S J Bolton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6757187/publications.pdf

Version: 2024-02-01

256 papers 9,508 citations

50276 46 h-index 84 g-index

277 all docs

277 docs citations

times ranked

277

3600 citing authors

#	Article	IF	CITATIONS
1	Cassini Plasma Spectrometer Investigation. Space Science Reviews, 2004, 114, 1-112.	8.1	452
2	Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science, 2017, 356, 155-159.	12.6	396
3	Composition and Dynamics of Plasma in Saturn's Magnetosphere. Science, 2005, 307, 1262-1266.	12.6	281
4	Comparing Jupiter interior structure models to <i>Juno</i> gravity measurements and the role of a dilute core. Geophysical Research Letters, 2017, 44, 4649-4659.	4.0	265
5	A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits. Geophysical Research Letters, 2018, 45, 2590-2596.	4.0	258
6	Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 2017, 356, 821-825.	12.6	229
7	The Juno Mission. Space Science Reviews, 2017, 213, 5-37.	8.1	222
8	Jupiter's atmospheric jet streams extend thousands of kilometres deep. Nature, 2018, 555, 223-226.	27.8	189
9	Plasma Observations at lo with the Galileo Spacecraft. Science, 1996, 274, 394-395.	12.6	184
10	Measurement of Jupiter's asymmetric gravity field. Nature, 2018, 555, 220-222.	27.8	177
11	Control of Jupiter's radio emission and aurorae by the solar wind. Nature, 2002, 415, 985-987.	27.8	171
12	Dynamics of Saturn's Magnetosphere from MIMI During Cassini's Orbital Insertion. Science, 2005, 307, 1270-1273.	12.6	166
13	A suppression of differential rotation in Jupiter's deep interior. Nature, 2018, 555, 227-230.	27.8	165
14	Magnetospheric Science Objectives of the Juno Mission. Space Science Reviews, 2017, 213, 219-287.	8.1	163
15	Evidence for a magnetosphere at Ganymede from plasma-wave observations by the Galileo spacecraft. Nature, 1996, 384, 535-537.	27.8	152
16	Galileo Plasma Wave Observations in the Io Plasma Torus and Near Io. Science, 1996, 274, 391-392.	12.6	131
17	Galileo evidence for rapid interchange transport in the Io torus. Geophysical Research Letters, 1997, 24, 2131-2134.	4.0	109
18	Ultra-relativistic electrons in Jupiter's radiation belts. Nature, 2002, 415, 987-991.	27.8	109

#	Article	IF	CITATIONS
19	Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 2017, 356, 826-832.	12.6	109
20	The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 2017, 44, 5317-5325.	4.0	108
21	The water abundance in Jupiter's equatorial zone. Nature Astronomy, 2020, 4, 609-616.	10.1	96
22	Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 2017, 44, 4410-4418.	4.0	90
23	Clusters of cyclones encircling Jupiter's poles. Nature, 2018, 555, 216-219.	27.8	90
24	Electron sources in Saturn's magnetosphere. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	83
25	Preliminary interpretation of Titan plasma interaction as observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1. Geophysical Research Letters, 2006, 33, .	4.0	82
26	Initial interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: Comparisons with Voyager 1. Planetary and Space Science, 2006, 54, 1211-1224.	1.7	82
27	Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 2017, 549, 66-69.	27.8	79
28	Jupiter's Gravity Field Halfway Through the Juno Mission. Geophysical Research Letters, 2020, 47, e2019GL086572.	4.0	79
29	Jupiter gravity field estimated from the first two Juno orbits. Geophysical Research Letters, 2017, 44, 4694-4700.	4.0	74
30	Lightning and Plasma Wave Observations from the Galileo Flyby of Venus. Science, 1991, 253, 1522-1525.	12.6	71
31	Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 2017, 44, 7643-7652.	4.0	68
32	Enhanced whistler-mode emissions: Signatures of interchange motion in the lo torus. Geophysical Research Letters, 1997, 24, 2123-2126.	4.0	67
33	MWR: Microwave Radiometer for the Juno Mission to Jupiter. Space Science Reviews, 2017, 213, 139-185.	8.1	64
34	A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field. Nature, 2018, 561, 76-78.	27.8	64
35	Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 2017, 44, 7131-7139.	4.0	61
36	A New Model of Jupiter's Magnetic Field at the Completion of Juno's Prime Mission. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	60

#	Article	IF	Citations
37	Correlation studies between solar wind parameters and the decimetric radio emission from Jupiter. Journal of Geophysical Research, 1989, 94, 121-128.	3.3	59
38	Outflow of hydrogen ions from Ganymede. Geophysical Research Letters, 1997, 24, 2151-2154.	4.0	57
39	Imaging Jupiter's Aurora at Visible Wavelengths. Icarus, 1998, 135, 251-264.	2.5	56
40	The Juno Mission. Proceedings of the International Astronomical Union, 2010, 6, 92-100.	0.0	56
41	Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 2017, 44, 4463-4471.	4.0	54
42	Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 2018, 361, 774-777.	12.6	53
43	Microwave remote sensing of Jupiter's atmosphere from an orbiting spacecraft. Icarus, 2005, 173, 447-453.	2.5	52
44	A revised model of Jupiter's inner electron belts: Updating the Divine radiation model. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	52
45	Prevalent lightning sferics at 600 megahertz near Jupiter's poles. Nature, 2018, 558, 87-90.	27.8	52
46	Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter's Main Aurora. Geophysical Research Letters, 2018, 45, 1277-1285.	4.0	49
47	In Situ Observations Connected to the Io Footprint Tail Aurora. Journal of Geophysical Research E: Planets, 2018, 123, 3061-3077.	3.6	48
48	Magnetospheric and Plasma Science with Cassini-Huygens. Space Science Reviews, 2002, 104, 253-346.	8.1	47
49	Energetic Particles and Acceleration Regions Over Jupiter's Polar Cap and Main Aurora: A Broad Overview. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027699.	2.4	47
50	Time variation of Jupiter's internal magnetic field consistent with zonal wind advection. Nature Astronomy, 2019, 3, 730-735.	10.1	46
51	Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in Light of the Juno and Cassini Gravity Measurements. Space Science Reviews, 2020, 216, 1.	8.1	45
52	A nebula of gases from Io surrounding Jupiter. Nature, 2002, 415, 994-996.	27.8	44
53	Outburst of Jupiter's synchrotron radiation after the impact of comet Shoemaker-Levy 9. Science, 1995, 268, 1879-1883.	12.6	43
54	Discussing the processes constraining the Jovian synchrotron radio emission's features. Planetary and Space Science, 2008, 56, 326-345.	1.7	43

#	Article	IF	CITATIONS
55	Junocam: Juno's Outreach Camera. Space Science Reviews, 2017, 213, 475-506.	8.1	42
56	Precipitating Electron Energy Flux and Characteristic Energies in Jupiter's Main Auroral Region as Measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 2018, 123, 7554-7567.	2.4	42
57	Alfvénic Fluctuations Associated With Jupiter's Auroral Emissions. Geophysical Research Letters, 2019, 46, 7157-7165.	4.0	42
58	Energetic particle signatures of magnetic fieldâ€aligned potentials over Jupiter's polar regions. Geophysical Research Letters, 2017, 44, 8703-8711.	4.0	41
59	Fine structure of Langmuir waves observed upstream of the bow shock at Venus. Journal of Geophysical Research, 1994, 99, 13363.	3.3	40
60	Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 2019, 3, 904-909.	10.1	40
61	LAPLACE: A mission to Europa and the Jupiter System for ESA's Cosmic Vision Programme. Experimental Astronomy, 2009, 23, 849-892.	3.7	38
62	Generation of the Jovian hectometric radiation: First lessons from Juno. Geophysical Research Letters, 2017, 44, 4439-4446.	4.0	38
63	The global plasma environment of Titan as observed by Cassini Plasma Spectrometer during the first two close encounters with Titan. Geophysical Research Letters, 2005, 32, .	4.0	37
64	Energy Flux and Characteristic Energy of Electrons Over Jupiter's Main Auroral Emission. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027693.	2.4	37
65	Accelerated flows at Jupiter's magnetopause: Evidence for magnetic reconnection along the dawn flank. Geophysical Research Letters, 2017, 44, 4401-4409.	4.0	36
66	Survey of Ion Properties in Jupiter's Plasma Sheet: Juno JADEâ€l Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027696.	2.4	36
67	Plasma measurements in the Jovian polar region with Juno/JADE. Geophysical Research Letters, 2017, 44, 7122-7130.	4.0	35
68	A new view of Jupiter's auroral radio spectrum. Geophysical Research Letters, 2017, 44, 7114-7121.	4.0	35
69	Intervals of Intense Energetic Electron Beams Over Jupiter's Poles. Journal of Geophysical Research: Space Physics, 2018, 123, 1989-1999.	2.4	35
70	Spatial Distribution and Properties of 0.1–100ÂkeV Electrons in Jupiter's Polar Auroral Region. Geophysical Research Letters, 2017, 44, 9199-9207.	4.0	34
71	Waveâ€Particle Interactions Associated With Io's Auroral Footprint: Evidence of Alfvén, Ion Cyclotron, and Whistler Modes. Geophysical Research Letters, 2020, 47, e2020GL088432.	4.0	34
72	Low-energy electron measurements at Ganymede with the Galileo spacecraft: Probes of the magnetic topology. Geophysical Research Letters, 1997, 24, 2159-2162.	4.0	33

#	Article	IF	CITATIONS
73	Plasma densities in the vicinity of Callisto from Galileo plasma wave observations. Geophysical Research Letters, 2000, 27, 1867-1870.	4.0	33
74	Ganymede: A new radio source. Geophysical Research Letters, 1997, 24, 2167-2170.	4.0	32
75	The Juno Gravity Science Instrument. Space Science Reviews, 2017, 213, 205-218.	8.1	32
76	On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki. Geophysical Research Letters, 2019, 46, 11632-11641.	4.0	32
77	Implications of the ammonia distribution on Jupiter from 1 to 100Âbars as measured by the Juno microwave radiometer. Geophysical Research Letters, 2017, 44, 7676-7685.	4.0	31
78	Method to Derive Ion Properties From Juno JADE Including Abundance Estimates for O ⁺ and S ²⁺ . Journal of Geophysical Research: Space Physics, 2020, 125, e2018JA026169.	2.4	31
79	Jupiter's inhomogeneous envelope. Astronomy and Astrophysics, 2022, 662, A18.	5.1	31
80	Galileo plasma wave observations near Europa. Geophysical Research Letters, 1998, 25, 237-240.	4.0	30
81	Modeling the electron and proton radiation belts of Saturn. Geophysical Research Letters, 2003, 30, .	4.0	30
82	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 2017, 44, 5308-5316.	4.0	30
83	Jovian bow shock and magnetopause encounters by the Juno spacecraft. Geophysical Research Letters, 2017, 44, 4506-4512.	4.0	30
84	The first closeâ€up images of Jupiter's polar regions: Results from the Juno mission JunoCam instrument. Geophysical Research Letters, 2017, 44, 4599-4606.	4.0	29
85	Observations of MeV electrons in Jupiter's innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3. Geophysical Research Letters, 2017, 44, 4481-4488.	4.0	29
86	The Juno Radiation Monitoring (RM) Investigation. Space Science Reviews, 2017, 213, 507-545.	8.1	29
87	Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of "Mushballs― Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006403.	3.6	29
88	Revelations on Jupiter's formation, evolution and interior: Challenges from Juno results. Icarus, 2022, 378, 114937.	2.5	29
89	One year variations in the near Earth solar wind ion density and bulk flow velocity. Geophysical Research Letters, 1990, 17, 37-40.	4.0	28
90	A heavy ion and proton radiation belt inside of Jupiter's rings. Geophysical Research Letters, 2017, 44, 5259-5268.	4.0	28

#	Article	IF	Citations
91	ROSAT Observations of X-ray Emissions from Jupiter During the Impact of Comet Shoemaker-Levy 9. Science, 1995, 268, 1598-1601.	12.6	27
92	Plasma waves in Jupiter's highâ€latitude regions: Observations from the Juno spacecraft. Geophysical Research Letters, 2017, 44, 4447-4454.	4.0	27
93	Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth. Nature Astronomy, 2018, 2, 544-548.	10.1	27
94	Small lightning flashes from shallow electrical storms on Jupiter. Nature, 2020, 584, 55-58.	27.8	27
95	Reconnection―and Dipolarizationâ€Driven Auroral Dawn Storms and Injections. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027663.	2.4	27
96	Modeling Jupiter's synchrotron radiation. Geophysical Research Letters, 2001, 28, 903-906.	4.0	26
97	Theory of Figures to the Seventh Order and the Interiors of Jupiter and Saturn. Planetary Science Journal, 2021, 2, 241.	3.6	26
98	Assessment of mechanisms for Jovian synchrotron variability associated with comet SL \hat{a} \in 9. Geophysical Research Letters, 1995, 22, 1813-1816.	4.0	25
99	The effect of differential rotation on Jupiter's lowâ€degree even gravity moments. Geophysical Research Letters, 2017, 44, 5960-5968.	4.0	25
100	Junoâ€UVS approach observations of Jupiter's auroras. Geophysical Research Letters, 2017, 44, 7668-7675.	4.0	25
101	A New Framework to Explain Changes in Io's Footprint Tail Electron Fluxes. Geophysical Research Letters, 2020, 47, e2020GL089267.	4.0	25
102	Alfvénic Acceleration Sustains Ganymede's Footprint Tail Aurora. Geophysical Research Letters, 2020, 47, e2019GL086527.	4.0	25
103	Are Dawn Storms Jupiter's Auroral Substorms?. AGU Advances, 2021, 2, e2020AV000275.	5.4	25
104	Revealing the source of Jupiter's x-ray auroral flares. Science Advances, 2021, 7, .	10.3	25
105	Plasma environment at the dawn flank of Jupiter's magnetosphere: Juno arrives at Jupiter. Geophysical Research Letters, 2017, 44, 4432-4438.	4.0	24
106	First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ€Juno Images. Journal of Geophysical Research E: Planets, 2018, 123, 1511-1524.	3.6	24
107	Storms and the Depletion of Ammonia in Jupiter: II. Explaining the Juno Observations. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006404.	3.6	24
108	Twoâ€Year Observations of the Jupiter Polar Regions by JIRAM on Board Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006098.	3.6	24

#	Article	IF	Citations
109	Electron densities near Io from Galileo plasma wave observations. Journal of Geophysical Research, 2001, 106, 26225-26232.	3.3	23
110	Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion. Reviews of Geophysics, 2008, 46, .	23.0	23
111	Infrared observations of Io from Juno. Icarus, 2020, 341, 113607.	2.5	23
112	Microwave observations reveal the deep extent and structure of Jupiter's atmospheric vortices. Science, 2021, 374, 968-972.	12.6	23
113	Changes in Jupiter's 13â€cm synchrotron radio emission following the impact of comet Shoemakerâ€Levyâ€9. Geophysical Research Letters, 1995, 22, 1797-1800.	4.0	22
114	Investigating the origins of the Jovian decimetric emission's variability. Journal of Geophysical Research, 2008, 113 , .	3.3	22
115	Ioâ€}upiter decametric arcs observed by Juno/Waves compared to ExPRES simulations. Geophysical Research Letters, 2017, 44, 9225-9232.	4.0	22
116	Juno's first glimpse of Jupiter's complexity. Geophysical Research Letters, 2017, 44, 7663-7667.	4.0	22
117	Contemporaneous Observations of Jovian Energetic Auroral Electrons and Ultraviolet Emissions by the Juno Spacecraft. Journal of Geophysical Research: Space Physics, 2019, 124, 8298-8317.	2.4	22
118	Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere. Geophysical Research Letters, 2017, 44, 4419-4425.	4.0	21
119	The Acceleration of Electrons to High Energies Over the Jovian Polar Cap via Whistler Mode Waveâ€Particle Interactions. Journal of Geophysical Research: Space Physics, 2018, 123, 7523-7533.	2.4	21
120	Whistler Mode Waves Associated With Broadband Auroral Electron Precipitation at Jupiter. Geophysical Research Letters, 2018, 45, 9372-9379.	4.0	21
121	Heavy Ion Charge States in Jupiter's Polar Magnetosphere Inferred From Auroral Megavolt Electric Potentials. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028052.	2.4	21
122	Magnetotail Reconnection at Jupiter: A Survey of Juno Magnetic Field Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027486.	2.4	21
123	Absence of a magnetic-field signature in plasma-wave observations at Callisto. Nature, 1997, 387, 261-262.	27.8	20
124	Preliminary results on the composition of Jupiter's troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 2017, 44, 4615-4624.	4.0	20
125	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H ₃ ⁺ emissions and comparison with the north aurora. Geophysical Research Letters, 2017, 44, 4633-4640.	4.0	20
126	Juno observations of largeâ€scale compressions of Jupiter's dawnside magnetopause. Geophysical Research Letters, 2017, 44, 7559-7568.	4.0	20

#	Article	IF	CITATIONS
127	Observations of Jupiter's synchrotron radiation at 18 cm during the comet Shoemakerâ€Levy/9 impacts. Geophysical Research Letters, 1995, 22, 1801-1804.	4.0	19
128	Jupiter's Magnetosphere: Plasma Sources and Transport. Space Science Reviews, 2015, 192, 209-236.	8.1	19
129	The Rich Dynamics of Jupiter's Great Red Spot from JunoCam: Juno Images. Astronomical Journal, 2018, 156, 162.	4.7	19
130	Observation of Electron Conics by Juno: Implications for Radio Generation and Acceleration Processes. Geophysical Research Letters, 2018, 45, 9408-9416.	4.0	19
131	Junoâ€UVS Observation of the Io Footprint During Solar Eclipse. Journal of Geophysical Research: Space Physics, 2019, 124, 5184-5199.	2.4	19
132	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 2017, 44, 4625-4632.	4.0	18
133	In-flight Characterization and Calibration of the Juno-ultraviolet Spectrograph (Juno-UVS). Astronomical Journal, 2019, 157, 90.	4.7	18
134	Comparing Electron Energetics and UV Brightness in Jupiter's Northern Polar Region During Juno Perijove 5. Geophysical Research Letters, 2019, 46, 19-27.	4.0	18
135	Proton Acceleration by Io's Alfvénic Interaction. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027314.	2.4	18
136	Distribution of Interplanetary Dust Detected by the Juno Spacecraft and Its Contribution to the Zodiacal Light. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006509.	3.6	18
137	Evidence for Multiple Ferrelâ€Like Cells on Jupiter. Geophysical Research Letters, 2021, 48, e2021GL095651.	4.0	18
138	The depth of Jupiter's Great Red Spot constrained by Juno gravity overflights. Science, 2021, 374, 964-968.	12.6	18
139	A determination of the source of Jovian hectometric radiation via occultation by Ganymede. Geophysical Research Letters, 1997, 24, 1171-1174.	4.0	17
140	Hot flow anomaly observed at Jupiter's bow shock. Geophysical Research Letters, 2017, 44, 8107-8112.	4.0	17
141	Understanding the Origin of Jupiter's Diffuse Aurora Using Juno's First Perijove Observations. Geophysical Research Letters, 2017, 44, 10,162.	4.0	17
142	Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves. Geophysical Research Letters, 2018, 45, 1246-1252.	4.0	17
143	Jovian Injections Observed at High Latitude. Geophysical Research Letters, 2019, 46, 9397-9404.	4.0	17
144	First Report of Electron Measurements During a Europa Footprint Tail Crossing by Juno. Geophysical Research Letters, 2020, 47, e2020GL089732.	4.0	17

#	Article	IF	CITATIONS
145	Jupiter's Temperate Belt/Zone Contrasts Revealed at Depth by Juno Microwave Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006858.	3.6	17
146	Juno/JEDI observations of 0.01 to >10ÂMeV energetic ions in the Jovian auroral regions: Anticipating a source for polar Xâ€ray emission. Geophysical Research Letters, 2017, 44, 6476-6482.	4.0	16
147	Jovian Highâ€Latitude Ionospheric Ions: Juno In Situ Observations. Geophysical Research Letters, 2019, 46, 8663-8670.	4.0	16
148	Survey of Jupiter's Dawn Magnetosheath Using Juno. Journal of Geophysical Research: Space Physics, 2019, 124, 9106-9123.	2.4	16
149	Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006508.	3.6	16
150	Energetic Proton Acceleration Associated With Io's Footprint Tail. Geophysical Research Letters, 2020, 47, e2020GL090839.	4.0	16
151	Waterâ€Group Pickup Ions From Europaâ€Genic Neutrals Orbiting Jupiter. Geophysical Research Letters, 2022, 49, .	4.0	16
152	Differential Rotation in Jupiter's Interior Revealed by Simultaneous Inversion for the Magnetic Field and Zonal Flux Velocity. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	16
153	Plasma Observations During the 7 June 2021 Ganymede Flyby From the Jovian Auroral Distributions Experiment (JADE) on Juno. Geophysical Research Letters, 2022, 49, .	4.0	16
154	Divine-Garrett Model and Jovian synchrotron emission. Geophysical Research Letters, 2001, 28, 907-910.	4.0	15
155	Characterization of the white ovals on Jupiter's southern hemisphere using the first data by the Juno/JIRAM instrument. Geophysical Research Letters, 2017, 44, 4660-4668.	4.0	15
156	Investigation of Massâ€∤Chargeâ€Dependent Escape of Energetic Ions Across the Magnetopauses of Earth and Jupiter. Journal of Geophysical Research: Space Physics, 2019, 124, 5539-5567.	2.4	15
157	Serendipitous infrared observations of Europa by Juno/JIRAM. Icarus, 2019, 328, 1-13.	2.5	15
158	Survey of Juno Observations in Jupiter's Plasma Disk: Density. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029446.	2.4	15
159	Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM Lâ€Band Imager. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029450.	2.4	15
160	Synchrotron emission images from three-dimensional modeling of the Jovian electron radiation belts. Advances in Space Research, 2001, 28, 915-918.	2.6	14
161	Multipleâ€wavelength sensing of Jupiter during the Juno mission's first perijove passage. Geophysical Research Letters, 2017, 44, 4607-4614.	4.0	14
162	Variability of Jupiter's IR H ₃ ⁺ aurorae during Juno approach. Geophysical Research Letters, 2017, 44, 4513-4522.	4.0	14

#	Article	IF	Citations
163	Directionâ€finding measurements of Jovian lowâ€frequency radio components by Juno near Perijove 1. Geophysical Research Letters, 2017, 44, 6508-6516.	4.0	14
164	<i>Bar Code</i> Events in the Junoâ€UVS Data: Signature â^¼10ÂMeV Electron Microbursts at Jupiter. Geophysical Research Letters, 2018, 45, 12,108.	4.0	14
165	On the Spatial Distribution of Minor Species in Jupiter's Troposphere as Inferred From Juno JIRAM Data. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006206.	3.6	14
166	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 2017, 44, 4641-4648.	4.0	13
167	Determining the Depth of Jupiter's Great Red Spot with Juno: A Slepian Approach. Astrophysical Journal Letters, 2019, 874, L24.	8.3	13
168	Possible Transient Luminous Events Observed in Jupiter's Upper Atmosphere. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006659.	3.6	13
169	Jupiter's Equatorial Plumes and Hot Spots: Spectral Mapping from Gemini/TEXES and Juno/MWR. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006399.	3.6	13
170	Proton Outflow Associated With Jupiter's Auroral Processes. Geophysical Research Letters, 2021, 48, .	4.0	13
171	Constraints on the Latitudinal Profile of Jupiter's Deep Jets. Geophysical Research Letters, 2021, 48, e2021GL092912.	4.0	13
172	Juno Plasma Wave Observations at Ganymede. Geophysical Research Letters, 2022, 49, .	4.0	13
173	Long-term dynamics of the inner Jovian electron radiation belts. Advances in Space Research, 2004, 33, 2039-2044.	2.6	12
174	Multifrequency analysis of the Jovian electron-belt radiation during the <i>Cassini </i> flyby of Jupiter. Astronomy and Astrophysics, 2014, 568, A61.	5.1	12
175	A solution of Jupiter's gravitational field from Juno data with the orbit14 software. Monthly Notices of the Royal Astronomical Society, 2019, 490, 766-772.	4.4	12
176	lo's Effect on Energetic Charged Particles as Seen in Juno Data. Geophysical Research Letters, 2019, 46, 13615-13620.	4.0	12
177	Angular Dependence and Spatial Distribution of Jupiter's Centimeterâ€Wave Thermal Emission From Juno's Microwave Radiometer. Earth and Space Science, 2020, 7, e2020EA001254.	2.6	12
178	The Highâ€Latitude Extension of Jupiter's Io Torus: Electron Densities Measured by Juno Waves. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029195.	2.4	12
179	Quantification of Diffuse Auroral Electron Precipitation Driven by Whistler Mode Waves at Jupiter. Geophysical Research Letters, 2021, 48, e2021GL095457.	4.0	12
180	Latitudinal beaming of Jovian decametric radio emissions as viewed from Juno and the Nançay Decameter Array. Geophysical Research Letters, 2017, 44, 4455-4462.	4.0	11

#	Article	IF	Citations
181	Jupiter Lightningâ€Induced Whistler and Sferic Events With Waves and MWR During Juno Perijoves. Geophysical Research Letters, 2018, 45, 7268-7276.	4.0	11
182	Juno Energetic Neutral Atom (ENA) Remote Measurements of Magnetospheric Injection Dynamics in Jupiter's Io Torus Regions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027964.	2.4	11
183	The Generation of Upwardâ€Propagating Whistler Mode Waves by Electron Beams in the Jovian Polar Regions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027868.	2.4	11
184	Oscillations and Stability of the Jupiter Polar Cyclones. Geophysical Research Letters, 2021, 48, e2021GL094235.	4.0	11
185	Electron Partial Density and Temperature Over Jupiter's Main Auroral Emission Using Juno Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029426.	2.4	11
186	A Preliminary Study of Magnetosphereâ€lonosphereâ€Thermosphere Coupling at Jupiter: Juno Multiâ€Instrument Measurements and Modeling Tools. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029469.	2.4	11
187	Evidence for short-term variability of Jupiter's decimetric emission from VLA observations. Astronomy and Astrophysics, 2009, 508, 1001-1010.	5.1	11
188	Jupiter's Overturning Circulation: Breaking Waves Take the Place of Solid Boundaries. Geophysical Research Letters, 2021, 48, e2021GL095756.	4.0	11
189	Jupiter's Temperature Structure: A Reassessment of the Voyager Radio Occultation Measurements. Planetary Science Journal, 2022, 3, 159.	3.6	11
190	lo's interaction with the Jovian magnetosphere. Eos, 1997, 78, 93.	0.1	10
191	Kronos: exploring the depths of Saturn with probes and remote sensing through an international mission. Experimental Astronomy, 2009, 23, 947-976.	3.7	10
192	VLA observations at 6.2 cm of the response of Jupiter's electron belt to the July 2009 event. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	10
193	First look at Jupiter's synchrotron emission from Juno's perspective. Geophysical Research Letters, 2017, 44, 8676-8684.	4.0	10
194	Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3. Geophysical Research Letters, 2017, 44, 4426-4431.	4.0	10
195	Probing Jovian Broadband Kilometric Radio Sources Tied to the Ultraviolet Main Auroral Oval With Juno. Geophysical Research Letters, 2019, 46, 571-579.	4.0	10
196	Lowâ€Latitude Whistlerâ€Mode and Higherâ€Latitude Zâ€Mode Emission at Jupiter Observed by Juno. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028742.	2.4	10
197	Energy Spectra Near Ganymede From Juno Data. Geophysical Research Letters, 2021, 48, e2021GL093021.	4.0	10
198	Observations of interplanetary dust by the Juno magnetometer investigation. Geophysical Research Letters, 2017, 44, 4701-4708.	4.0	9

#	Article	IF	CITATIONS
199	Where Is the Io Plasma Torus? A Comparison of Observations by Juno Radio Occultations to Predictions From Jovian Magnetic Field Models. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027633.	2.4	9
200	Detection of a Bolide in Jupiter's Atmosphere With Juno UVS. Geophysical Research Letters, 2021, 48, e2020GL091797.	4.0	9
201	Cassini Plasma Spectrometer Investigation. , 2004, , 1-112.		9
202	Local Time Dependence of Jupiter's Polar Auroral Emissions Observed by Juno UVS. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006954.	3.6	9
203	Ganymede's Ionosphere Observed by a Dualâ€Frequency Radio Occultation With Juno. Geophysical Research Letters, 2022, 49, .	4.0	9
204	Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 202, 200-209.	2.3	8
205	Editorial: Topical Collection of the Juno Mission Science Objectives, Instruments, and Implementation. Space Science Reviews, 2017, 213, 1-3.	8.1	8
206	Turbulence Power Spectra in Regions Surrounding Jupiter's South Polar Cyclones From Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006096.	3.6	8
207	Mapping Io's Surface Composition With Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006522.	3.6	8
208	Juno Waves Detection of Dust Impacts Near Jupiter. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006367.	3.6	8
209	A Comprehensive Set of Juno In Situ and Remote Sensing Observations of the Ganymede Auroral Footprint. Geophysical Research Letters, 2022, 49, .	4.0	8
210	The global plasma environment of Io as inferred from the Galileo plasma wave observations. Geophysical Research Letters, 1997, 24, 2115-2118.	4.0	7
211	The Cassini?Huygens flyby of Jupiter. Icarus, 2004, 172, 1-8.	2.5	7
212	Statistical study of latitudinal beaming of Jupiter's decametric radio emissions using Juno. Geophysical Research Letters, 2017, 44, 4584-4590.	4.0	7
213	A Survey of Smallâ€Scale Waves and Waveâ€Like Phenomena in Jupiter's Atmosphere Detected by JunoCam. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006369.	3.6	7
214	Plasma Sheet Boundary Layer in Jupiter's Magnetodisk as Observed by Juno. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027957.	2.4	7
215	Closed Fluxtubes and Dispersive Proton Conics at Jupiter's Polar Cap. Geophysical Research Letters, 2022, 49, .	4.0	7
216	Investigating the Occurrence of Magnetic Reconnection at Jupiter's Dawn Magnetopause During the Juno Era. Geophysical Research Letters, 2022, 49, .	4.0	7

#	Article	IF	Citations
217	Electron butterfly distributions at particular magnetic latitudes observed during Juno's perijove pass. Geophysical Research Letters, 2017, 44, 4489-4496.	4.0	6
218	Juno Constraints on the Formation of Jupiter's Magnetospheric Cushion Region. Geophysical Research Letters, 2018, 45, 9427-9434.	4.0	6
219	Energetic Electron Distributions Near the Magnetic Equator in the Jovian Plasma Sheet and Outer Radiation Belt Using Juno Observations. Geophysical Research Letters, 2021, 48, .	4.0	6
220	High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR). Space Science Reviews, 2017, 213, 187-204.	8.1	5
221	A mascon approach to estimating the depth of Jupiter's Great Red Spot with Juno gravity measurements. Planetary and Space Science, 2020, 181, 104781.	1.7	5
222	Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006504.	3.6	5
223	On the clouds and ammonia in Jupiter's upper troposphere from Juno JIRAM reflectivity observations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4892-4907.	4.4	5
224	Meridional Variations of C ₂ H ₂ in Jupiter's Stratosphere From Juno UVS Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006928.	3.6	5
225	Observation of Kolmogorov Turbulence in the Jovian Magnetosheath From JADE Data. Geophysical Research Letters, 2021, 48, e2021GL095006.	4.0	5
226	Juno In Situ Observations Above the Jovian Equatorial Ionosphere. Geophysical Research Letters, 2020, 47, e2020GL087623.	4.0	5
227	Analysis of Whistlerâ€Mode and Zâ€Mode Emission in the Juno Primary Mission. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029885.	2.4	5
228	Cassini/Huygens flyby of the Jovian system. Journal of Geophysical Research, 2004, 109, .	3.3	4
229	Evidence for low density holes in Jupiter's ionosphere. Nature Communications, 2019, 10, 2751.	12.8	4
230	Observations and Electron Density Retrievals of Jupiter's Discrete Auroral Arcs Using the Juno Microwave Radiometer. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006293.	3.6	4
231	Detection and Characterization of Circular Expanding UVâ€Emissions Observed in Jupiter's Polar Auroral Regions. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028971.	2.4	4
232	The Juno Mission., 2017,, 5-37.		4
233	Loss of Energetic Ions Comprising the Ring Current Populations of Jupiter's Middle and Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
234	Interpretation of the observed changes in Jupiter's synchrotron radiation during and after the impacts from comet Shoemaker-Levy 9. Planetary and Space Science, 1997, 45, 1359-1370.	1.7	3

#	Article	IF	CITATIONS
235	Searching for low-altitude magnetic field anomalies by using observations of the energetic particle loss cone on JUNO. Geophysical Research Letters, 2017, 44, 4472-4480.	4.0	3
236	Residual Study: Testing Jupiter Atmosphere Models Against Juno MWR Observations. Earth and Space Science, 2020, 7, e2020EA001229.	2.6	3
237	Highâ€Spatiotemporal Resolution Observations of Jupiter Lightningâ€Induced Radio Pulses Associated With Sferics and Thunderstorms. Geophysical Research Letters, 2020, 47, e2020GL088397.	4.0	3
238	Determination of Jupiter's Mass from Juno Radio Tracking Data. Journal of Guidance, Control, and Dynamics, 2021, 44, 1062-1067.	2.8	3
239	High Latitude Zones of GeV Heavy Ions at the Inner Edge of Jupiter's Relativistic Electron Belt. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006772.	3.6	3
240	Jupiter's Doubleâ€Arc Aurora as a Signature of Magnetic Reconnection: Simultaneous Observations From HST and Juno. Geophysical Research Letters, 2021, 48, e2021GL093964.	4.0	3
241	Magnetospheric Science Objectives of the Juno Mission. , 2014, , 39-107.		3
242	Flow patterns of Jupiter's south polar region. Icarus, 2022, 372, 114742.	2.5	3
243	Magnetospheric and Plasma Science with Cassini-Huygens. , 2003, , 253-346.		3
244	Simultaneous UV Images and Highâ€Latitude Particle and Field Measurements During an Auroral Dawn Storm at Jupiter. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029679.	2.4	3
245	Juno celebrates a year at Jupiter. Nature Astronomy, 2017, 1, .	10.1	2
246	Energetic Neutral Atoms From Jupiter's Polar Regions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028697.	2.4	2
247	In-flight characterization and calibration of the Juno-Ultraviolet Spectrograph (Juno-UVS). , 2018, , .		2
248	The Juno Gravity Science Instrument. , 2017, , 109-122.		2
249	Quasilinear model of Jovian whistler mode emission. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029930.	2.4	1
250	The planets and our culture a history and a legacy. Proceedings of the International Astronomical Union, 2010, 6, 199-212.	0.0	0
251	The Juno microwave experiment. , 2010, , .		0
252	Titan in the Cassini—Huygens Extended Mission. , 2009, , 455-477.		0

#	Article	IF	CITATIONS
253	High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR)., 2016,, 627-644.		0
254	Jupiter's Magnetosphere: Plasma Sources and Transport. Space Sciences Series of ISSI, 2016, , 209-236.	0.0	0
255	MWR: Microwave Radiometer for the Juno Mission to Jupiter. , 2017, , 123-169.		0
256	The Juno Radiation Monitoring (RM) Investigation. , 2017, , 385-423.		0