal Psychology, 1988, 97, 118-132.	2.0	534
137	A psychomotor stimulant theory of addiction Psychological Review, 1987, 94, 469-492.	2.7	2,563
138	Opioid receptor subtypes associated with ventral tegmental facilitation of lateral hypothalamic brain stimulation reward. Brain Research, 1987, 423, 34-38.	1.1	87
139	Opioid receptor subtypes associated with ventral tegmental facilitation and periaqueductal gray inhibition of feeding. Brain Research, 1987, 423, 39-44.	1.1	49
140	Opposite effects of unilateral forebrain ablations on ipsilateral and contralateral hypothalamic self-stimulation. Brain Research, 1987, 407, 285-293.	1.1	26
141	The role of reward pathways in the development of drug dependence. , 1987, 35, 227-263.		370
142	Intravenous Drug Self-Administration: A Special Case of Positive Reinforcement., 1987,, 117-141.		54
143	Opposite effects of ventral tegmental and periaqueductal gray morphine injections on lateral hypothalamic stimulation-induced feeding. Brain Research, 1986, 399, 24-32.	1.1	41
144	Circling from unilateral VTA morphine: Direction is controlled by environmental stimuli. Brain Research Bulletin, 1986, 16, 267-269.	1.4	16

#	Article	IF	CITATIONS
145	Effects of pimozide and naloxone on latency for hypothalamically induced eating. Brain Research, 1986, 375, 329-337.	1.1	29
146	Effects of naloxone and pimozide on initiation and maintenance measures of free feeding. Brain Research, 1986, 368, 62-68.	1.1	67
147	The anhedonia hypothesis: Mark III. Behavioral and Brain Sciences, 1985, 8, 178-186.	0.4	145
148	Relative effectiveness of pimozide, haloperidol and trifluoperazine on self-stimulation rate-intensity functions. Pharmacology Biochemistry and Behavior, 1985, 23, 777-780.	1.3	30
149	Concurrent heroin self-administration and intracranial self-stimulation in rats. Pharmacology Biochemistry and Behavior, 1985, 23, 837-842.	1.3	14
150	Dopamine-dependent contralateral circling induced by neurotensin applied unilaterally to the ventral tegmental area in rats. Brain Research Bulletin, 1985, 15, 537-538.	1.4	12
151	Contralateral circling induced by tegmental morphine: Anatomical localization, pharmacological specificity, and phenomenology. Brain Research, 1985, 326, 19-26.	1.1	46
152	Pimozide attenuates free feeding: Best scores analysis reveals a motivational deficit. Psychopharmacology, 1984, 84, 446-451.	1.5	85
153	Current-distance relation for rewarding brain stimulation. Behavioural Brain Research, 1984, 14, 85-89.	1.2	49
154	Brain reward circuitry: Four circuit elements "wired―in apparent series. Brain Research Bulletin, 1984, 12, 203-208.	1.4	224
155	Brain stimulation reward and dopamine terminal fields. I. Caudate-putamen, nucleus accumbens and amygdala. Brain Research, 1984, 297, 265-273.	1.1	90
156	Brain stimulation reward and dopamine terminal fields. II. Septal and cortical projections. Brain Research, 1984, 301, 209-219.	1,1	40
157	Circling from intracranial morphine applied to the ventral tegmental area in rats. Brain Research Bulletin, 1983, 11, 295-298.	1.4	36
158	Neural substrates of opiate reinforcement. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1983, 7, 569-575.	2.5	59
159	Brain stimulation reward in the lateral hypothalamic medial forebrain bundle: Mapping of boundaries and homogeneity. Brain Research, 1983, 274, 25-30.	1.1	34
160	Ventral tegmental site of opiate reward: Antagonism by a hydrophilic opiate receptor blocker. Brain Research, 1983, 258, 105-108.	1.1	93
161	Ethanol and Brain Mechanisms of Reward. , 1983, , 77-105.		0
162	Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences, 1982, 5, 39-53.	0.4	943

#	Article	IF	CITATIONS
163	Hypotheses of neuroleptic action: Levels of progress. Behavioral and Brain Sciences, 1982, 5, 78-87.	0.4	11
164	Opiate rewarding action: independence of the cells of the lateral hypothalamus. Brain Research, 1981, 222, 213-217.	1.1	19
165	Intracranial self-stimulation: mapping against the lateral boundaries of the dopaminergic cells of the substantia nigra. Brain Research, 1981, 213, 190-194.	1.1	56
166	Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sciences, 1981, 28, 551-555.	2.0	479
167	Small-dose intravenous heroin facilitates hypothalamic self-stimulation without response suppression in rats. Life Sciences, 1981, 28, 557-562.	2.0	41
168	Heroin reward is dependent on a dopaminergic substrate. Life Sciences, 1981, 29, 1881-1886.	2.0	329
169	Brain substrates for reinforcement and drug self-administration. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 1981, 5, 467-474.	0.6	104
170	Pimozide attenuates acquisition of lever-pressing for food in rats. Pharmacology Biochemistry and Behavior, 1981, 15, 655-656.	1.3	82
171	Pimozide attenuates lever pressing for water reinforcement in rats. Pharmacology Biochemistry and Behavior, 1981, 14, 201-205.	1.3	92
172	Electrolytic microinfusion transducer system: an alternative method of intracranial drug application. Journal of Neuroscience Methods, 1980, 2, 273-275.	1.3	64
173	Action of drugs of abuse on brain reward systems. Pharmacology Biochemistry and Behavior, 1980, 13, 213-223.	1.3	306
174	Intracranial self-stimulation as a technique to study the reward properties of drugs of abuse. Pharmacology Biochemistry and Behavior, 1980, 13, 245-247.	1.3	31
175	Retrograde fluorescent tracing of substantia nigra neurons combined with catecholamine histofluorescence. Brain Research, 1980, 183, 447-452.	1.1	36
176	Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: A moveable electrode mapping study. Brain Research, 1980, 185, 1-15.	1.1	251
177	The dopamine synapse and the notion of †pleasure centers' in the brain. Trends in Neurosciences, 1980, 3, 91-95.	4.2	133
178	Intracranial self-stimulation in relation to the ascending noradrenergic fiber systems of the pontine tegmentum and caudal midbrain: A moveable electrode mapping study. Brain Research, 1979, 177, 423-436.	1.1	118
179	BRAIN STIMULATION REWARD SITES MAPPED IN RELATION TO THE ASCENDING CATECHOLAMINE SYSTEMS. , 1979, , 1741-1743.		1
180	Amphetamine-type reinforcement by dopaminergic agonists in the rat. Psychopharmacology, 1978, 58, 289-296.	1.5	165

#	Article	IF	CITATIONS
181	Neuroleptic attenuation of intracranial self-stimulation: Reward or performance deficits?. Life Sciences, 1978, 22, 535-542.	2.0	89
182	Catecholamine theories of reward: A critical review. Brain Research, 1978, 152, 215-247.	1.1	749
183	Neuroleptic-induced attenuation of brain stimulation reward in rats Journal of Comparative and Physiological Psychology, 1978, 92, 661-671.	1.8	197
184	Major attenuation of food reward with performance-sparing doses of pimozide in the rat Canadian Journal of Psychology, 1978, 32, 77-85.	0.8	161
185	Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine Canadian Journal of Psychology, 1977, 31, 195-203.	0.8	455
186	Equal suppression of cerebellar Purkinje cell activity by amphetamine stereoisomers. Physiology and Behavior, 1977, 18, 1005-1009.	1.0	11
187	Dorsal noradrenergic bundle lesions fail to disrupt self-stimulation from the region of locus coeruleus. Brain Research, 1977, 133, 37-44.	1.1	71
188	Concurrent intracranial self-stimulation and amphetamine self-administration in rats. Pharmacology Biochemistry and Behavior, 1977, 7, 459-461.	1.3	46
189	Moveable electrode for chronic brain stimulation in the rat. Physiology and Behavior, 1976, 16, 105-106.	1.0	19
190	Pimozide-induced extinction of intracranial self-stimulation: response patterns rule out motor or performance deficits. Brain Research, 1976, 103, 377-380.	1.1	309
191	Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology, 1976, 48, 311-318.	1.5	329
192	Maximization of Ethanol Intake in the Rat. Advances in Experimental Medicine and Biology, 1975, 59, 279-294.	0.8	28
193	Rat ethanol intake: Suppression by intracranial surgery and facilitation by intracranial stimulation. Psychopharmacology, 1974, 37, 179-184.	1.5	3
194	Lateral hypothalamic electrical stimulation: Does it make animals †hungry'?. Brain Research, 1974, 67, 187-209.	1.1	159
195	Diazepam-induced eating and lever pressing for food in sated rats Journal of Comparative and Physiological Psychology, 1974, 86, 930-941.	1.8	152
196	Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacology, 1973, 29, 203-210.	1.5	356
197	Emotionality, hunger, and normal eating: Implications for interpretation of electrically induced behavior. Behavioral Biology, 1973, 8, 519-531.	2.3	16
198	Stimulation-induced eating disrupted by a conditioned taste aversion. Behavioral Biology, 1973, 9, 289-297.	2.3	25

#	Article	IF	CITATIONS
199	Rebound eating following carbachol-induced drinking in rats. Physiology and Behavior, 1972, 9, 659-661.	1.0	8
200	Individual differences in effects of hypothalamic stimulation: The role of stimulation locus. Physiology and Behavior, 1971, 6, 569-572.	1.0	93
201	Physiological control of hypothalamically elicited feeding and drinking Journal of Comparative and Physiological Psychology, 1970, 73, 226-232.	1.8	51