Thorbald van Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6757414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>NKG2A</scp> is a late immune checkpoint on <scp>CD8</scp> T cells and marks repeated stimulation and cell division. International Journal of Cancer, 2022, 150, 688-704.	5.1	22
2	Association of cognitive function with increased risk of cancer death and all-cause mortality: Longitudinal analysis, systematic review, and meta-analysis of prospective observational studies. PLoS ONE, 2022, 17, e0261826.	2.5	5
3	Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model. Gut, 2022, 71, 2266-2283.	12.1	35
4	Enhanced antigen cross-presentation in human colorectal cancer-associated fibroblasts through upregulation of the lysosomal protease cathepsin S. , 2022, 10, e003591.		13
5	A Single-Domain TCR-like Antibody Selective for the Qa-1b/Qdm Peptide Complex Enhances Tumoricidal Activity of NK Cells via Blocking the NKG2A Immune Checkpoint. Journal of Immunology, 2022, 208, 2246-2255.	0.8	1
6	Low-Dose JAK3 Inhibition Improves Antitumor T-Cell Immunity and Immunotherapy Efficacy. Molecular Cancer Therapeutics, 2022, 21, 1393-1405.	4.1	3
7	Interleukinâ€6â€mediated resistance to immunotherapy is linked to impaired myeloid cell function. International Journal of Cancer, 2021, 148, 211-225.	5.1	13
8	Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers, 2021, 13, 287.	3.7	61
9	IL-6 signaling in macrophages is required for immunotherapy-driven regression of tumors. , 2021, 9, e002460.		10
10	Cross-presentation of a TAP-independent signal peptide induces CD8 T immunity to escaped cancers but necessitates anchor replacement. Cancer Immunology, Immunotherapy, 2021, , 1.	4.2	5
11	Improved Sézary cell detection and novel insights into immunophenotypic and molecular heterogeneity in Sézary syndrome. Blood, 2021, 138, 2539-2554.	1.4	28
12	Immune Checkpoint Therapy: Tumor Draining Lymph Nodes in the Spotlights. International Journal of Molecular Sciences, 2021, 22, 9401.	4.1	16
13	Host genetics and tumor environment determine the functional impact of neutrophils in mouse tumor models. , 2020, 8, e000877.		7
14	The PD-1/PD-L1-Checkpoint Restrains TÂcell Immunity in Tumor-Draining Lymph Nodes. Cancer Cell, 2020, 38, 685-700.e8.	16.8	299
15	Preconditioning of the tumor microenvironment with oncolytic reovirus converts CD3-bispecific antibody treatment into effective immunotherapy. , 2020, 8, e001191.		40
16	Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model. , 2020, 8, e000772.		36
17	Lack of myeloid cell infiltration as an acquired resistance strategy to immunotherapy. , 2020, 8, e001326.		16
18	The NKG2A–HLA-E Axis as a Novel Checkpoint in the Tumor Microenvironment. Clinical Cancer Research, 2020, 26, 5549-5556.	7.0	101

#	Article	IF	CITATIONS
19	Immunogenicity of rat-neu+ mouse mammary tumours determines the T cell-dependent therapeutic efficacy of anti-neu monoclonal antibody treatment. Scientific Reports, 2020, 10, 3933.	3.3	6
20	Immunotherapeutic Potential of TGF-β Inhibition and Oncolytic Viruses. Trends in Immunology, 2020, 41, 406-420.	6.8	55
21	To TAP or not to TAP: alternative peptides for immunotherapy of cancer. Current Opinion in Immunology, 2020, 64, 15-19.	5.5	16
22	Future Challenges in Cancer Resistance to Immunotherapy. Cancers, 2020, 12, 935.	3.7	41
23	Vaccination against Nonmutated Neoantigens Induced in Recurrent and Future Tumors. Cancer Immunology Research, 2020, 8, 856-868.	3.4	12
24	Do GNAQ and GNA11 Differentially Affect Inflammation and HLA Expression in Uveal Melanoma?. Cancers, 2019, 11, 1127.	3.7	12
25	Tumor-targeted silencing of the peptide transporter TAP induces potent antitumor immunity. Nature Communications, 2019, 10, 3773.	12.8	47
26	Monalizumab: inhibiting the novel immune checkpoint NKG2A. , 2019, 7, 263.		182
27	TEIPP peptides: exploration of unTAPped cancer antigens. Oncolmmunology, 2019, 8, 1599639.	4.6	8
28	Metabolic stress in cancer cells induces immune escape through a PI3K-dependent blockade of IFNÎ ³ receptor signaling. , 2019, 7, 152.		57
29	Arming oncolytic reovirus with GM-CSF gene to enhance immunity. Cancer Gene Therapy, 2019, 26, 268-281.	4.6	33
30	CD3-Bispecific Antibody Therapy Turns Solid Tumors into Inflammatory Sites but Does Not Install Protective Memory. Molecular Cancer Therapeutics, 2019, 18, 312-322.	4.1	57
31	FcγR interaction is not required for effective antiâ€PDâ€L1 immunotherapy but can add additional benefit depending on the tumor model. International Journal of Cancer, 2019, 144, 345-354.	5.1	12
32	TEIPP antigens for T-cell based immunotherapy of immune-edited HLA class llow cancers. Molecular Immunology, 2019, 113, 43-49.	2.2	36
33	The Immunogenicity of a Proline-Substituted Altered Peptide Ligand toward the Cancer-Associated TEIPP Neoepitope Trh4 Is Unrelated to Complex Stability. Journal of Immunology, 2018, 200, 2860-2868.	0.8	8
34	A Restricted Role for Fcl ³ R in the Regulation of Adaptive Immunity. Journal of Immunology, 2018, 200, 2615-2626.	0.8	14
35	T cells specific for a TAP-independent self-peptide remain naÃ ⁻ ve in tumor-bearing mice and are fully exploitable for therapy. OncoImmunology, 2018, 7, e1382793.	4.6	18
36	NKG2A Blockade Potentiates CD8ÂT Cell Immunity Induced by Cancer Vaccines. Cell, 2018, 175, 1744-1755.e15.	28.9	241

#	Article	IF	CITATIONS
37	High FcÎ ³ R Expression on Intratumoral Macrophages Enhances Tumor-Targeting Antibody Therapy. Journal of Immunology, 2018, 201, 3741-3749.	0.8	11
38	T Cells Engaging the Conserved MHC Class Ib Molecule Qa-1b with TAP-Independent Peptides Are Semi-Invariant Lymphocytes. Frontiers in Immunology, 2018, 9, 60.	4.8	25
39	Digital PCR-Based T-cell Quantification–Assisted Deconvolution of the Microenvironment Reveals that Activated Macrophages Drive Tumor Inflammation in Uveal Melanoma. Molecular Cancer Research, 2018, 16, 1902-1911.	3.4	39
40	Identification of non-mutated neoantigens presented by TAP-deficient tumors. Journal of Experimental Medicine, 2018, 215, 2325-2337.	8.5	64
41	Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight, 2018, 3, .	5.0	216
42	FcÎ ³ RI expression on macrophages is required for antibody-mediated tumor protection by cytomegalovirus-based vaccines. Oncotarget, 2018, 9, 29392-29402.	1.8	10
43	A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. ELife, 2018, 7, .	6.0	7
44	PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. Oncolmmunology, 2017, 6, e1294299.	4.6	114
45	Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunology, Immunotherapy, 2017, 66, 903-912.	4.2	92
46	Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy. Cancer Immunology Research, 2017, 5, 535-546.	3.4	108
47	PD-L1 immune suppression in cancer: Tumor cells or host cells?. Oncolmmunology, 2017, 6, e1325982.	4.6	11
48	The prognostic benefit of tumour-infiltrating Natural Killer cells in endometrial cancer is dependent on concurrent overexpression of Human Leucocyte Antigen-E in the tumour microenvironment. European Journal of Cancer, 2017, 86, 285-295.	2.8	40
49	CD4+ T Cell and NK Cell Interplay Key to Regression of MHC Class Ilow Tumors upon TLR7/8 Agonist Therapy. Cancer Immunology Research, 2017, 5, 642-653.	3.4	37
50	The positive prognostic effect of stromal CD8+ tumor-infiltrating T cells is restrained by the expression of HLA-E in non-small cell lung carcinoma. Oncotarget, 2016, 7, 3477-3488.	1.8	73
51	The MHC Class I Cancer-Associated Neoepitope Trh4 Linked with Impaired Peptide Processing Induces a Unique Noncanonical TCR Conformer. Journal of Immunology, 2016, 196, 2327-2334.	0.8	12
52	The urgent need to recover MHC class I in cancers for effective immunotherapy. Current Opinion in Immunology, 2016, 39, 44-51.	5.5	464
53	Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nature Reviews Cancer, 2016, 16, 219-233.	28.4	580
54	TAP-independent self-peptides enhance T cell recognition of immune-escaped tumors. Journal of Clinical Investigation, 2016, 126, 784-794.	8.2	60

#	Article	IF	CITATIONS
55	Upregulation of HLA Expression in Primary Uveal Melanoma by Infiltrating Leukocytes. PLoS ONE, 2016, 11, e0164292.	2.5	72
56	Therapeutic cancer vaccines. Journal of Clinical Investigation, 2015, 125, 3401-3412.	8.2	640
57	Alternative Antigen Processing for MHC Class I: Multiple Roads Lead to Rome. Frontiers in Immunology, 2015, 6, 298.	4.8	73
58	Therapeutic Peptide Vaccine-Induced CD8 T Cells Strongly Modulate Intratumoral Macrophages Required for Tumor Regression. Cancer Immunology Research, 2015, 3, 1042-1051.	3.4	68
59	Heterogeneity revealed by integrated genomic analysis uncovers a molecular switch in malignant uveal melanoma. Oncotarget, 2015, 6, 37824-37835.	1.8	46
60	Inhibition of CSF-1R Supports T-Cell Mediated Melanoma Therapy. PLoS ONE, 2014, 9, e104230.	2.5	52
61	Limited Density of an Antigen Presented by RMA-S Cells Requires B7-1/CD28 Signaling to Enhance T-Cell Immunity at the Effector Phase. PLoS ONE, 2014, 9, e108192.	2.5	1
62	Dominant contribution of the proteasome and metalloproteinases to TAP-independent MHC-I peptide repertoire. Molecular Immunology, 2014, 62, 129-136.	2.2	12
63	Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and Tâ€cell activation. European Journal of Immunology, 2013, 43, 2554-2565.	2.9	157
64	Importance of TAP-independent processing pathways. Molecular Immunology, 2013, 55, 113-116.	2.2	29
65	Proline substitution independently enhances <scp>H</scp> â€2 <scp>D</scp> ^b complex stabilization and <scp>TCR</scp> recognition of melanomaâ€associated peptides. European Journal of Immunology, 2013, 43, 3051-3060.	2.9	22
66	Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Seminars in Immunology, 2013, 25, 182-190.	5.6	44
67	Alternative peptide repertoire of HLA-E reveals a binding motif that is strikingly similar to HLA-A2. Molecular Immunology, 2013, 53, 126-131.	2.2	85
68	Tumorâ€infiltrating CD14â€positive myeloid cells and CD8â€positive Tâ€cells prolong survival in patients with cervical carcinoma. International Journal of Cancer, 2013, 133, 2884-2894.	5.1	106
69	Effective Cooperation of Monoclonal Antibody and Peptide Vaccine for the Treatment of Mouse Melanoma. Journal of Immunology, 2013, 190, 489-496.	0.8	24
70	New Role of Signal Peptide Peptidase To Liberate C-Terminal Peptides for MHC Class I Presentation. Journal of Immunology, 2013, 191, 4020-4028.	0.8	35
71	Infiltrating CTLs are bothered by HLA-E on tumors. Oncolmmunology, 2012, 1, 92-93.	4.6	14
72	Mechanisms of Peptide Vaccination in Mouse Models. Advances in Immunology, 2012, 114, 51-76.	2.2	25

#	Article	IF	CITATIONS
73	Promiscuous Binding of Invariant Chain-Derived CLIP Peptide to Distinct HLA-I Molecules Revealed in Leukemic Cells. PLoS ONE, 2012, 7, e34649.	2.5	10
74	Enhanced immunogenicity of MHC class I-restricted tumor-associated altered peptide ligands. Molecular Immunology, 2012, 51, 33-34.	2.2	0
75	A novel category of antigens enabling CTL immunity to tumor escape variants: Cinderella antigens. Cancer Immunology, Immunotherapy, 2012, 61, 119-125.	4.2	31
76	M2 Macrophages Induced by Prostaglandin E2 and IL-6 from Cervical Carcinoma Are Switched to Activated M1 Macrophages by CD4+ Th1 Cells. Journal of Immunology, 2011, 187, 1157-1165.	0.8	334
77	HLA-E expression by gynecological cancers restrains tumor-infiltrating CD8 ⁺ T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10656-10661.	7.1	175
78	Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nature Immunology, 2011, 12, 45-53.	14.5	94
79	Inhibition of mouse TAP by immune evasion molecules encoded by non-murine herpesviruses. Molecular Immunology, 2011, 48, 835-845.	2.2	22
80	Peptide transporter TAP mediates between competing antigen sources generating distinct surface MHC class I peptide repertoires. European Journal of Immunology, 2011, 41, 3114-3124.	2.9	33
81	Strategies to counteract MHC-I defects in tumors. Current Opinion in Immunology, 2011, 23, 293-298.	5.5	87
82	Activation of Tumor-Promoting Type 2 Macrophages by EGFR-Targeting Antibody Cetuximab. Clinical Cancer Research, 2011, 17, 5668-5673.	7.0	91
83	Different Expression Levels of the TAP Peptide Transporter Lead to Recognition of Different Antigenic Peptides by Tumor-Specific CTL. Journal of Immunology, 2011, 187, 5532-5539.	0.8	37
84	Antiâ€inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitorâ€treated gastrointestinal stromal tumors. International Journal of Cancer, 2010, 127, 899-909.	5.1	92
85	The other Janus face of Qa-1 and HLA-E: diverse peptide repertoires in times of stress. Microbes and Infection, 2010, 12, 910-918.	1.9	59
86	The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects. Journal of Experimental Medicine, 2010, 207, 207-221.	8.5	89
87	The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects. Journal of Experimental Medicine, 2010, 207, 671-671.	8.5	25
88	In Aged Mice, Outgrowth of Intraocular Melanoma Depends on Proangiogenic M2-Type Macrophages. Journal of Immunology, 2010, 185, 3481-3488.	0.8	82
89	CD8+ T Cell Responses against TAP-Inhibited Cells Are Readily Detected in the Human Population. Journal of Immunology, 2010, 185, 6508-6517.	0.8	34
90	Peptide Vaccination after T-Cell Transfer Causes Massive Clonal Expansion, Tumor Eradication, and Manageable Cytokine Storm. Cancer Research, 2010, 70, 8339-8346.	0.9	47

#	Article	IF	CITATIONS
91	Evidence for Natural Killer Cell–Mediated Protection from Metastasis Formation in Uveal Melanoma Patients. , 2009, 50, 2888.		26
92	Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6730-6735.	7.1	132
93	Design of Agonistic Altered Peptides for the Robust Induction of CTL Directed towards H-2Db in Complex with the Melanoma-Associated Epitope gp100. Cancer Research, 2009, 69, 7784-7792.	0.9	81
94	Characterization of Antigen-Specific Immune Responses Induced by Canarypox Virus Vaccines. Journal of Immunology, 2007, 179, 6115-6122.	0.8	26
95	Distinct Uptake Mechanisms but Similar Intracellular Processing of Two Different Toll-like Receptor Ligand-Peptide Conjugates in Dendritic Cells. Journal of Biological Chemistry, 2007, 282, 21145-21159.	3.4	157
96	The Varicellovirus-Encoded TAP Inhibitor UL49.5 Regulates the Presentation of CTL Epitopes by Qa-1b1. Journal of Immunology, 2007, 178, 657-662.	0.8	36
97	DNAX Accessory Molecule-1 Mediated Recognition of Freshly Isolated Ovarian Carcinoma by Resting Natural Killer Cells. Cancer Research, 2007, 67, 1317-1325.	0.9	198
98	Induction of Protective CTL Immunity against Peptide Transporter TAP-Deficient Tumors through Dendritic Cell Vaccination. Cancer Research, 2007, 67, 8450-8455.	0.9	31
99	Targeting host B-cell immune responses by persistent donor NK-cell alloreactivity following nonmyeloablative allogeneic stem cell transplantation. Blood, 2007, 109, 5524-5525.	1.4	2
100	Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nature Medicine, 2006, 12, 417-424.	30.7	142
101	Expression of a Natural Tumor Antigen by Thymic Epithelial Cells Impairs the Tumor-Protective CD4+ T-Cell Repertoire. Cancer Research, 2005, 65, 6443-6449.	0.9	55
102	Effective Immunotherapy of Cancer in MUC1-Transgenic Mice Using Clonal Cytotoxic T Lymphocytes Directed Against an Immunodominant MUC1 Epitope. Journal of Immunotherapy, 2002, 25, 46-56.	2.4	14
103	Application of multicolor fluorescence in situ hybridization analysis for detection of cross-contamination and in vitro progression in commonly used murine tumor cell lines. Cancer Genetics and Cytogenetics, 2002, 139, 126-132.	1.0	7
104	Identification of a Novel Tumor-Specific CTL Epitope Presented by RMA, EL-4, and MBL-2 Lymphomas Reveals Their Common Origin. Journal of Immunology, 2000, 165, 869-877.	0.8	43
105	Abrogation of CTL Epitope Processing by Single Amino Acid Substitution Flanking the C-Terminal Proteasome Cleavage Site. Journal of Immunology, 2000, 164, 1898-1905.	0.8	88
106	Differential Influence on Cytotoxic T Lymphocyte Epitope Presentation by Controlled Expression of Either Proteasome Immunosubunits or Pa28. Journal of Experimental Medicine, 2000, 192, 483-494.	8.5	100
107	Immune Escape of Tumors in Vivo by Expression of Cellular Flice-Inhibitory Protein. Journal of Experimental Medicine, 1999, 190, 1033-1038.	8.5	305
108	Tumor Eradication by Wild-type p53-specific Cytotoxic T Lymphocytes. Journal of Experimental Medicine, 1997, 186, 695-704.	8.5	196

#	Article	IF	CITATIONS
109	Joint-Derived T Cells in Rheumatoid Arthritis Proliferate to Antigens Present in Autologous Synovial Fluid. Scandinavian Journal of Rheumatology, 1995, 24, 169-177.	1.1	19