Gerald B Pier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6755835/publications.pdf Version: 2024-02-01

		10373	14197
239	19,074	72	128
papers	citations	h-index	g-index
317	317	317	16763
all docs	docs citations	times ranked	citing authors

CEDALD R DIED

#	Article	IF	CITATIONS
1	A qnr-plasmid allows aminoglycosides to induce SOS in Escherichia coli. ELife, 2022, 11, .	2.8	4
2	Pseudomonas aeruginosa–induced nociceptor activation increases susceptibility to infection. PLoS Pathogens, 2021, 17, e1009557.	2.1	17
3	COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis, 2021, 24, 755-788.	3.7	114
4	Antibody activities in hyperimmune plasma against the Rhodococcus equi virulence -associated protein A or poly-N-acetyl glucosamine are associated with protection of foals against rhodococcal pneumonia. PLoS ONE, 2021, 16, e0250133.	1.1	5
5	Serum Antibody Activity against Poly- <i>N</i> -Acetyl Glucosamine (PNAG), but Not PNAG Vaccination Status, Is Associated with Protecting Newborn Foals against Intrabronchial Infection with Rhodococcus equi. Microbiology Spectrum, 2021, 9, e0063821.	1.2	3
6	Randomized, controlled trial comparing <i>Rhodococcus equi</i> and <scp>polyâ€<i>N</i></scp> â€acetyl glucosamine hyperimmune plasma to prevent <i>R equi</i> pneumonia in foals. Journal of Veterinary Internal Medicine, 2021, 35, 2912-2919.	0.6	6
7	Experimental Urethral Infection with Neisseria gonorrhoeae. Current Topics in Microbiology and Immunology, 2021, , 1.	0.7	5
8	lmmunization against a Conserved Surface Polysaccharide Stimulates Bovine Antibodies with Opsonic Killing Activity but Does Not Protect against Babesia bovis Challenge. Pathogens, 2021, 10, 1598.	1.2	3
9	Vaccination against the broadly expressed microbial antigen PNAG prevents cognitive decline in the APP-PS1 mouse model of Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e053793.	0.4	0
10	Antibody recognition of bacterial surfaces and extracellular polysaccharides. Current Opinion in Structural Biology, 2020, 62, 48-55.	2.6	20
11	Broadly protective semi-synthetic glycoconjugate vaccine against pathogens capable of producing poly-β-(1→6)-N-acetyl-d-glucosamine exopolysaccharide. Drug Discovery Today: Technologies, 2020, 35-36, 13-21.	4.0	10
12	Glycomics Microarrays Reveal Differential In Situ Presentation of the Biofilm Polysaccharide Poly-N-acetylglucosamine on Acinetobacter baumannii and Staphylococcus aureus Cell Surfaces. International Journal of Molecular Sciences, 2020, 21, 2465.	1.8	28
13	Vaccination of yearling horses against poly-N-acetyl glucosamine fails to protect against infection with Streptococcus equi subspecies equi. PLoS ONE, 2020, 15, e0240479.	1.1	3
14	Title is missing!. , 2020, 15, e0240479.		0
15	Title is missing!. , 2020, 15, e0240479.		0
16	Title is missing!. , 2020, 15, e0240479.		0
17	A Conserved Streptococcal Virulence Regulator Controls the Expression of a Distinct Class of M-Like Proteins. MBio, 2019, 10, .	1.8	8
18	PNAG-specific equine IgG1 mediates significantly greater opsonization and killing of Prescottella equi (formerly Rhodococcus equi) than does IgG4/7. Vaccine, 2019, 37, 1142-1150.	1.7	10

#	Article	IF	CITATIONS
19	In vitro evaluation of complement deposition and opsonophagocytic killing of <i>Rhodococcus equi</i> mediated by polyâ€ <i>N</i> â€acetyl glucosamine hyperimmune plasma compared to commercial plasma products. Journal of Veterinary Internal Medicine, 2019, 33, 1493-1499.	0.6	12
20	PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis. PLoS Pathogens, 2019, 15, e1007571.	2.1	24
21	Immunization against poly- <i>N</i> -acetylglucosamine reduces neutrophil activation and GVHD while sparing microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20700-20706.	3.3	25
22	Inhibition of <i>Pseudomonas aeruginosa</i> and <i>Mycobacterium tuberculosis</i> disulfide bond forming enzymes. Molecular Microbiology, 2019, 111, 918-937.	1.2	21
23	Macrophage FABP4 is required for neutrophil recruitment and bacterial clearance in <i>Pseudomonas aeruginosa</i> pneumonia. FASEB Journal, 2019, 33, 3562-3574.	0.2	24
24	Vaccination Against Poly-N-Acetylglucosamine Decreases Neutrophil Activation and Gvhd While Maintaining Microbial Diversity. Blood, 2019, 134, 3209-3209.	0.6	0
25	Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly-N-acetylglucosamine. Journal of Biological Chemistry, 2018, 293, 5079-5089.	1.6	39
26	Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3106-E3115.	3.3	81
27	Antibody to Poly-N-acetyl glucosamine provides protection against intracellular pathogens: Mechanism of action and validation in horse foals challenged with Rhodococcus equi. PLoS Pathogens, 2018, 14, e1007160.	2.1	39
28	PgaB orthologues contain a glycoside hydrolase domain that cleaves deacetylated poly-β(1,6)-N-acetylglucosamine and can disrupt bacterial biofilms. PLoS Pathogens, 2018, 14, e1006998.	2.1	59
29	Antibodies to Conserved Surface Polysaccharides Protect Mice Against Bacterial Conjunctivitis. , 2018, 59, 2512.		10
30	Production of poly-β-1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by Streptomyces. Microbial Cell, 2018, 5, 269-279.	1.4	23
31	In vitro Susceptibility of Pseudomonas aeruginosa Isolated from Acute and Chronic Pulmonary Infection to Antibiotics, Lactobacillus Competition and Metal Nanoparticles. Pakistan Journal of Zoology, 2018, 50, .	0.1	1
32	Molecular basis for PNAC-dependent biofilm disruption by PgaB. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a101-a101.	0.0	0
33	A Novel Repressor of the <i>ica</i> Locus Discovered in Clinically Isolated Super-Biofilm-Elaborating <i>Staphylococcus aureus</i> . MBio, 2017, 8, .	1.8	29
34	Immune Recognition of the Epidemic Cystic Fibrosis Pathogen Burkholderia dolosa. Infection and Immunity, 2017, 85, .	1.0	5
35	Complexity of Complement Resistance Factors Expressed by <i>Acinetobacter baumannii</i> Needed for Survival in Human Serum. Journal of Immunology, 2017, 199, 2803-2814.	0.4	43
36	Active and Passive Immunization Against Staphylococcus aureus Periprosthetic Osteomyelitis in Rats. In Vivo, 2017, 31, 45-50.	0.6	14

#	Article	IF	CITATIONS
37	Efficacy of Antibody to PNAG Against Keratitis Caused by Fungal Pathogens. , 2016, 57, 6797.		15
38	Transcriptomic Analysis of Staphylococcus epidermidis Biofilm-Released Cells upon Interaction with Human Blood Circulating Immune Cells and Soluble Factors. Frontiers in Microbiology, 2016, 7, 1143.	1.5	7
39	Staphylococcus epidermidis Biofilm-Released Cells Induce a Prompt and More Marked In vivo Inflammatory-Type Response than Planktonic or Biofilm Cells. Frontiers in Microbiology, 2016, 7, 1530.	1.5	16
40	Antibiotic resistance and virulence: Understanding the link and its consequences for prophylaxis and therapy. BioEssays, 2016, 38, 682-693.	1.2	38
41	Distinct Mechanisms Underlie Boosted Polysaccharide-Specific IgG Responses Following Secondary Challenge with Intact Gram-Negative versus Gram-Positive Extracellular Bacteria. Journal of Immunology, 2016, 196, 4614-4621.	0.4	1
42	Poly- <i>N</i> -Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their <i>In Vivo</i> Proinflammatory Effect. Infection and Immunity, 2016, 84, 2933-2943.	1.0	9
43	Characterization of an in vitro fed-batch model to obtain cells released from S. epidermidis biofilms. AMB Express, 2016, 6, 23.	1.4	27
44	Impact of Drug Resistance on Virulence and Fitness of Bacterial Pathogens. Critical Care Medicine, 2016, 44, e50-e51.	0.4	2
45	Extended-spectrum antibodies protective against carbapenemase-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 2016, 71, 927-935.	1.3	22
46	Absence of TLR11 in Mice Does Not Confer Susceptibility to Salmonella Typhi. Cell, 2016, 164, 827-828.	13.5	22
47	The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert Review of Vaccines, 2016, 15, 1041-1053.	2.0	44
48	Novel vaccine antigen combinations elicit protective immune responses against Escherichia coli sepsis. Vaccine, 2016, 34, 656-662.	1.7	39
49	Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa. Frontiers in Immunology, 2015, 6, 595.	2.2	51
50	Intestinal Microbiota of Mice Influences Resistance to Staphylococcus aureus Pneumonia. Infection and Immunity, 2015, 83, 4003-4014.	1.0	169
51	Fitness cost of antibiotic susceptibility during bacterial infection. Science Translational Medicine, 2015, 7, 297ra114.	5.8	122
52	Identification of Poly-N-acetylglucosamine as a Major Polysaccharide Component of the Bacillus subtilis Biofilm Matrix. Journal of Biological Chemistry, 2015, 290, 19261-19272.	1.6	118
53	Comparative proteomic and transcriptomic profile of Staphylococcus epidermidis biofilms grown in glucose-enriched medium. Talanta, 2015, 132, 705-712.	2.9	14
54	A Poly- <i>N</i> -Acetylglucosamineâ^'Shiga Toxin Broad-Spectrum Conjugate Vaccine for Shiga Toxin-Producing Escherichia coli. MBio, 2014, 5, e00974-14.	1.8	20

#	Article	IF	CITATIONS
55	BIIL 284 reduces neutrophil numbers but increases P. aeruginosa bacteremia and inflammation in mouse lungs. Journal of Cystic Fibrosis, 2014, 13, 156-163.	0.3	61
56	Dormancy within Staphylococcus epidermidis biofilms: a transcriptomic analysis by RNA-seq. Applied Microbiology and Biotechnology, 2014, 98, 2585-2596.	1.7	25
57	Alterations in the <i>Staphylococcus epidermidis</i> biofilm transcriptome following interaction with whole human blood. Pathogens and Disease, 2014, 70, 444-448.	0.8	23
58	Dormant bacteria within Staphylococcus epidermidis biofilms have low inflammatory properties and maintain tolerance to vancomycin and penicillin after entering planktonic growth. Journal of Medical Microbiology, 2014, 63, 1274-1283.	0.7	24
59	Microbiota-Driven Immune Cellular Maturation Is Essential for Antibody-Mediated Adaptive Immunity to Staphylococcus aureus Infection in the Eye. Infection and Immunity, 2014, 82, 3483-3491.	1.0	18
60	The persistence of biofilm-associated antibiotic resistance of Staphylococcus aureus isolated from clinical bovine mastitis cases in Australia. Folia Microbiologica, 2013, 58, 469-474.	1.1	31
61	Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2209-18.	3.3	152
62	Enhanced in vivo fitness of carbapenem-resistant <i>oprD</i> mutants of <i>Pseudomonas aeruginosa</i> revealed through high-throughput sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20747-20752.	3.3	128
63	A novel knee prosthesis model of implant-related osteo- myelitis in rats. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 84, 92-97.	1.2	20
64	Cochlin Produced by Follicular Dendritic Cells Promotes Antibacterial Innate Immunity. Immunity, 2013, 38, 1063-1072.	6.6	57
65	Linear and cyclic oligo-β-(1→6)-D-glucosamines: Synthesis, conformations, and applications for design of a vaccine and oligodentate glycoconjugates. Pure and Applied Chemistry, 2013, 85, 1879-1891.	0.9	18
66	A Comprehensive Analysis of In Vitro and In Vivo Genetic Fitness of Pseudomonas aeruginosa Using High-Throughput Sequencing of Transposon Libraries. PLoS Pathogens, 2013, 9, e1003582.	2.1	178
67	Will there ever be a universal <i>Staphylococcus aureus</i> vaccine?. Human Vaccines and Immunotherapeutics, 2013, 9, 1865-1876.	1.4	43
68	Collaboration Between Macrophages and Vaccine-Induced CD4+ T Cells Confers Protection Against Lethal Pseudomonas aeruginosa Pneumonia During Neutropenia. Journal of Infectious Diseases, 2013, 207, 39-49.	1.9	21
69	Homotrimeric Macrophage Migration Inhibitory Factor (MIF) Drives Inflammatory Responses in the Corneal Epithelium by Promoting Caveolin-rich Platform Assembly in Response to Infection. Journal of Biological Chemistry, 2013, 288, 8269-8278.	1.6	11
70	<i>Staphylococcus aureus</i> Corneal Infections: Effect of the Panton-Valentine Leukocidin (PVL) and Antibody to PVL on Virulence and Pathology. , 2013, 54, 4430.		33
71	Monoclonal Antibody Raised against PNAG Has Variable Effects on Static S. epidermidis Biofilm Accumulation In Vitro. International Journal of Biological Sciences, 2013, 9, 518-520.	2.6	19
72	Methicillin Resistance Alters the Biofilm Phenotype and Attenuates Virulence in Staphylococcus aureus Device-Associated Infections. PLoS Pathogens, 2012, 8, e1002626.	2.1	237

#	Article	IF	CITATIONS
73	Targeting Pan-Resistant Bacteria With Antibodies to a Broadly Conserved Surface Polysaccharide Expressed During Infection. Journal of Infectious Diseases, 2012, 205, 1709-1718.	1.9	49
74	Natural Antibodies in Normal Human Serum Inhibit Staphylococcus aureus Capsular Polysaccharide Vaccine Efficacy. Clinical Infectious Diseases, 2012, 55, 1188-1197.	2.9	49
75	Immune-Activating Properties of Panton-Valentine Leukocidin Improve the Outcome in a Model of Methicillin-Resistant Staphylococcus aureus Pneumonia. Infection and Immunity, 2012, 80, 2894-2904.	1.0	50
76	Hepoxilin A3 Facilitates Neutrophilic Breach of Lipoxygenase-Expressing Airway Epithelial Barriers. Journal of Immunology, 2012, 189, 4960-4969.	0.4	45
77	Topical Neutralization of Interleukin-17 during Experimental Pseudomonas aeruginosa Corneal Infection Promotes Bacterial Clearance and Reduces Pathology. Infection and Immunity, 2012, 80, 3706-3712.	1.0	30
78	Poly- <i>N</i> -Acetyl-β-(1-6)-Glucosamine Is a Target for Protective Immunity against Acinetobacter baumannii Infections. Infection and Immunity, 2012, 80, 651-656.	1.0	87
79	Magic bullets for the 21st century: the reemergence of immunotherapy for multi- and pan-resistant microbes. Journal of Antimicrobial Chemotherapy, 2012, 67, 2785-2787.	1.3	32
80	Poly- <i>N</i> -Acetylglucosamine Expression by Wild-Type Yersinia pestis Is Maximal at Mammalian, Not Flea, Temperatures. MBio, 2012, 3, e00217-12.	1.8	18
81	The challenges and promises of new therapies for cystic fibrosis. Journal of Experimental Medicine, 2012, 209, 1235-1239.	4.2	49
82	Refers to: JP. Rasigade, N. Sicot, F. Laurent, G. Lina, F. Vandenesch, J. Etienne, A history of Panton–Valentine leukocidin (PVL)-associated infection protects against death in PVL-associated pneumonia, Vaccine 29 (25) (2011) 4185–4186. Vaccine, 2012, 30, 2045-2046.	1.7	0
83	Synthesis of pentasaccharides corresponding to the glycoform II of the outer core region of the Pseudomonas aeruginosa lipopolysaccharide. Carbohydrate Research, 2012, 360, 56-68.	1.1	13
84	Opsonic and Protective Properties of Antibodies Raised to Conjugate Vaccines Targeting Six Staphylococcus aureus Antigens. PLoS ONE, 2012, 7, e46648.	1.1	47
85	Identification of Ata, a Multifunctional Trimeric Autotransporter of Acinetobacter baumannii. Journal of Bacteriology, 2012, 194, 3950-3960.	1.0	94
86	Evaluation of the Trimeric Autotransporter Ata as a Vaccine Candidate against Acinetobacter baumannii Infections. Infection and Immunity, 2012, 80, 3381-3388.	1.0	107
87	Synthesis and Evaluation of a Conjugate Vaccine Composed of Staphylococcus aureus Poly-N-Acetyl-Glucosamine and Clumping Factor A. PLoS ONE, 2012, 7, e43813.	1.1	28
88	Staphylococcus epidermidis biofilms with higher proportions of dormant bacteria induce a lower activation of murine macrophages. Journal of Medical Microbiology, 2011, 60, 1717-1724.	0.7	55
89	RNA Isolation of Pseudomonas aeruginosa Colonizing the Murine Gastrointestinal Tract. Journal of Visualized Experiments, 2011, , .	0.2	7
90	Pulmonary Monocytes/Macrophages And CD4 T Cells Are Critical Effectors Of Vaccine-Induced Protection Against Pseudomonas Aeruginosa Pneumonia In Neutropenic Mice. , 2011, , .		0

#	Article	IF	CITATIONS
91	CD74 deficiency ameliorates Pseudomonas aeruginosa-induced ocular infection. Scientific Reports, 2011, 1, 58.	1.6	12
92	Cystic fibrosis: an-ion transport issue?. Nature Medicine, 2011, 17, 166-167.	15.2	2
93	NMR and conformational studies of linear and cyclic oligo-(1→6)-β-d-glucosamines. Carbohydrate Research, 2011, 346, 2499-2510.	1.1	20
94	Synthesis of five nona-β-(1→6)-d-glucosamines with various patterns of N-acetylation corresponding to the fragments of exopolysaccharide of Staphylococcus aureus. Carbohydrate Research, 2011, 346, 905-913.	1.1	12
95	Efficacy of a Conjugate Vaccine Containing Polymannuronic Acid and Flagellin against Experimental Pseudomonas aeruginosa Lung Infection in Mice. Infection and Immunity, 2011, 79, 3455-3464.	1.0	56
96	Mucosal Vaccination with a Multivalent, Live-Attenuated Vaccine Induces Multifactorial Immunity against <i>Pseudomonas aeruginosa</i> Acute Lung Infection. Infection and Immunity, 2011, 79, 1289-1299.	1.0	53
97	Utility of In Vivo Transcription Profiling for Identifying Pseudomonas aeruginosa Genes Needed for Gastrointestinal Colonization and Dissemination. PLoS ONE, 2010, 5, e15131.	1.1	19
98	Role of Neutrophils, MyD88-Mediated Neutrophil Recruitment, and Complement in Antibody-Mediated Defense against <i>Pseudomonas aeruginosa</i> Keratitis. , 2010, 51, 2085.		38
99	Evaluation of Flagella and Flagellin of <i>Pseudomonas aeruginosa</i> as Vaccines. Infection and Immunity, 2010, 78, 746-755.	1.0	126
100	Is exposure to mercury a driving force for the carriage of antibiotic resistance genes?. Journal of Medical Microbiology, 2010, 59, 804-807.	0.7	51
101	Analysis of Acquisition of <i>Pseudomonas aeruginosa</i> Gastrointestinal Mucosal Colonization and Horizontal Transmission in a Murine Model. Journal of Infectious Diseases, 2010, 201, 71-80.	1.9	17
102	High Levels of Antibody to Pantonâ€Valentine Leukocidin Are Not Associated with Resistance to <i>Staphylococcus aureus</i> –Associated Skin and Softâ€Tissue Infection. Clinical Infectious Diseases, 2010, 51, 1138-1146.	2.9	59
103	Antibody-mediated enhancement of community-acquired methicillin-resistant <i>Staphylococcus aureus</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2241-2246.	3.3	65
104	Inhibition of Macrophage Migration Inhibitory Factor Ameliorates Ocular Pseudomonas aeruginosa-Induced Keratitis. PLoS Pathogens, 2010, 6, e1000826.	2.1	46
105	Alveolar inflammation in cystic fibrosis. Journal of Cystic Fibrosis, 2010, 9, 217-227.	0.3	103
106	Caveolin-1 Modifies the Immunity to <i>Pseudomonas aeruginosa</i> . Journal of Immunology, 2010, 184, 296-302.	0.4	47
107	Synthetic β-(1→6)-Linked N-Acetylated and Nonacetylated Oligoglucosamines Used To Produce Conjugate Vaccines for Bacterial Pathogens. Infection and Immunity, 2010, 78, 764-772.	1.0	104

108 Pseudomonas aeruginosa. , 2010, , 2835-2860.

#	Article	IF	CITATIONS
109	Animal and human antibodies to distinct Staphylococcus aureus antigens mutually neutralize opsonic killing and protection in mice. Journal of Clinical Investigation, 2010, 120, 3220-3233.	3.9	57
110	The <i>pgaABCD</i> Locus of <i>Acinetobacter baumannii</i> Encodes the Production of Poly-β-1-6- <i>N</i> -Acetylglucosamine, Which Is Critical for Biofilm Formation. Journal of Bacteriology, 2009, 191, 5953-5963.	1.0	318
111	Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of <i>Pseudomonas aeruginosa</i> . American Journal of Physiology - Cell Physiology, 2009, 297, C263-C277.	2.1	59
112	Inescapable Need for Neutrophils as Mediators of Cellular Innate Immunity to Acute <i>Pseudomonas aeruginosa</i> Pneumonia. Infection and Immunity, 2009, 77, 5300-5310.	1.0	148
113	<i>IL1B</i> polymorphisms modulate cystic fibrosis lung disease. Pediatric Pulmonology, 2009, 44, 580-593.	1.0	49
114	Inactivation of the <i>rhlA</i> gene in <i>Pseudomonas aeruginosa</i> prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. Apmis, 2009, 117, 537-546.	0.9	177
115	Predictors of mucoid <i>Pseudomonas</i> colonization in cystic fibrosis patients. Pediatric Pulmonology, 2008, 43, 463-471.	1.0	58
116	Dropping acid to help cystic fibrosis. Nature Medicine, 2008, 14, 367-369.	15.2	3
117	Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends in Molecular Medicine, 2008, 14, 120-133.	3.5	104
118	Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine, 2008, 26, 1011-1024.	1.7	172
119	First Synthesis of Pentasaccharide Glycoform I of the Outer Core Region of the Pseudomonas aeruginosa Lipopolysaccharide. Journal of Organic Chemistry, 2008, 73, 8411-8421.	1.7	32
120	ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology (United Kingdom), 2008, 154, 2119-2130.	0.7	90
121	Prophylactic and Therapeutic Efficacy of a Fully Human Immunoglobulin G1 Monoclonal Antibody to <i>Pseudomonas aeruginosa</i> Alginate in Murine Keratitis Infection. Infection and Immunity, 2008, 76, 4720-4725.	1.0	18
122	IL-17 Is a Critical Component of Vaccine-Induced Protection against Lung Infection by Lipopolysaccharide-Heterologous Strains ofPseudomonas aeruginosa. Journal of Immunology, 2008, 181, 4965-4975.	0.4	122
123	Mucosal Damage and Neutropenia Are Required for Candida albicans Dissemination. PLoS Pathogens, 2008, 4, e35.	2.1	299
124	On the Greatly Exaggerated Reports of the Death of Infectious Diseases. Clinical Infectious Diseases, 2008, 47, 1113-1114.	2.9	16
125	Disruption of CFTR-Dependent Lipid Rafts Reduces Bacterial Levels and Corneal Disease in a Murine Model of <i>Pseudomonas aeruginosa</i> Keratitis. , 2008, 49, 1000.		40
126	Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Microbiology (United Kingdom), 2008, 154, 865-877.	0.7	95

#	Article	IF	CITATIONS
127	Intranasal immunization with heterologously expressed polysaccharide protects against multiple Pseudomonas aeruginosa infections. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4624-4629.	3.3	63
128	Resistance to Pseudomonas aeruginosa Chronic Lung Infection Requires Cystic Fibrosis Transmembrane Conductance Regulator-Modulated Interleukin-1 (IL-1) Release and Signaling through the IL-1 Receptor. Infection and Immunity, 2007, 75, 1598-1608.	1.0	66
129	IsPseudomonas aeruginosaExotoxin A a Good Carrier Protein for Conjugate Vaccines?. Hum Vaccin, 2007, 3, 39-40.	2.4	4
130	Molecular Basis for Preferential Protective Efficacy of Antibodies Directed to the Poorly Acetylated Form of Staphylococcal Poly- N -Acetyl-β-(1-6)-Glucosamine. Infection and Immunity, 2007, 75, 3406-3413.	1.0	108
131	Pseudomonas aeruginosa lipopolysaccharide: A major virulence factor, initiator of inflammation and target for effective immunity. International Journal of Medical Microbiology, 2007, 297, 277-295.	1.5	219
132	Host Resistance to Lung Infection Mediated by Major Vault Protein in Epithelial Cells. Science, 2007, 317, 130-132.	6.0	116
133	Protection against Escherichia coli infection by antibody to the Staphylococcus aureus poly-N-acetylglucosamine surface polysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7528-7533.	3.3	74
134	Effect of deletion of the lpxM gene on virulence and vaccine potential of Yersinia pestis in mice. Journal of Medical Microbiology, 2007, 56, 443-453.	0.7	34
135	Synthesis of β-(1→6)-linked glucosamine oligosaccharides corresponding to fragments of the bacterial surface polysaccharide poly-N-acetylglucosamine. Carbohydrate Research, 2007, 342, 567-575.	1.1	52
136	Inflammatory markers of lung disease in adult patients with cystic fibrosis. Pediatric Pulmonology, 2007, 42, 256-262.	1.0	61
137	Relationship of the Lipopolysaccharide Structure of Yersinia bpestis to Resistance to Antimicrobial Factors. Advances in Experimental Medicine and Biology, 2007, 603, 88-96.	0.8	31
138	Review: Conserved and variable structural features in the lipopolysaccharide of Pseudomonas aeruginosa. Journal of Endotoxin Research, 2006, 12, 324-336.	2.5	11
139	Structures of the core oligosaccharide and O-units in the R- and SR-type lipopolysaccharides of reference strains ofPseudomonas aeruginosaO-serogroups. FEMS Immunology and Medical Microbiology, 2006, 46, 85-99.	2.7	57
140	Synthesis of a common trisaccharide fragment of glycoforms of the outer core region of the Pseudomonas aeruginosa lipopolysaccharide. Tetrahedron Letters, 2006, 47, 3583-3587.	0.7	37
141	A Live-Attenuated Pseudomonas aeruginosa Vaccine Elicits Outer Membrane Protein-Specific Active and Passive Protection against Corneal Infection. Infection and Immunity, 2006, 74, 975-983.	1.0	38
142	Conserved and variable structural features in the lipopolysaccharide of <1>Pseudomonas aeruginosa	2.5	97
143	Airway Epithelial (Nasal) Cell Monolayers Used To Study Pseudomonas aeruginosa Invasion Are Hyperpolarized and Not Representative of the Human Airway Epithelium. Infection and Immunity, 2006, 74, 7043-7044.	1.0	2
144	Comparative Antibody-Mediated Phagocytosis of Staphylococcus epidermidis Cells Grown in a Biofilm or in the Planktonic State. Infection and Immunity, 2006, 74, 4849-4855.	1.0	165

#	Article	IF	CITATIONS
145	Characterization of the Opsonic and Protective Activity against Staphylococcus aureus of Fully Human Monoclonal Antibodies Specific for the Bacterial Surface Polysaccharide Poly-N-Acetylglucosamine. Infection and Immunity, 2006, 74, 2742-2750.	1.0	128
146	Cold temperature-induced modifications to the composition and structure of the lipopolysaccharide of Yersinia pestis. Carbohydrate Research, 2005, 340, 1625-1630.	1.1	38
147	Use of Confocal Microscopy To Analyze the Rate of Vancomycin Penetration through Staphylococcus aureus Biofilms. Antimicrobial Agents and Chemotherapy, 2005, 49, 2467-2473.	1.4	261
148	Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. Journal of Antimicrobial Chemotherapy, 2005, 56, 331-336.	1.3	211
149	NonmucoidPseudomonas aeruginosaExpresses Alginate in the Lungs of Patients with Cystic Fibrosis and in a Mouse Model. Journal of Infectious Diseases, 2005, 192, 410-419.	1.9	128
150	Effects of Growth in the Presence of Subinhibitory Concentrations of Dicloxacillin on Staphylococcus epidermidis and Staphylococcus haemolyticus Biofilms. Applied and Environmental Microbiology, 2005, 71, 8677-8682.	1.4	67
151	Intraspecies and Temperature-Dependent Variations in Susceptibility of Yersinia pestis to the Bactericidal Action of Serum and to Polymyxin B. Infection and Immunity, 2005, 73, 7324-7331.	1.0	63
152	Poly-N-Acetylglucosamine Production in Staphylococcus aureus Is Essential for Virulence in Murine Models of Systemic Infection. Infection and Immunity, 2005, 73, 6868-6876.	1.0	143
153	The Role of Epitope Specificity in the Human Opsonic Antibody Response to the Staphylococcal Surface Polysaccharide Poly Nâ€Acetyl Glucosamine. Journal of Infectious Diseases, 2005, 192, 2012-2019.	1.9	43
154	Comparative Opsonic and Protective Activities of Staphylococcus aureus Conjugate Vaccines Containing Native or Deacetylated Staphylococcal Poly-N-Acetyl-β-(1-6)-Glucosamine. Infection and Immunity, 2005, 73, 6752-6762.	1.0	172
155	Influence of Cystic Fibrosis Transmembrane Conductance Regulator on Gene Expression in Response to Pseudomonas aeruginosa Infection of Human Bronchial Epithelial Cells. Infection and Immunity, 2005, 73, 6822-6830.	1.0	34
156	Virulence of Pseudomonas aeruginosa in a Murine Model of Gastrointestinal Colonization and Dissemination in Neutropenia. Infection and Immunity, 2005, 73, 2262-2272.	1.0	67
157	Application of vaccine technology to prevention ofPseudomonas aeruginosainfections. Expert Review of Vaccines, 2005, 4, 645-656.	2.0	39
158	Temperature-Dependent Variations and Intraspecies Diversity of the Structure of the Lipopolysaccharide of Yersinia pestis,. Biochemistry, 2005, 44, 1731-1743.	1.2	128
159	Multi-valent human monoclonal antibody preparation against Pseudomonas aeruginosa derived from transgenic mice containing human immunoglobulin loci is protective against fatal pseudomonas sepsis caused by multiple serotypes. Vaccine, 2005, 23, 3264-3271.	1.7	28
160	Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Research in Microbiology, 2005, 156, 506-514.	1.0	280
161	The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm. Research in Microbiology, 2005, 156, 650-655.	1.0	63
162	The Teicoplanin-Associated Locus Regulator (TcaR) and the Intercellular Adhesin Locus Regulator (IcaR) Are Transcriptional Inhibitors of the ica Locus in Staphylococcus aureus. Journal of Bacteriology, 2004, 186, 2449-2456.	1.0	158

#	Article	IF	CITATIONS
163	Hypoxia Increases Corneal Cell Expression of CFTR Leading to IncreasedPseudomonas aeruginosaBinding, Internalization, and Initiation of Inflammation. , 2004, 45, 4066.		41
164	Intraspecific Diversity of Yersinia pestis. Clinical Microbiology Reviews, 2004, 17, 434-464.	5.7	289
165	Human Monoclonal Antibodies to <i>Pseudomonas aeruginosa</i> Alginate That Protect against Infection by Both Mucoid and Nonmucoid Strains. Journal of Immunology, 2004, 173, 5671-5678.	0.4	97
166	The galU Gene of Pseudomonas aeruginosa Is Required for Corneal Infection and Efficient Systemic Spread following Pneumonia but Not for Infection Confined to the Lung. Infection and Immunity, 2004, 72, 4224-4232.	1.0	67
167	Comparative evaluation of coagulase-negative staphylococci (CoNS) adherence to acrylic by a static method and a parallel-plate flow dynamic method. Research in Microbiology, 2004, 155, 755-760.	1.0	29
168	Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide. Vaccine, 2004, 22, 872-879.	1.7	85
169	Meeting summary. Vaccine, 2004, 22, 801-804.	1.7	1
170	Localization of Cystic Fibrosis Transmembrane Conductance Regulator to Lipid Rafts of Epithelial Cells Is Required for <i>Pseudomonas aeruginosa</i> -Induced Cellular Activation. Journal of Immunology, 2004, 172, 418-425.	0.4	160
171	Assessment of the role of antibiotics and enterococcal virulence factors in a mouse model of extraintestinal translocation. Critical Care Medicine, 2004, 32, 467-471.	0.4	23
172	Pseudomonas aeruginosa Interactions with Host Cells. , 2004, , 505-545.		0
173	Pseudomonas aeruginosa activates Cl? channels in host epithelial cells. Pflugers Archiv European Journal of Physiology, 2003, 447, 23-28.	1.3	7
174	Isolation, structural characterization, and immunological evaluation of a high-molecular-weight exopolysaccharide from Staphylococcus aureus. Carbohydrate Research, 2003, 338, 903-922.	1.1	95
175	Structure of the biological repeating unit of the O-antigen of Pseudomonas aeruginosa immunotype 4 containing both 2-acetamido-2,6-dideoxy-d-glucose and 2-acetamido-2,6-dideoxy-d-galactose. Carbohydrate Research, 2003, 338, 1801-1806.	1.1	14
176	Structure of the lipopolysaccharide of Pseudomonas aeruginosa O-12 with a randomly O-acetylated core region. Carbohydrate Research, 2003, 338, 1895-1905.	1.1	32
177	Promises and pitfalls of Pseudomonas aeruginosa lipopolysaccharide as a vaccine antigen. Carbohydrate Research, 2003, 338, 2549-2556.	1.1	63
178	Identification of a 5-nucleotide sequence that controls expression of the ica locus in Staphylococcus aureus and characterization of the DNA-binding properties of IcaR. Molecular Microbiology, 2003, 48, 889-899.	1.2	105
179	Construction and Characterization of a Pseudomonas aeruginosa Mucoid Exopolysaccharide-Alginate Conjugate Vaccine. Infection and Immunity, 2003, 71, 3875-3884.	1.0	77
180	Transcription of Quorum-Sensing System Genes inClinical and Environmental Isolates of Pseudomonasaeruginosa. Journal of Bacteriology, 2003, 185, 7222-7230.	1.0	98

#	Article	IF	CITATIONS
181	Protection against Fatal Pseudomonas aeruginosa Pneumonia in Mice after Nasal Immunization with a Live, Attenuated aroA Deletion Mutant. Infection and Immunity, 2003, 71, 1453-1461.	1.0	75
182	Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1949-1954.	3.3	101
183	Pseudomonas aeruginosa–Induced Apoptosis Is Defective in Respiratory Epithelial Cells Expressing Mutant Cystic Fibrosis Transmembrane Conductance Regulator. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 188-197.	1.4	114
184	<i>Pseudomonas aeruginosa</i> Biofilms in Lung Infections. , 2003, , 287-310.		0
185	Vaccines for Pseudomonas aeruginosa. , 2003, , 260-282.		3
186	CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF-ÂB translocation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6907-6912.	3.3	135
187	Construction and Characterization of a Live, Attenuated aroA Deletion Mutant of Pseudomonas aeruginosa as a Candidate Intranasal Vaccine. Infection and Immunity, 2002, 70, 1507-1517.	1.0	67
188	Salmonella enterica Serovar Typhi Modulates Cell Surface Expression of Its Receptor, the Cystic Fibrosis Transmembrane Conductance Regulator, on the Intestinal Epithelium. Infection and Immunity, 2002, 70, 6416-6423.	1.0	32
189	Immunochemical Properties of the Staphylococcal Poly-N-Acetylglucosamine Surface Polysaccharide. Infection and Immunity, 2002, 70, 4433-4440.	1.0	294
190	Lung Infections Associated with Cystic Fibrosis. Clinical Microbiology Reviews, 2002, 15, 194-222.	5.7	1,412
191	CFTR mutations and host susceptibility to Pseudomonas aeruginosa lung infection. Current Opinion in Microbiology, 2002, 5, 81-86.	2.3	78
192	Structural studies on the core and the O-polysaccharide repeating unit of Pseudomonas aeruginosa immunotype 1 lipopolysaccharide. FEBS Journal, 2002, 269, 2194-2203.	0.2	45
193	Polymeric Thin Films That Resist the Adsorption of Proteins and the Adhesion of Bacteria. Langmuir, 2001, 17, 1225-1233.	1.6	343
194	Role of Alginate O Acetylation in Resistance of Mucoid Pseudomonas aeruginosa to Opsonic Phagocytosis. Infection and Immunity, 2001, 69, 1895-1901.	1.0	222
195	Self-Assembled Monolayers That Resist the Adsorption of Proteins and the Adhesion of Bacterial and Mammalian Cells. Langmuir, 2001, 17, 6336-6343.	1.6	556
196	Epithelial cell contact-induced alterations in Salmonella enterica serovar Typhi lipopolysaccharide are critical for bacterial internalization. Cellular Microbiology, 2001, 3, 763-772.	1.1	25
197	Structural analysis of the lipopolysaccharide core of a rough, cystic fibrosis isolate of Pseudomonas aeruginosa. FEBS Journal, 2001, 268, 4708-4719.	0.2	46
198	Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature, 2001, 411, 98-102.	13.7	225

#	Article	IF	CITATIONS
199	Transgenic Cystic Fibrosis Mice Exhibit Reduced Early Clearance of <i>Pseudomonas aeruginosa</i> from the Respiratory Tract. Journal of Immunology, 2001, 166, 7410-7418.	0.4	102
200	Human Monoclonal Antibodies against Pseudomonas aeruginosa Lipopolysaccharide Derived from Transgenic Mice Containing Megabase Human Immunoglobulin Loci Are Opsonic and Protective against Fatal Pseudomonas Sepsis. Infection and Immunity, 2001, 69, 2223-2229.	1.0	49
201	Lack of Adherence of Clinical Isolates ofPseudomonas aeruginosa to Asialo-GM1 on Epithelial Cells. Infection and Immunity, 2001, 69, 719-729.	1.0	54
202	Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist1*Address for correspondence: Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA. Microbes and Infection, 2000, 2, 1051-1060.	1.0	1,191
203	Acquisition of Expression of the Pseudomonas aeruginosa ExoU Cytotoxin Leads to Increased Bacterial Virulence in a Murine Model of Acute Pneumonia and Systemic Spread. Infection and Immunity, 2000, 68, 3998-4004.	1.0	170
204	Impact of Heterogeneity within Cultured Cells on Bacterial Invasion: Analysis of Pseudomonas aeruginosa and Salmonella enterica Serovar Typhi Entry into MDCK cells by Using a Green Fluorescent Protein-Labelled Cystic Fibrosis Transmembrane Conductance Regulator Receptor. Infection and Immunity, 2000, 68, 861-870.	1.0	28
205	Syndecan-1 Shedding Is Enhanced by LasA, a Secreted Virulence Factor of Pseudomonas aeruginosa. Journal of Biological Chemistry, 2000, 275, 3057-3064.	1.6	139
206	Prophylactic and Therapeutic Efficacy of Antibodies to a Capsular Polysaccharide Shared among Vancomycin-Sensitive and -Resistant Enterococci. Infection and Immunity, 2000, 68, 4631-4636.	1.0	72
207	Peptides, Pseudomonas aeruginosa, polysaccharides and lipopolysaccharides – players in the predicament of cystic fibrosis patients. Trends in Microbiology, 2000, 8, 247-250.	3.5	23
208	The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Trends in Microbiology, 2000, 8, 514-520.	3.5	61
209	Vaccine potential of poly-1-6 β-d-N-succinylglucosamine, an immunoprotective surface polysaccharide of Staphylococcus aureus and Staphylococcus epidermidis. Journal of Biotechnology, 2000, 83, 37-44.	1.9	60
210	Structure of an antigenic teichoic acid shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. Carbohydrate Research, 1999, 316, 155-160.	1.1	32
211	Broadly Protective Vaccine for Staphylococcus aureus Based on an in Vivo-Expressed Antigen. Science, 1999, 284, 1523-1527.	6.0	339
212	Evolution of the ΔF508 CFTR mutation: Response. Trends in Microbiology, 1999, 7, 56-58.	3.5	6
213	Isolation and Chemical Characterization of a Capsular Polysaccharide Antigen Shared by Clinical Isolates of <i>Enterococcus faecalis</i> and Vancomycin-Resistant <i>Enterococcus faecium</i> . Infection and Immunity, 1999, 67, 1213-1219.	1.0	127
214	Cystic Fibrosis Transmembrane Conductance Regulator-Mediated Corneal Epithelial Cell Ingestion of <i>Pseudomonas aeruginosa</i> Is a Key Component in the Pathogenesis of Experimental Murine Keratitis. Infection and Immunity, 1999, 67, 1481-1492.	1.0	71
215	Pulmonary Outcome in Cystic Fibrosis Is Influenced Primarily by Mucoid <i>Pseudomonas aeruginosa</i> Infection and Immune Status and Only Modestly by Genotype. Infection and Immunity, 1999, 67, 4744-4750.	1.0	135
216	Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature, 1998, 393, 79-82.	13.7	323

#	Article	IF	CITATIONS
217	The <i>ica</i> Locus of <i>Staphylococcus epidermidis</i> Encodes Production of the Capsular Polysaccharide/Adhesin. Infection and Immunity, 1998, 66, 4711-4720.	1.0	284
218	Complex Serology and Immune Response of Mice to Variant High-Molecular-Weight O Polysaccharides Isolated from <i>Pseudomonas aeruginosa</i> Serogroup O2 Strains. Infection and Immunity, 1998, 66, 3719-3726.	1.0	37
219	Production and Characterization of a Set of Mouse-Human Chimeric Immunoglobulin G (IgG) Subclass and IgA Monoclonal Antibodies with Identical Variable Regions Specific for <i>Pseudomonas aeruginosa</i> Serogroup O6 Lipopolysaccharide. Infection and Immunity, 1998, 66, 4137-4142.	1.0	24
220	Production and Characterization of a Set of Mouse-Human Chimeric Immunoglobulin G (IgG) Subclass and IgA Monoclonal Antibodies with Identical Variable Regions Specific forPseudomonas aeruginosa Serogroup O6 Lipopolysaccharide. Infection and Immunity, 1998, 66, 4137-4142.	1.0	5
221	Pseudomonas aeruginosa lipopolysaccharides and pathogenesis. Trends in Microbiology, 1996, 4, 490-494.	3.5	51
222	Factors Affecting Staphylococcus epidermidis Adhesion to Contact Lenses. Optometry and Vision Science, 1996, 73, 590-594.	0.6	25
223	Analysis of Naturally Occurring Antibodies to Mucoid Pseudomonas aeruginosa in Cystic Fibrosis Patients. Journal of Infectious Diseases, 1996, 173, 513-514.	1.9	3
224	How Mutant CFTR May Contribute to <i>Pseudomonas aeruginosa</i> Infection in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 1996, 154, S175-S182.	2.5	63
225	The Pathogenic Role of <i>Staphylococcus epidermidis</i> Capsular Polysaccharide/Adhesin in a Low-Inoculum Rabbit Model of Prosthetic Valve Endocarditis. Circulation, 1995, 92, 2715-2722.	1.6	36
226	Transposon Mutants of Staphylococcus epidermidis Deficient in Elaboration of Capsular Polysaccharide/Adhesin and Slime Are Avirulent in a Rabbit Model of Endocarditis. Journal of Infectious Diseases, 1994, 169, 1042-1049.	1.9	83
227	The rfb locus from Pseudomonas aeruginosa strain PA103 promotes the expression of O antigen by both LPS-rough and LPS-smooth isolates from cystic fibrosis patients. Molecular Microbiology, 1994, 13, 427-434.	1.2	41
228	Protection against mucoid Pseudomonas aeruginosa in rodent models of endobronchial infections. Science, 1990, 249, 537-540.	6.0	116
229	Isolation and Characterization of a Capsular Polysaccharide Adhesin from Staphylococcus epidermidis. Journal of Infectious Diseases, 1988, 157, 713-722.	1.9	287
230	Opsonophagocytic Killing Antibody to <i>Pseudomonas aeruginosa</i> Mucoid Exopolysaccharide in Older Noncolonized Patients with Cystic Fibrosis. New England Journal of Medicine, 1987, 317, 793-798.	13.9	152
231	An Immunohistological Evaluation of Pseudomonas aeruginosa Pulmonary Infection in Two Patients with Cystic Fibrosis. Pediatric Research, 1987, 22, 743-747.	1.1	34
232	Active and Passive Immunization Strategies for Pseudomonas aeruginosa Pneumonia. Clinical Infectious Diseases, 1986, 8, S426-S433.	2.9	23
233	Pulmonary Disease Associated with Pseudomonas aeruginosa in Cystic Fibrosis: Current Status of the Host-Bacterium Interaction. Journal of Infectious Diseases, 1985, 151, 575-580.	1.9	258
234	Immunochemical Characterization of the Mucoid Exopolysaccharide of Pseudomonas aeruginosa. Journal of Infectious Diseases, 1983, 147, 494-503.	1.9	133

#	Article	IF	CITATIONS
235	Efficacy of Cell Wall Pseudomonas aeruginosa Vaccines for Protection Against Experimental Pneumonia. Clinical Infectious Diseases, 1983, 5, S852-S857.	2.9	23
236	Characterization of the Human Immune Response to a Polysaccharide Vaccine from Pseudomonas aeruginosa. Journal of Infectious Diseases, 1983, 148, 206-213.	1.9	52
237	Immunologic Basis for Mouse Protection Provided by High-Molecular-Weight Polysaccharide from Immunotype 1 Pseudomonas aeruginosa. Clinical Infectious Diseases, 1983, 5, S957-S962.	2.9	13
238	Immunochemistry of Pseudomonas aeruginosa Lipopolysaccharides and High-Molecular-Weight Polysaccharides. Clinical Infectious Diseases, 1983, 5, S950-S956.	2.9	12
239	Immunity to Bacterial Infections. , 0, , 425-452.		0