
Meinrad J Busslinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6755692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The PAX5â€JAK2 translocation acts as dualâ€hit mutation that promotes aggressive Bâ€cell leukemia via nuclear STAT5 activation. EMBO Journal, 2022, 41, e108397.	3.5	14
2	Bhlhe40 function in activated B and TFH cells restrains the GC reaction and prevents lymphomagenesis. Journal of Experimental Medicine, 2022, 219, .	4.2	17
3	A crucial role for Jagunal homolog 1 in humoral immunity and antibody glycosylation in mice and humans. Journal of Experimental Medicine, 2021, 218, .	4.2	11
4	Metabolic regulation by PPARÎ ³ is required for IL-33-mediated activation of ILC2s in lung and adipose tissue. Mucosal Immunology, 2021, 14, 585-593.	2.7	31
5	Pax5 regulates B cell immunity by promoting PI3K signaling via PTEN down-regulation. Science Immunology, 2021, 6, .	5.6	28
6	Limited access to antigen drives generation of early B cell memory while restraining the plasmablast response. Immunity, 2021, 54, 2005-2023.e10.	6.6	46
7	Repression of the B cell identity factor Pax5 is not required for plasma cell development. Journal of Experimental Medicine, 2020, 217, .	4.2	20
8	Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion. Nature, 2020, 584, 142-147.	13.7	79
9	Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nature Immunology, 2019, 20, 1161-1173.	7.0	100
10	Bhlhe40 and Bhlhe41 transcription factors regulate alveolar macrophage selfâ€renewal and identity. EMBO Journal, 2019, 38, e101233.	3.5	68
11	Ikaros prevents autoimmunity by controlling anergy and Toll-like receptor signaling in B cells. Nature Immunology, 2019, 20, 1517-1529.	7.0	52
12	SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. American Journal of Physiology - Renal Physiology, 2019, 316, F173-F185.	1.3	105
13	Precocious expression of Blimp1 in B cells causes autoimmune disease with increased selfâ€reactive plasma cells. EMBO Journal, 2019, 38, 1-19.	3.5	165
14	Control of B-1a cell development by instructive BCR signaling. Current Opinion in Immunology, 2018, 51, 24-31.	2.4	29
15	The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature, 2018, 563, 564-568.	13.7	174
16	Epigenetic regulation of brain region-specific microglia clearance activity. Nature Neuroscience, 2018, 21, 1049-1060.	7.1	318
17	Molecular role of the <scp>PAX</scp> 5― <scp>ETV</scp> 6 oncoprotein in promoting Bâ€cell acute lymphoblastic leukemia. EMBO Journal, 2017, 36, 718-735.	3.5	34
18	Essential role for the transcription factor Bhlhe41 in regulating the development, self-renewal and BCR repertoire of B-1a cells. Nature Immunology, 2017, 18, 442-455.	7.0	103

#	Article	IF	CITATIONS
19	Modeling Renal Cell Carcinoma in Mice: <i>Bap1</i> and <i>Pbrm1</i> Inactivation Drive Tumor Grade. Cancer Discovery, 2017, 7, 900-917.	7.7	128
20	Anabolism-Associated Mitochondrial Stasis Driving Lymphocyte Differentiation over Self-Renewal. Cell Reports, 2016, 17, 3142-3152.	2.9	90
21	Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science, 2016, 352, 459-463.	6.0	721
22	CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nature Immunology, 2016, 17, 1187-1196.	7.0	385
23	Paul Ehrlich (1854-1915) and His Contributions to the Foundation and Birth of Translational Medicine. Journal of Innate Immunity, 2016, 8, 111-120.	1.8	249
24	Molecular functions of the transcription factors E2A and E2-2 in controlling germinal center B cell and plasma cell development. Journal of Experimental Medicine, 2016, 213, 1201-1221.	4.2	106
25	The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity, 2016, 44, 103-115.	6.6	101
26	Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nature Immunology, 2016, 17, 331-343.	7.0	284
27	Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nature Immunology, 2016, 17, 323-330.	7.0	310
28	Retrotransposon derepression leads to activation of the unfolded protein response and apoptosis in pro-B cells. Development (Cambridge), 2016, 143, 1788-99.	1.2	22
29	NK Cell–Specific Gata3 Ablation Identifies the Maturation Program Required for Bone Marrow Exit and Control of Proliferation. Journal of Immunology, 2016, 196, 1753-1767.	0.4	31
30	PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. Leukemia, 2016, 30, 1375-1387.	3.3	53
31	Molecular functions of the transcription factors E2A and E2-2 in controlling germinal center B cell and plasma cell development. Journal of Cell Biology, 2016, 213, 2136OIA121.	2.3	0
32	Thymic B Cells Are Licensed to Present Self Antigens for Central T Cell Tolerance Induction. Immunity, 2015, 42, 1048-1061.	6.6	201
33	Spatial Regulation of V–(D)J Recombination at Antigen Receptor Loci. Advances in Immunology, 2015, 128, 93-121.	1.1	44
34	Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia. Leukemia, 2015, 29, 1301-1311.	3.3	27
35	Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3. American Journal of Physiology - Renal Physiology, 2015, 308, F1409-F1420.	1.3	40
36	The microbiota regulates type 2 immunity through RORÎ ³ t ⁺ T cells. Science, 2015, 349, 989-993.	6.0	709

#	Article	IF	CITATIONS
37	The mammalian tRNA ligase complex mediates splicing of <i>XBP1</i> mRNA and controls antibody secretion in plasma cells. EMBO Journal, 2014, 33, 2922-2936.	3.5	165
38	Differentiation of Type 1 ILCs from a Common Progenitor to All Helper-like Innate Lymphoid Cell Lineages. Cell, 2014, 157, 340-356.	13.5	939
39	Stage-specific control of early B cell development by the transcription factor Ikaros. Nature Immunology, 2014, 15, 283-293.	7.0	194
40	Differential Requirement for Nfil3 during NK Cell Development. Journal of Immunology, 2014, 192, 2667-2676.	0.4	111
41	Epigenetic Control of Immunity. Cold Spring Harbor Perspectives in Biology, 2014, 6, a019307-a019307.	2.3	110
42	Flexible Long-Range Loops in the VH Gene Region of the Igh Locus Facilitate the Generation of a Diverse Antibody Repertoire. Immunity, 2013, 39, 229-244.	6.6	130
43	GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nature Immunology, 2013, 14, 1037-1044.	7.0	90
44	A Kinase-Independent Function of CDK6 Links the Cell Cycle to Tumor Angiogenesis. Cancer Cell, 2013, 24, 167-181.	7.7	244
45	GABAergic neurons regulate lateral ventricular development via transcription factor <i>Pax5</i> . Genesis, 2013, 51, 234-245.	0.8	17
46	ld2-Mediated Inhibition of E2A Represses Memory CD8+ T Cell Differentiation. Journal of Immunology, 2013, 190, 4585-4594.	0.4	81
47	Control of Antigen Receptor Diversity through Spatial Regulation of V(D)J Recombination. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 11-21.	2.0	9
48	Transcription factor YY1 is essential for regulation of the Th2 cytokine locus and for Th2 cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 276-281.	3.3	69
49	Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice. Blood, 2013, 121, 2553-2562.	0.6	46
50	Regulation of DNA Replication within the Immunoglobulin Heavy-Chain Locus During B Cell Commitment. PLoS Biology, 2012, 10, e1001360.	2.6	48
51	Essential role of EBF1 in the generation and function of distinct mature B cell types. Journal of Experimental Medicine, 2012, 209, 775-792.	4.2	108
52	The Transcription Factor GATA-3 Controls Cell Fate and Maintenance of Type 2 Innate Lymphoid Cells. Immunity, 2012, 37, 634-648.	6.6	773
53	The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis. EMBO Journal, 2012, 31, 3130-3146.	3.5	202
54	Erythropoiesis and Globin Switching in Compound Klf1::Bcl11a mutant mice. Blood, 2012, 120, 1019-1019.	0.6	1

#	Article	IF	CITATIONS
55	CTCF-binding elements mediate control of V(D)J recombination. Nature, 2011, 477, 424-430.	13.7	251
56	Pax5. Advances in Immunology, 2011, 111, 179-206.	1.1	192
57	Activation-Induced Cytidine Deaminase Expression in CD4+ T Cells is Associated with a Unique IL-10-Producing Subset that Increases with Age. PLoS ONE, 2011, 6, e29141.	1.1	61
58	The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nature Immunology, 2011, 12, 304-311.	7.0	530
59	The transcription factor Pax5 regulates its target genes by recruiting chromatin-modifying proteins in committed B cells. EMBO Journal, 2011, 30, 2388-2404.	3.5	122
60	The Distal VH Gene Cluster of the Igh Locus Contains Distinct Regulatory Elements with Pax5 Transcription Factor-Dependent Activity in Pro-B Cells. Immunity, 2011, 34, 175-187.	6.6	142
61	Regulation of GATA-3 Expression during CD4 Lineage Differentiation. Journal of Immunology, 2011, 186, 3892-3898.	0.4	25
62	Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood, 2010, 116, 731-739.	0.6	117
63	STAT5 in B cell development and leukemia. Current Opinion in Immunology, 2010, 22, 168-176.	2.4	67
64	Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Developmental Biology, 2010, 10, 89.	2.1	130
65	Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nature Immunology, 2010, 11, 171-179.	7.0	247
66	Mcl-1 Is Essential for Germinal Center Formation and B Cell Memory. Science, 2010, 330, 1095-1099.	6.0	196
67	B-lymphoid cells with attributes of dendritic cells regulate T cells via indoleamine 2,3-dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10644-10648.	3.3	46
68	RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunology, 2009, 10, 655-664.	7.0	130
69	Stepwise Activation of Enhancer and Promoter Regions of the B Cell Commitment Gene Pax5 in Early Lymphopoiesis. Immunity, 2009, 30, 508-520.	6.6	175
70	Developmental plasticity of lymphocytes. Current Opinion in Immunology, 2008, 20, 139-148.	2.4	50
71	B Young Again. Immunity, 2008, 28, 606-608.	6.6	8
72	Instructive Role of the Transcription Factor E2A in Early B Lymphopoiesis and Germinal Center B Cell Development. Immunity, 2008, 28, 751-762.	6.6	258

#	Article	IF	CITATIONS
73	A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes and Development, 2008, 22, 2048-2061.	2.7	378
74	Lack of nuclear factor-κB2/p100 causes a RelB-dependent block in early B lymphopoiesis. Blood, 2008, 112, 551-559.	0.6	36
75	Loss of pax5 heterozygosity in mice promotes B cellâ€specific lymphoproliferative disease. FASEB Journal, 2008, 22, 348-348.	0.2	0
76	Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of Pax5 in support of its B cell identity function Journal of Immunology, 2007, 178, 8221.2-8221.	0.4	48
77	Reporter Gene Insertions Reveal a Strictly B Lymphoid-Specific Expression Pattern of <i>Pax5</i> in Support of Its B Cell Identity Function. Journal of Immunology, 2007, 178, 3031-3037.	0.4	46
78	Distinct Promoters Mediate the Regulation of Ebf1 Gene Expression by Interleukin-7 and Pax5. Molecular and Cellular Biology, 2007, 27, 579-594.	1.1	150
79	Life beyond cleavage: the case of Ago2 and hematopoiesis. Genes and Development, 2007, 21, 1983-1988.	2.7	14
80	Transcription Factor Pax5 Activates the Chromatin of Key Genes Involved in B Cell Signaling, Adhesion, Migration, and Immune Function. Immunity, 2007, 27, 49-63.	6.6	237
81	Direct Regulation of Gata3 Expression Determines the T Helper Differentiation Potential of Notch. Immunity, 2007, 27, 89-99.	6.6	345
82	Oncogenic role of Pax5 in the T-lymphoid lineage upon ectopic expression from the immunoglobulin heavy-chain locus. Blood, 2007, 109, 281-289.	0.6	52
83	Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nature Immunology, 2007, 8, 378-387.	7.0	143
84	Pax5: the guardian of B cell identity and function. Nature Immunology, 2007, 8, 463-470.	7.0	562
85	Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature, 2007, 449, 473-477.	13.7	447
86	In vitro differentiation of murine embryonic stem cells toward a renal lineage. Differentiation, 2007, 75, 337-349.	1.0	111
87	Gene Repression by Pax5 in B Cells Is Essential for Blood Cell Homeostasis and Is Reversed in Plasma Cells. Immunity, 2006, 24, 269-281.	6.6	315
88	Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons. European Journal of Neuroscience, 2006, 24, 466-478.	1.2	126
89	The mechanism of repression of the myeloid-specific c-fms gene by Pax5 during B lineage restriction. EMBO Journal, 2006, 25, 1070-1080.	3.5	63
90	Hematopoietic Precursor Cells Transiently Reestablish Permissiveness for XInactivation. Molecular and Cellular Biology, 2006, 26, 7167-7177.	1.1	112

#	Article	IF	CITATIONS
91	Pax2/8-regulated Gata3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development (Cambridge), 2006, 133, 53-61.	1.2	284
92	Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow. Blood, 2005, 105, 4407-4415.	0.6	141
93	Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nature Immunology, 2005, 6, 31-41.	7.0	235
94	Rapidin vivo analysis of mutant forms of the LAT adaptor usingPax5-Lat double-deficient pro-B?cells. European Journal of Immunology, 2005, 35, 977-986.	1.6	4
95	Identification of Pax2-regulated genes by expression profiling of the mid-hindbrain organizer region. Development (Cambridge), 2005, 132, 2633-2643.	1.2	61
96	Analysis of Notch1 Function by In Vitro T Cell Differentiation of <i>Pax5</i> Mutant Lymphoid Progenitors. Journal of Immunology, 2004, 173, 3935-3944.	0.4	99
97	Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes and Development, 2004, 18, 411-422.	2.7	357
98	Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nature Neuroscience, 2004, 7, 510-517.	7.1	311
99	Epigenetic silencing of the c-fms locus during B-lymphopoiesis occurs in discrete steps and is reversible. EMBO Journal, 2004, 23, 4275-4285.	3.5	69
100	Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5â€mediated repression of Bâ€cellâ€specific genes. EMBO Reports, 2004, 5, 291-296.	2.0	58
101	Tissue-specific expression of cre recombinase from thePax8 locus. Genesis, 2004, 38, 105-109.	0.8	140
102	Transcriptional Control of Early B Cell Development. Annual Review of Immunology, 2004, 22, 55-79.	9.5	421
103	Myeloid lineage switch of Pax5 mutant but not wild-type B cell progenitors by C/EBPÂ and GATA factors. EMBO Journal, 2003, 22, 3887-3897.	3.5	83
104	Reversion of B Cell Commitment upon Loss of Pax5 Expression. Science, 2002, 297, 110-113.	6.0	260
105	Nephric lineage specification by Pax2 and Pax8. Genes and Development, 2002, 16, 2958-2970.	2.7	452
106	Control of Pre-BCR Signaling by Pax5-Dependent Activation of the BLNK Gene. Immunity, 2002, 17, 473-485.	6.6	144
107	Pax5 Promotes B Lymphopoiesis and Blocks T Cell Development by Repressing Notch1. Immunity, 2002, 17, 781-793.	6.6	207
108	Transcriptional control of B-cell development. Current Opinion in Immunology, 2002, 14, 216-223.	2.4	136

#	Article	IF	CITATIONS
109	The activation and maintenance of <i>Pax2</i> expression at the mid-hindbrain boundary is controlled by separate enhancers. Development (Cambridge), 2002, 129, 307-318.	1.2	84
110	The activation and maintenance of Pax2 expression at the mid-hindbrain boundary is controlled by separate enhancers. Development (Cambridge), 2002, 129, 307-18.	1.2	36
111	Pax5/BSAP Maintains the Identity of B Cells in Late B Lymphopoiesis. Immunity, 2001, 14, 779-790.	6.6	219
112	Distinct regulators control the expression of the mid-hindbrain organizer signal FGF8. Nature Neuroscience, 2001, 4, 1175-1181.	7.1	120
113	The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle. Genes and Development, 2001, 15, 2307-2319.	2.7	156
114	Pax5 Determines the Identity of B Cells from the Beginning to the End of B-lymphopoiesis. International Reviews of Immunology, 2001, 20, 65-82.	1.5	110
115	Lineage commitment in lymphopoiesis. Current Opinion in Immunology, 2000, 12, 151-158.	2.4	83
116	Fidelity and infidelity inÂcommitment to B-lymphocyte lineage development. Immunological Reviews, 2000, 175, 104-111.	2.8	56
117	Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO Journal, 2000, 19, 2292-2303.	3.5	235
118	A Syndrome Involving Intrauterine Growth Retardation, Microcephaly, Cerebellar Hypoplasia, B Lymphocyte Deficiency, and Progressive Pancytopenia. Pediatrics, 2000, 105, e39-e39.	1.0	25
119	Monoallelic Expression of Pax5: A Paradigm for the Haploinsufficiency of Mammalian Pax Genes?. Biological Chemistry, 1999, 380, 601-11.	1.2	42
120	Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature, 1999, 402, 14-20.	13.7	7
121	Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature, 1999, 401, 556-562.	13.7	1,036
122	Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature, 1999, 401, 603-606.	13.7	354
123	Independent regulation of the two Pax5 alleles during B-cell development. Nature Genetics, 1999, 21, 390-395.	9.4	133
124	twin of eyeless, a Second Pax-6 Gene of Drosophila, Acts Upstream of eyeless in the Control of Eye Development. Molecular Cell, 1999, 3, 297-307.	4.5	347
125	Pax2/5 and Pax6 subdivide the early neural tube into three domains. Mechanisms of Development, 1999, 82, 29-39.	1.7	92
126	Differentiation, Dedifferentiation, and Redifferentiation of B-lineage Lymphocytes: Roles of the Surrogate Light Chain and the Pax5 Gene. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 21-26.	2.0	8

#	Article	IF	CITATIONS
127	The Molecular Basis of B-cell Lineage Commitment. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 51-60.	2.0	13
128	Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO Journal, 1998, 17, 2319-2333.	3.5	265
129	PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nature Genetics, 1998, 19, 83-86.	9.4	446
130	Loss- and gain-of-function mutations reveal an important role of BSAP (Pax-5) at the start and end of B cell differentiation. Seminars in Immunology, 1998, 10, 133-142.	2.7	67
131	Early Function of Pax5 (BSAP) before the Pre-B Cell Receptor Stage of B Lymphopoiesis. Journal of Experimental Medicine, 1998, 188, 735-744.	4.2	40
132	Role of the Transcription Factor BSAP (Pax-5) in B-Cell Development. , 1998, , 83-110.		12
133	Deregulated PAX-5 Transcription From a TranslocatedIgH Promoter in Marginal Zone Lymphoma. Blood, 1998, 92, 3865-3878.	0.6	90
134	Deregulated PAX-5 Transcription From a TranslocatedIgH Promoter in Marginal Zone Lymphoma. Blood, 1998, 92, 3865-3878.	0.6	7
135	Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus Genes and Development, 1997, 11, 476-491.	2.7	360
136	Cooperation of Pax2 and Pax5 in midbrain and cerebellum development. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5703-5708.	3.3	155
137	Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development: Evidence from targeted mutations. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14518-14523.	3.3	124
138	Regulation of Human Epsilon Germline Transcription: Role of B-Cell-Specific Activator Protein. International Archives of Allergy and Immunology, 1997, 113, 35-38.	0.9	7
139	The characterization of novel Pax genes of the sea urchin and Drosophila reveal an ancient evolutionary origin of the Pax2/5/8 subfamily. Mechanisms of Development, 1997, 67, 179-192.	1.7	56
140	Essential Functions of Pax-5 (BSAP) in pro-B Cell Development. Immunobiology, 1997, 198, 227-235.	0.8	52
141	ICE-proteases mediate HTLV-I Tax-induced apoptotic T-cell death. Oncogene, 1997, 14, 2265-2272.	2.6	64
142	Isolation and Amino Acid Sequence Analysis Reveal an Ancient Evolutionary Origin of the Cleavage Stage (CS) Histones of the Sea Urchin. FEBS Journal, 1997, 247, 784-791.	0.2	6
143	Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. EMBO Journal, 1997, 16, 6793-6803.	3.5	145
144	Normal Brainstem Auditory Evoked Potentials in Pax5-Deficient Mice Despite Morphologic Alterations in the Auditory Midbrain Region. International Journal of Audiology, 1996, 35, 55-61.	0.9	7

#	Article	IF	CITATIONS
145	Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6129-6134.	3.3	163
146	The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions Journal of Cell Biology, 1996, 132, 1115-1132.	2.3	151
147	Deregulated expression of PAX5 in medulloblastoma Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5709-5713.	3.3	119
148	The PAX5 gene: a linkage and mutation analysis in candidate human primary immunodeficiencies. Immunogenetics, 1995, 42, 149-152.	1.2	9
149	The gene coding for the B cell surface protein CD19 is localized on human chromosome 16p11. Human Genetics, 1995, 95, 223-5.	1.8	1
150	Low Affinity Binding of Interleukin-1β and Intracellular Signaling via NF-κB Identify Fit-1 as a Distant Member of the Interleukin-1 Receptor Family. Journal of Biological Chemistry, 1995, 270, 17645-17648.	1.6	39
151	The role of BSAP (Pax-5) in B-cell development. Current Opinion in Genetics and Development, 1995, 5, 595-601.	1.5	78
152	SSCP/SacI polymorphism in the PAX5 gene. Human Molecular Genetics, 1994, 3, 839-839.	1.4	1
153	Molecular cloning and characterization of a human PAX-7 cDNA expressed in normal and neoplastic myocytes. Nucleic Acids Research, 1994, 22, 4574-4582.	6.5	89
154	An intragenic Taql RFLP at the PAX5 locus. Human Molecular Genetics, 1994, 3, 681-681.	1.4	1
155	Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell, 1994, 79, 901-912.	13.5	746
156	Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nature Genetics, 1993, 3, 292-298.	9.4	194
157	A selective transcriptional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1657-1661.	3.3	170
158	DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site Genes and Development, 1993, 7, 2048-2061.	2.7	354
159	Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis Genes and Development, 1992, 6, 1589-1607.	2.7	486
160	Identification of Fos target genes by the use of selective induction systems. Journal of Cell Science, 1992, 1992, 97-109.	1.2	54
161	Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell, 1992, 71, 1103-1116.	13.5	233
162	Hormone-dependent transcriptional regulation and cellular transformation by Fos-steroid receptor fusion proteins Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5114-5118.	3.3	97

#	Article	IF	CITATIONS
163	A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation Genes and Development, 1990, 4, 849-859.	2.7	224
164	Developmental and tissue-specific regulation of a novel transcription factor of the sea urchin Genes and Development, 1989, 3, 663-675.	2.7	47
165	The testi-specific octamer-binding protein of the sea urchin has a molecular weight of 85 kDa. Nucleic Acids Research, 1989, 17, 7114-7114.	6.5	2
166	Dangerous liaisons: Spermatozoa as natural vectors for foreign DNA?. Cell, 1989, 57, 701-702.	13.5	21
167	The protein CDP, but not CP1, footprints on the CCAAT region of the Î ³ -globin gene in unfractionated B-cell extracts. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1007, 237-242.	2.4	52
168	Developmental regulation of micro-injected histone genes in sea urchin embryos. Developmental Biology, 1988, 127, 54-63.	0.9	53
169	Promoter of a somatic histone H2B gene of the sea urchin. Nucleic Acids Research, 1988, 16, 4175-4175.	6.5	3
170	Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter. Cell, 1987, 50, 347-359.	13.5	428
171	Synthesis of sperm and late histone cDNAs of the sea urchin with a primer complementary to the conserved 3' terminal palindrome: evidence for tissue-specific and more general histone gene variants Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5676-5680.	3.3	57
172	Transcription termination and $3\hat{a}\in^2$ processing: the end is in site!. Cell, 1985, 41, 349-359.	13.5	1,594
173	DNA methylation and the regulation of globin gene expression. Cell, 1983, 34, 197-206.	13.5	454
174	The sequence GGCmCGG is resistant toMspl cleavage. Nucleic Acids Research, 1983, 11, 3559-3569.	6.5	87
175	An unusual evolutionary behaviour of a sea urchin histone gene cluster. EMBO Journal, 1982, 1, 27-33.	3.5	64
176	β+ Thalassemia: Aberrant splicing results from a single point mutation in an intron. Cell, 1981, 27, 289-298.	13.5	239
177	Ubiquitous and gene-specific regulatory 5′ sequences in a sea urchin histone DNA clone coding for histone protein variants. Nucleic Acids Research, 1980, 8, 957-977.	6.5	159
178	A regulatory sequence near the 3′ end of sea urchin histone genes. Nucleic Acids Research, 1979, 6, 2997-3008.	6.5	93
179	Aspects of the regulation of histone genes. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1978, 283, 319-324.	2.4	4
180	Rotational diffusion of band 3 proteins in the human erythrocyte membrane. Nature, 1976, 263, 389-393.	13.7	178

#	Article	IF	CITATIONS
181	The Role of Pax5 (BSAP) in Early and Late B-Cell Development. , 0, , 217-228.		0