
P Stephen Baenziger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6754639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coleoptile length comparison of three winter small grain cereals adapted to the Great Plains. Cereal Research Communications, 2022, 50, 127-136.	1.6	1
2	Assessment of floral characteristics for hybrid wheat (<i>Triticum aestivum</i> L.) production in Texas. , 2022, 5, .		3
3	Hybrid Seed Set in Relation with Male Floral Traits, Estimation of Heterosis and Combining Abilities for Yield and Its Components in Wheat (Triticum aestivum L.). Plants, 2022, 11, 508.	3.5	6
4	Editorial: Genomics-Enabled Triticeae Improvement. Frontiers in Plant Science, 2022, 13, 871816.	3.6	1
5	Combined GWAS and QTL mapping revealed candidate genes and SNP network controlling recovery and tolerance traits associated with drought tolerance in seedling winter wheat. Genomics, 2022, 114, 110358.	2.9	20
6	Genome-Wide Association Mapping Revealed SNP Alleles Associated with Spike Traits in Wheat. Agronomy, 2022, 12, 1469.	3.0	9
7	Identification of Putative SNP Markers Associated with Resistance to Egyptian Loose Smut Race(s) in Spring Barley. Genes, 2022, 13, 1075.	2.4	6
8	Genomic selection of forage agronomic traits in winter wheat. Crop Science, 2021, 61, 410-421.	1.8	5
9	Effects of cultivars and nitrogen management on wheat grain yield and protein. Agronomy Journal, 2021, 113, 4348-4368.	1.8	12
10	Incorporating Molecular Markers and Causal Structure among Traits Using a Smith-Hazel Index and Structural Equation Models. Agronomy, 2021, 11, 1953.	3.0	3
11	Identification and Validation of High LD Hotspot Genomic Regions Harboring Stem Rust Resistant Genes on 1B, 2A (Sr38), and 7B Chromosomes in Wheat. Frontiers in Genetics, 2021, 12, 749675.	2.3	8
12	GWAS revealed effect of genotype × environment interactions for grain yield of Nebraska winter wheat. BMC Genomics, 2021, 22, 2.	2.8	49
13	Identification of Candidate Genes and Genomic Regions Associated with Adult Plant Resistance to Stripe Rust in Spring Wheat. Agronomy, 2021, 11, 2585.	3.0	11
14	Cold Conditioned: Discovery of Novel Alleles for Low-Temperature Tolerance in the Vavilov Barley Collection. Frontiers in Plant Science, 2021, 12, 800284.	3.6	5
15	GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. Journal of Advanced Research, 2020, 22, 119-135.	9.5	227
16	Tri5 gene expression analysis during postharvest storage of wheat grain from field plots treated with a triazole and a strobilurin fungicide. Canadian Journal of Plant Pathology, 2020, 42, 547-559.	1.4	6
17	Effects of field-applied fungicides, grain moisture, and time on deoxynivalenol during postharvest storage of winter wheat grain. Canadian Journal of Plant Science, 2020, 100, 304-313.	0.9	4
18	Investigation of Heat-Induced Changes in the Grain Yield and Grains Metabolites, with Molecular Insights on the Candidate Genes in Barley. Agronomy, 2020, 10, 1730.	3.0	24

#	Article	IF	CITATIONS
19	Selection signatures across seven decades of hard winter wheat breeding in the Great Plains of the United States. Plant Genome, 2020, 13, e20032.	2.8	4
20	Automatic Wheat Lodging Detection and Mapping in Aerial Imagery to Support High-Throughput Phenotyping and In-Season Crop Management. Agronomy, 2020, 10, 1762.	3.0	14
21	Supplementing selection decisions in a hybrid wheat breeding program by using F2 yield as a proxy of F1 performance. Euphytica, 2020, 216, 1.	1.2	5
22	Insights into the Genetic Architecture of Bran Friability and Water Retention Capacity, Two Important Traits for Whole Grain End-Use Quality in Winter Wheat. Genes, 2020, 11, 838.	2.4	3
23	Registration of â€~NE10589' (Husker Genetics Brand Ruth) hard red winter wheat. Journal of Plant Registrations, 2020, 14, 388-397.	0.5	4
24	Effects of fungicide chemical class, fungicide application timing, and environment on Fusarium head blight in winter wheat. European Journal of Plant Pathology, 2020, 158, 667-679.	1.7	20
25	Perspectives on Low Temperature Tolerance and Vernalization Sensitivity in Barley: Prospects for Facultative Growth Habit. Frontiers in Plant Science, 2020, 11, 585927.	3.6	19
26	Detailed Genetic Analysis for Identifying QTLs Associated with Drought Tolerance at Seed Germination and Seedling Stages in Barley. Plants, 2020, 9, 1425.	3.5	25
27	Evaluation of hybrid wheat yield in Nebraska. Crop Science, 2020, 60, 1210-1222.	1.8	12
28	Estimation of heterosis and combining abilities of U.S. winter wheat germplasm for hybrid development in Texas. Crop Science, 2020, 60, 788-803.	1.8	23
29	Molecular genetic analysis of spring wheat core collection using genetic diversity, population structure, and linkage disequilibrium. BMC Genomics, 2020, 21, 434.	2.8	44
30	Yield and Quality in Purple-Grained Wheat Isogenic Lines. Agronomy, 2020, 10, 86.	3.0	16
31	Reverse introduction of two―and six―owed barley lines from the United States into Egypt. Crop Science, 2020, 60, 812-829.	1.8	1
32	Genetic diversity and population structure analysis of synthetic and bread wheat accessions in Western Siberia. Journal of Applied Genetics, 2019, 60, 283-289.	1.9	17
33	Molecular marker dissection of stem rust resistance in Nebraska bread wheat germplasm. Scientific Reports, 2019, 9, 11694.	3.3	14
34	Genome-Wide Association Study for Multiple Biotic Stress Resistance in Synthetic Hexaploid Wheat. International Journal of Molecular Sciences, 2019, 20, 3667.	4.1	31
35	Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. International Journal of Molecular Sciences, 2019, 20, 3137.	4.1	353
36	Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery. Plant Methods, 2019, 15, 123.	4.3	30

#	Article	IF	CITATIONS
37	Evaluation of a global spring wheat panel for stripe rust: Resistance loci validation and novel resources identification. PLoS ONE, 2019, 14, e0222755.	2.5	21
38	Effect of Deprivation and Excessive Application of Nitrogen on Nitrogen Use Efficiencyâ€Related Traits Using Wheat Cultivars, Lines, and Landraces. Crop Science, 2019, 59, 994-1006.	1.8	7
39	Impact of wheat bran physical properties and chemical composition on whole grain flour mixing and baking properties. Journal of Cereal Science, 2019, 89, 102790.	3.7	29
40	Marker–trait association for grain weight of spring barley in well-watered and drought environments. Molecular Biology Reports, 2019, 46, 2907-2918.	2.3	15
41	Modelâ€Driven Multidisciplinary Global Research to Meet Future Needs: The Case for "Improving Radiation Use Efficiency to Increase Yield― Crop Science, 2019, 59, 843-849.	1.8	9
42	Selection of Bread Wheat for Low Grain Cadmium Concentration at the Seedling Stage Using Hydroponics versus Molecular Markers. Crop Science, 2019, 59, 945-956.	1.8	10
43	Principal Variable Selection to Explain Grain Yield Variation in Winter Wheat from UAV-derived Phenotypic Traits. , 2019, , .		1
44	Marker-Trait Associations for Enhancing Agronomic Performance, Disease Resistance, and Grain Quality in Synthetic and Bread Wheat Accessions in Western Siberia. G3: Genes, Genomes, Genetics, 2019, 9, 4209-4222.	1.8	18
45	Determining the Efficacy of a Hybridizing Agent in Wheat (Triticum aestivum L.). Scientific Reports, 2019, 9, 20173.	3.3	8
46	Genomic Selection of Forage Quality Traits in Winter Wheat. Crop Science, 2019, 59, 2473-2483.	1.8	7
47	Registration of â€~Matterhorn' Hard White Waxy Winter Wheat. Journal of Plant Registrations, 2019, 13, 207-211.	0.5	3
48	Genotype Imputation in Winter Wheat Using First-Generation Haplotype Map SNPs Improves Genome-Wide Association Mapping and Genomic Prediction of Traits. G3: Genes, Genomes, Genetics, 2019, 9, 125-133.	1.8	22
49	Title is missing!. , 2019, 14, e0222755.		Ο
50	Title is missing!. , 2019, 14, e0222755.		0
51	Title is missing!. , 2019, 14, e0222755.		0
52	Title is missing!. , 2019, 14, e0222755.		0
53	Title is missing!. , 2019, 14, e0222755.		0
54	Title is missing!. , 2019, 14, e0222755.		0

#	Article	IF	CITATIONS
55	A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Science, 2018, 270, 123-130.	3.6	67
56	Variation in asparagine concentration in Nebraska wheat. Cereal Chemistry, 2018, 95, 264-273.	2.2	16
57	Evaluating canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard winter wheat. Field Crops Research, 2018, 217, 82-92.	5.1	61
58	Populations of doubled haploids for genetic mapping in hexaploid winter triticale. Molecular Breeding, 2018, 38, 46.	2.1	21
59	High-yielding winter synthetic hexaploid wheats resistant to multiple diseases and pests. Plant Genetic Resources: Characterisation and Utilisation, 2018, 16, 273-278.	0.8	34
60	Registration of Great Plains–Adapted Reduced Phytate Winter Wheat Germplasm. Journal of Plant Registrations, 2018, 12, 405-410.	0.5	6
61	Genetic diversity and genetic variation in morpho-physiological traits to improve heat tolerance in Spring barley. Molecular Biology Reports, 2018, 45, 2441-2453.	2.3	24
62	Identification of quantitative trait loci conferring resistance to tan spot in a biparental population derived from two Nebraska hard red winter wheat cultivars. Molecular Breeding, 2018, 38, 1.	2.1	12
63	Genetic architecture of common bunt resistance in winter wheat using genome-wide association study. BMC Plant Biology, 2018, 18, 280.	3.6	37
64	Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS. Sensors, 2018, 18, 3731.	3.8	80
65	Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat. International Journal of Molecular Sciences, 2018, 19, 3011.	4.1	90
66	Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat. International Journal of Molecular Sciences, 2018, 19, 3237.	4.1	72
67	Release of 19 Waxy Winter Wheat Germplasm, with Observations on Their Grain Yield Stability. Journal of Plant Registrations, 2018, 12, 152-156.	0.5	8
68	Genome-wide association study reveals favorable alleles associated with common bunt resistance in synthetic hexaploid wheat. Euphytica, 2018, 214, 1.	1.2	23
69	Registration of a Bread Wheat Recombinant Inbred Line Mapping Population Derived from a Cross Between â€~Harry' and â€~Wesley'. Journal of Plant Registrations, 2018, 12, 411-414.	0.5	6
70	Foliar Fungicide Effects on Disease Severity, Yield, and Agronomic Characteristics of Modern Winter Wheat Genotypes. Agronomy Journal, 2018, 110, 602-610.	1.8	13
71	Genetic variation in drought tolerance at seedling stage and grain yield in low rainfall environments in wheat (Triticum aestivum L.). Euphytica, 2018, 214, 1.	1.2	43
72	Genomic Selection in Preliminary Yield Trials in a Winter Wheat Breeding Program. G3: Genes, Genomes, Genetics, 2018, 8, 2735-2747.	1.8	74

#	Article	IF	CITATIONS
73	Cadmium concentration in terminal tissues as tools to select low-cadmium wheat. Plant and Soil, 2018, 430, 127-138.	3.7	10
74	Biofortification of Hard Red Winter Wheat by Genes Conditioning Low Phytate and High Grain Protein Concentration. Crop Science, 2018, 58, 1942-1953.	1.8	11
75	Genome-Wide Association Study for Identification and Validation of Novel SNP Markers for Sr6 Stem Rust Resistance Gene in Bread Wheat. Frontiers in Plant Science, 2018, 9, 380.	3.6	68
76	Genetic Diversity and Population Structure of F3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing. Frontiers in Genetics, 2018, 9, 76.	2.3	183
77	Unlocking the novel genetic diversity and population structure of synthetic Hexaploid wheat. BMC Genomics, 2018, 19, 591.	2.8	76
78	Clover green manure productivity and weed suppression in an organic grain rotation. Renewable Agriculture and Food Systems, 2017, 32, 474-483.	1.8	12
79	Variation for nitrogen use efficiency traits in current and historical great plains hard winter wheat. Euphytica, 2017, 213, 1.	1.2	92
80	Genotype, environment, seeding rate, and topâ€dressed nitrogen effects on endâ€use quality of modern Nebraska winter wheat. Journal of the Science of Food and Agriculture, 2017, 97, 5311-5318.	3.5	36
81	Genotyping-by-Sequencing Derived High-Density Linkage Map and its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat. Scientific Reports, 2017, 7, 16394.	3.3	103
82	Seeding Rate, Genotype, and Topdressed Nitrogen Effects on Yield and Agronomic Characteristics of Winter Wheat. Crop Science, 2017, 57, 951-963.	1.8	38
83	Cell Membrane Stability and Association Mapping for Drought and Heat Tolerance in a Worldwide Wheat Collection. Sustainability, 2017, 9, 1606.	3.2	85
84	Genetic basis of the very short life cycle of â€~Apogee' wheat. BMC Genomics, 2017, 18, 838.	2.8	11
85	Combining Ability for Tolerance to Preâ€Harvest Sprouting in Common Wheat (<i>Triticum aestivum</i>) Tj ET(Qq110.78	34314 rgBT (O
86	Phenotypic Plasticity of Winter Wheat Heading Date and Grain Yield across the US Great Plains. Crop Science, 2016, 56, 2223-2236.	1.8	75
87	Genetic Diversity of Great Plains Hard Winter Wheat Germplasm for Forage. Crop Science, 2016, 56, 2297-2305.	1.8	9
88	Impact of Pre-Anthesis Water Deficit on Yield and Yield Components in Barley (Hordeum vulgare L.) Plants Grown under Controlled Conditions. Agronomy, 2016, 6, 33.	3.0	27
89	A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Computers and Electronics in Agriculture, 2016, 128, 181-192.	7.7	191
90	Identification of markers linked to genes for sprouting tolerance (independent of grain color) in hard white winter wheat (HWWW). Theoretical and Applied Genetics, 2016, 129, 419-430.	3.6	16

#	Article	IF	CITATIONS
91	Registration of â€~NE05548' (Husker Genetics Brand Panhandle) Hard Red Winter Wheat. Journal of Plant Registrations, 2016, 10, 276-282.	0.5	4
92	Evaluation and Association Mapping of Resistance to Tan Spot and Stagonospora Nodorum Blotch in Adapted Winter Wheat Germplasm. Plant Disease, 2015, 99, 1333-1341.	1.4	42
93	Prospects for Selecting Wheat with Increased Zinc and Decreased Cadmium Concentration in Grain. Crop Science, 2015, 55, 1712-1728.	1.8	52
94	Variation for Grain Mineral Concentration in a Diversity Panel of Current and Historical Great Plains Hard Winter Wheat Germplasm. Crop Science, 2015, 55, 1035-1052.	1.8	112
95	Management of Fusarium head blight of wheat and barley. Crop Protection, 2015, 73, 100-107.	2.1	236
96	Characterization of Stem Rust Resistance in Wheat Cultivar Gage. Crop Science, 2015, 55, 229-239.	1.8	26
97	Distribution of Cadmium, Iron, and Zinc in Millstreams of Hard Winter Wheat (<i>Triticum) Tj ETQq1 1 0.784314</i>	rgBT /Ove 5.2	rlggk 10 Tf 5
98	Native Fusarium head blight resistance from winter wheat cultivars â€~Lyman,' â€~Overland,' â€~Ernie,' â€~Freedom' mapped and pyramided onto â€~Wesley'-Fhb1 backgrounds. Molecular Breeding, 2015, 35,	[™] and 1.2.1	18
99	Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany, 2015, 66, 3477-3486.	4.8	356
100	Comparison of Fusarium head blight resistance in cytoplasmic male sterile, maintainer and restorer lines in winter wheat. Cereal Research Communications, 2015, 43, 374-383.	1.6	2
101	Characterization of Nebraska Isolates of <i>Fusarium graminearum</i> Causing Head Blight of Wheat. Crop Science, 2014, 54, 310-317.	1.8	12
102	Registration of â€~NE06545' (Husker Genetics Brand Freeman) Hard Red Winter Wheat. Journal of Plant Registrations, 2014, 8, 279-284.	0.5	20
103	Chemotype and aggressiveness of isolates of <i>Fusarium graminearum</i> causing head blight of wheat in Nebraska. Canadian Journal of Plant Pathology, 2014, 36, 447-455.	1.4	15
104	Quantification of Yield Loss Caused by <i>Triticum mosaic virus</i> and <i>Wheat streak mosaic virus</i> in Winter Wheat Under Field Conditions. Plant Disease, 2014, 98, 127-133.	1.4	45
105	Registration of â€~Mattern' Waxy (Amylose-free) Winter Wheat. Journal of Plant Registrations, 2014, 8, 43-48.	0.5	19
106	SSR and SRAP Markers-based Genetic Diversity in Sorghum (Sorghum bicolor (L.) Moench) Accessions of Sudan. International Journal of Plant Breeding and Genetics, 2014, 8, 89-99.	0.3	6
107	Bridging Conventional Breeding and Genomics for A More Sustainable Wheat Production. , 2014, , 185-209.		1
108	Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8057-8062.	7.1	1,065

#	Article	IF	CITATIONS
109	FR-H3: a new QTL to assist in the development of fall-sown barley with superior low temperature tolerance. Theoretical and Applied Genetics, 2013, 126, 335-347.	3.6	49
110	Enzyme activity in wheat breeding lines derived from matings of low polyphenol oxidase parents. Euphytica, 2013, 190, 65-73.	1.2	4
111	Evaluating Cultivars for Organic Farming: Maize, Soybean, and Wheat Genotype by System Interactions in Eastern Nebraska. Agroecology and Sustainable Food Systems, 2013, 37, 915-932.	1.9	6
112	Introgression of Novel Traits from a Wild Wheat Relative Improves Drought Adaptation in Wheat Â. Plant Physiology, 2013, 161, 1806-1819.	4.8	124
113	Effect of Fusarium Head Blight Resistance Gene Fhb1 on Agronomic and Endâ€Use Quality Traits of Hard Red Winter Wheat. Crop Science, 2013, 53, 793-801.	1.8	14
114	Using DArT Markers to Monitor Genetic Diversity throughout Selection: A Case Study in Nebraska's Winter Wheat Breeding Nurseries. Crop Science, 2013, 53, 2363-2373.	1.8	18
115	Fusarium Head Blight Resistance in U.S. Winter Wheat Cultivars and Elite Breeding Lines. Crop Science, 2013, 53, 2006-2013.	1.8	43
116	Genetic Dissection of Yield and Its Component Traits Using High-Density Composite Map of Wheat Chromosome 3A: Bridging Gaps between QTLs and Underlying Genes. PLoS ONE, 2013, 8, e70526.	2.5	40
117	Effects of Single and Double Infections of Winter Wheat by <i>Triticum mosaic virus</i> and <i>Wheat streak mosaic virus</i> on Yield Determinants. Plant Disease, 2012, 96, 859-864.	1.4	31
118	Validation of QTL for Grain Yieldâ€Related Traits on Wheat Chromosome 3A Using Recombinant Inbred Chromosome Lines. Crop Science, 2012, 52, 1622-1632.	1.8	39
119	Differential accumulation of deoxynivalenol in two winter wheat cultivars varying in FHB phenotype response under field conditions. Canadian Journal of Plant Pathology, 2012, 34, 380-389.	1.4	14
120	Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations. Heredity, 2012, 109, 313-319.	2.6	55
121	Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds. Theoretical and Applied Genetics, 2012, 125, 1705-1715.	3.6	13
122	Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum. BMC Plant Biology, 2012, 12, 33.	3.6	42
123	The Scientific Grand Challenges of the 21st Century for the Crop Science Society of America. Crop Science, 2012, 52, 1003-1010.	1.8	21
124	Turfgrass Performance of Diploid Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] Half-sib Populations. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 185-188.	1.0	2
125	Registration of â€~NE01481' Hard Red Winter Wheat. Journal of Plant Registrations, 2012, 6, 49-53.	0.5	1
126	Registration of â€~NI04421' Hard Red Winter Wheat. Journal of Plant Registrations, 2012, 6, 54-59.	0.5	14

#	Article	IF	CITATIONS
127	Mapping QTL for Agronomic Traits on Wheat Chromosome 3A and a Comparison of Recombinant Inbred Chromosome Line Populations. Crop Science, 2011, 51, 553-566.	1.8	40
128	Understanding grain yield: it is a journey, not a destination. Czech Journal of Genetics and Plant Breeding, 2011, 47, S77-S84.	0.8	5
129	Registration of Seven Winter Wheat Germplasm Lines Carrying the <i>Wsm1</i> Gene for <i>Wheat Streak Mosaic Virus</i> Resistance. Journal of Plant Registrations, 2011, 5, 414-417.	0.5	4
130	Structuring an Efficient Organic Wheat Breeding Program. Sustainability, 2011, 3, 1190-1205.	3.2	32
131	Economic returns from fungicide application to control foliar fungal diseases in winter wheat. Crop Protection, 2011, 30, 685-692.	2.1	60
132	Evaluation of Buffalograss Genotypes and Full-Sibs for Chinch Bug Resistance. Journal of Economic Entomology, 2011, 104, 2073-2077.	1.8	1
133	Registration of â€~NH03614 CL' Wheat. Journal of Plant Registrations, 2011, 5, 75-80.	0.5	19
134	Registration of â€~Anton' Hard White Winter Wheat. Journal of Plant Registrations, 2011, 5, 339-344.	0.5	5
135	Grain Yield Performance and Stability of Cultivar Blends vs. Component Cultivars of Hard Winter Wheat in Nebraska. Crop Science, 2010, 50, 617-623.	1.8	17
136	Regression-Based Multi-Trait QTL Mapping Using a Structural Equation Model. Statistical Applications in Genetics and Molecular Biology, 2010, 9, Article38.	0.6	15
137	Bayesian mixture structural equation modelling in multiple-trait QTL mapping. Genetical Research, 2010, 92, 239-250.	0.9	11
138	Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics, 2010, 11, 727.	2.8	234
139	Registration of †Mace' Hard Red Winter Wheat. Journal of Plant Registrations, 2009, 3, 51-56.	0.5	71
140	Haploidy in Cultivated Wheats: Induction and Utility in Basic and Applied Research. Crop Science, 2009, 49, 737-755.	1.8	53
141	Frequency of resistance to stem rust race TPMK in Afghan wheat cultivars. Canadian Journal of Plant Pathology, 2009, 31, 250-253.	1.4	9
142	Effect of growth stage on the relationship between tan spot and spot blotch severity and yield in winter wheat. Crop Protection, 2009, 28, 696-702.	2.1	46
143	Automated Singleâ€Kernel Sorting to Select for Quality Traits in Wheat Breeding Lines. Cereal Chemistry, 2009, 86, 527-533.	2.2	14
144	Registration of â€~Camelot' Wheat. Journal of Plant Registrations, 2009, 3, 256-263.	0.5	11

#	Article	IF	CITATIONS
145	Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Molecular Breeding, 2008, 21, 497-509.	2.1	137
146	Identifying Winter Forage Triticale (× <i>Triticosecale</i> Wittmack) Strains for the Central Great Plains. Crop Science, 2008, 48, 2040-2048.	1.8	23
147	Creation of salt tolerant wheat doubled haploid lines from wheat × maize crosses. Cereal Research Communications, 2008, 36, 361-371.	1.6	9
148	Registration of â€~NE01643' Wheat. Journal of Plant Registrations, 2008, 2, 36-42.	0.5	38
149	Registration of â€~Alice' Wheat. Journal of Plant Registrations, 2008, 2, 110-114.	0.5	4
150	Registration of â€ [~] Darrellâ€ [™] Wheat. Journal of Plant Registrations, 2008, 2, 115-121.	0.5	6
151	Analysis of Genotypeâ€byâ€Environment Interaction in Wheat Using a Structural Equation Model and Chromosome Substitution Lines. Crop Science, 2007, 47, 477-484.	1.8	30
152	Evaluation of seedling characteristics of wheat (Triticum aestivumL.) through canonical correlation analysis. Cereal Research Communications, 2006, 34, 1231-1238.	1.6	10
153	Designing crop technology for a future climate: An example using response surface methodology and the CERES-Wheat model. Agricultural Systems, 2006, 87, 63-79.	6.1	102
154	High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics, 2006, 88, 74-87.	2.9	41
155	Registration of â€~Infinity CL' Wheat. Crop Science, 2006, 46, 975-977.	1.8	16
156	Registration of â€~Hallam' Wheat. Crop Science, 2006, 46, 977-979.	1.8	1
157	Evaluating the Genetic Diversity of Triticale with Wheat and Rye SSR Markers. Crop Science, 2006, 46, 1692-1700.	1.8	36
158	Improving Lives: 50 Years of Crop Breeding, Genetics, and Cytology (Câ€1). Crop Science, 2006, 46, 2230-2244.	1.8	74
159	An Automated Near-Infrared System for Selecting Individual Kernels Based on Specific Quality Characteristics. Cereal Chemistry, 2006, 83, 537-543.	2.2	49
160	Agronomic and quality effects in winter wheat of a gene conditioning resistance to wheat streak mosaic virus. Euphytica, 2006, 152, 41-49.	1.2	26
161	Crossover Interactions for Grain Yield in Multienvironmental Trials of Winter Wheat. Crop Science, 2006, 46, 1291-1298.	1.8	5
162	A simple wheat haploid and doubled haploid production system using anther culture. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 22-27.	2.1	26

#	Article	IF	CITATIONS
163	Quality effect of wheat-rye (1R) translocation in 'Pavon 76'. Plant Breeding, 2005, 124, 334-337.	1.9	9
164	Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica, 2005, 145, 133-146.	1.2	151
165	Genetic improvement trends in agronomic performances and end-use quality characteristics among hard red winter wheat cultivars in Nebraska. Euphytica, 2005, 144, 187-198.	1.2	89
166	Registration of â€~NE426GT' Winter Triticale. Crop Science, 2005, 45, 796-797.	1.8	5
167	Registration of â€~Arrowsmith' Hard White Winter Wheat. Crop Science, 2005, 45, 1662-1663.	1.8	5
168	Registration of â€~Antelope' Hard White Winter Wheat. Crop Science, 2005, 45, 1661-1662.	1.8	6
169	Screening Wheat Genotypes for High Callus Induction and Regeneration Capability from Immature Embryo Cultures. Journal of Plant Biochemistry and Biotechnology, 2005, 14, 155-160.	1.7	10
170	Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agricultural and Forest Meteorology, 2005, 135, 284-290.	4.8	97
171	Nuclear Genome Diversity and Relationships among Naturally Occurring Buffalograss Genotypes Determined by Sequence-related Amplified Polymorphism Markers. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 537-541.	1.0	28
172	Registration of â€~Harry' Wheat. Crop Science, 2004, 44, 1474-1475.	1.8	8
173	Registration of â€~Goodstreak' Wheat. Crop Science, 2004, 44, 1473-1474.	1.8	22
174	Agronomic Effect of Wheatâ€Rye Translocation Carrying Rye Chromatin (1R) From Different Sources. Crop Science, 2004, 44, 1254-1258.	1.8	112
175	Genetic Transformation of Wheat (Triticum AestivumL.) Anther Culture-Derived Embryos by Electroporation. Biotechnology and Biotechnological Equipment, 2004, 18, 62-68.	1.3	6
176	Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Research, 2004, 32, 3546-3565.	14.5	181
177	Influence of soil water status and atmospheric vapor pressure deficit on leaf gas exchange in field-grown winter wheat. Environmental and Experimental Botany, 2004, 51, 167-179.	4.2	41
178	The effect of introgressions of wheat D-genome chromosomes into â€~Presto' triticale. Euphytica, 2004, 137, 261-270.	1.2	15
179	Transferability of SSR markers among wheat, rye, and triticale. Theoretical and Applied Genetics, 2004, 108, 1147-1150.	3.6	161
180	The use of microsatellite markers for the detection of genetic similarity among winter bread wheat lines for chromosome�3A. Theoretical and Applied Genetics, 2004, 109, 1494-1503.	3.6	15

#	Article	IF	CITATIONS
181	Winter Wheat Cultivar Characteristics Affect Annual Weed Suppression. Weed Technology, 2004, 18, 988-998.	0.9	37
182	Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from 'Amigo' and 'Kavkaz' wheat–rye translocations of chromosome 1RS.1AL. Genome, 2004, 47, 292-298.	2.0	42
183	Putting genes into genetic coefficients. Field Crops Research, 2004, 90, 133-143.	5.1	25
184	Using Environmental Covariates to Explain Genotype × Environment and QTL × Environment Interactions for Agronomic Traits on Chromosome 3A of Wheat. Crop Science, 2004, 44, 620-627.	1.8	50
185	Genotypic and Environmental Modification of Asian Noodle Quality of Hard Winter Wheats. Cereal Chemistry, 2004, 81, 19-25.	2.2	14
186	Influence of a selectable marker gene hpt on agronomic performance in transgenic rice. Cereal Research Communications, 2004, 32, 9-16.	1.6	2
187	Predicting phenological development in winter wheat. Climate Research, 2004, 25, 243-252.	1.1	28
188	Characterization of ploidy levels of wheat microspore-derived plants using laser flow cytometry. In Vitro Cellular and Developmental Biology - Plant, 2003, 39, 663-668.	2.1	15
189	Functional properties of waxy wheat flours: genotypic and environmental effects. Journal of Cereal Science, 2003, 38, 69-76.	3.7	61
190	Improving predictions of developmental stages in winter wheat: a modified Wang and Engel model. Agricultural and Forest Meteorology, 2003, 115, 139-150.	4.8	113
191	Incorporating a Chronology Response into the Prediction of Leaf Appearance Rate in Winter Wheat. Annals of Botany, 2003, 92, 181-190.	2.9	58
192	The effects of age and size of wheat (Triticum aestivum L.) anther culture-derived embryos on regeneration of green and albino plantlets. Israel Journal of Plant Sciences, 2003, 51, 207-212.	0.5	2
193	Identification of QTLs and Environmental Interactions Associated with Agronomic Traits on Chromosome 3A of Wheat. Crop Science, 2003, 43, 1493-1505.	1.8	139
194	Genetic and Environmental Effects on Dough Mixing Characteristics and Agronomic Performance of Diverse Hard Red Winter Wheat Genotypes. Cereal Chemistry, 2003, 80, 518-523.	2.2	12
195	A Generalized Vernalization Response Function for Winter Wheat. Agronomy Journal, 2003, 95, 155.	1.8	43
196	Understanding the Effect of Rye Chromatin in Bread Wheat. Crop Science, 2003, 43, 1643-1651.	1.8	53
197	Agrobacterium tumefaciens-Mediated Wheat Transformation. Cereal Research Communications, 2003, 31, 9-16.	1.6	17
198	Application of Mobile Nursery Method to Determine Temporal and Spatial Genetic Variability of Wheat Streak Mosaic Virus in Nebraska. Cereal Research Communications, 2003, 31, 105-112.	1.6	1

#	Article	IF	CITATIONS
199	Response of Wheat Genotypes to Agrobacterium tumefaciens-Mediated Transformation. Cereal Research Communications, 2003, 31, 241-248.	1.6	4
200	Development and Utilization of SSRs to Estimate the Degree of Genetic Relationships in a Collection of Pearl Millet Germplasm. Crop Science, 2003, 43, 2284-2290.	1.8	77
201	Forage and Grazinglands : An ASA and CSSA Leadership Perspective. Forage and Grazinglands, 2003, 1, 1-1.	0.2	0
202	Genotypic variation of gas exchange parameters and carbon isotope discrimination in winter wheat. Journal of Plant Physiology, 2002, 159, 891-898.	3.5	31
203	Registration of â€~Wahoo' Wheat. Crop Science, 2002, 42, 1752-1753.	1.8	8
204	Seeding Rate and Genotype Effect on Agronomic Performance and Endâ€Use Quality of Winter Wheat. Crop Science, 2002, 42, 827-832.	1.8	74
205	Seeding Rate and Genotype Effect on Agronomic Performance and End-Use Quality of Winter Wheat. Crop Science, 2002, 42, 827.	1.8	38
206	Commercial Nature of Corn Germ Plasm. Science, 2001, 294, 2291-2292.	12.6	0
207	Registration of â€~Cougar' Wheat. Crop Science, 2001, 41, 1360-1361.	1.8	1
208	Registration of â€~Millennium' Wheat. Crop Science, 2001, 41, 1367-1369.	1.8	12
209	Virulence of Puccinia triticina on Wheat in Nebraska during 1997 and 1998. Plant Disease, 2001, 85, 159-164.	1.4	14
210	Breeding for end-use quality: Reflections on the Nebraska experience. Euphytica, 2001, 119, 95-100.	1.2	45
211	Constitutive promoter expression of transgenes in wheat (Triticum aestivum). Cereal Research Communications, 2001, 29, 9-16.	1.6	3
212	Comparisons of RFLP and PCR-based markers to detect polymorphism between wheat cultivars. Euphytica, 2000, 114, 135-142.	1.2	14
213	Correcting for Classification Errors when Estimating the Number of Genes Using Recombinant Inbred Chromosome Lines. Crop Science, 2000, 40, 398-403.	1.8	8
214	Inheritance of Multiple Transgenes in Wheat. Crop Science, 2000, 40, 1133-1141.	1.8	42
215	Genetic Analyses of Agronomic Traits Controlled by Wheat Chromosome 3A. Crop Science, 1999, 39, 1016-1021.	1.8	19
216	Molecular Mapping of Loci for Agronomic Traits on Chromosome 3A of Bread Wheat. Crop Science, 1999, 39, 1728-1732.	1.8	105

#	Article	IF	CITATIONS
217	Physiologic Specialization of Puccinia recondita f. sp. tritici in Nebraska During 1995 and 1996. Plant Disease, 1998, 82, 679-682.	1.4	3
218	Registration of â€~Windstar' Wheat. Crop Science, 1998, 38, 894-895.	1.8	1
219	Registration of 88Ab536â€B Barley Germplasm. Crop Science, 1998, 38, 559-559.	1.8	5
220	Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (<i>Triticum aestivum</i> L.). Genome, 1997, 40, 633-638.	2.0	58
221	Agronomic Performance of Hybrids between Cultivars and Chromosome Substitution Lines. Crop Science, 1997, 37, 396-399.	1.8	14
222	Registration of â€~Pronghorn' Wheat. Crop Science, 1997, 37, 1006-1006.	1.8	14
223	DNA content of wheat monosomics at interphase estimated by flow cytometry. Theoretical and Applied Genetics, 1997, 95, 1300-1304.	3.6	22
224	Baking quality of hard winter wheat: Response of cultivars to environment in the Great Plains. Developments in Plant Breeding, 1997, , 223-228.	0.2	18
225	Corn Genome Initiative. Science, 1997, 277, 883d-887.	12.6	1
226	Registration of â€~Nekota' Wheat. Crop Science, 1996, 36, 803-804.	1.8	10
227	Registration of â€~Niobrara' Wheat. Crop Science, 1996, 36, 803-803.	1.8	11
228	Genotypic and Environmental Modification of Wheat Flour Protein Composition in Relation to Endâ€Use Quality. Crop Science, 1996, 36, 296-300.	1.8	86
229	Chromosomal locations of genes that control major RNA-degrading activities in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1996, 93, 645-648.	3.6	3
230	Reflections on doubled haploids in plant breeding. Current Plant Science and Biotechnology in	0.0	12
	Agriculture, 1996, , 35-48.		
231	Agriculture, 1996, , 35-48. Characterization of Genetic Variability Among Natural Populations of Wheat Streak Mosaic Virus. Phytopathology, 1996, 86, 1222.	2.2	70
231 232	Characterization of Genetic Variability Among Natural Populations of Wheat Streak Mosaic Virus.		70 0
	Characterization of Genetic Variability Among Natural Populations of Wheat Streak Mosaic Virus. Phytopathology, 1996, 86, 1222. Chromosomal locations of genes that control major RNA-degrading activities in common wheat	2.2	

#	Article	IF	CITATIONS
235	Isolated wheat microspore culture. Plant Cell, Tissue and Organ Culture, 1995, 42, 207-213.	2.3	49
236	Agronomic Performance and Endâ€Use Quality of 1B vs. 1BL/1RS Genotypes Derived from Winter Wheat â€~Rawhide'. Crop Science, 1995, 35, 1607-1612.	1.8	46
237	The 1BL/1RS Translocation: Agronomic Performance of F ₃ â€Derived Lines from a Winter Wheat Cross. Crop Science, 1995, 35, 1051-1055.	1.8	94
238	Environmental modification of hard red winter wheat flour protein composition. Journal of Cereal Science, 1995, 22, 45-51.	3.7	96
239	Plant Height Response of Semidwarf and Nonsemidwarf Wheats to the Environment. Crop Science, 1995, 35, 447-451.	1.8	32
240	Registration of â€~Alliance' Wheat. Crop Science, 1995, 35, 938-938.	1.8	12
241	Removing Spatial Variation from Wheat Yield Trials: A Comparison of Methods. Crop Science, 1994, 34, 62-66.	1.8	110
242	Wheat chromosome 2D carries genes controlling the activity of two DNA-degrading enzymes. Theoretical and Applied Genetics, 1994, 88, 30-32.	3.6	2
243	Addition of Colchicine to Wheat Anther Culture Media to Increase Doubled Haploid Plant Production. Plant Breeding, 1994, 112, 192-198.	1.9	57
244	Effect of Sugars in Wheat Anther Culture Media. Plant Breeding, 1994, 112, 53-62.	1.9	49
245	Identification, characterization, and comparison of RNA-degrading enzymes of wheat and barley. Biochemical Genetics, 1993, 31, 133-145.	1.7	8
246	Registration of N86L177 Wheat Germplasm. Crop Science, 1993, 33, 350.	1.8	3
247	Registration of â€ [~] Vista' Wheat. Crop Science, 1993, 33, 1412-1412.	1.8	4
248	Registration of Three Wheat Germplasm Lines. Crop Science, 1993, 33, 884-885.	1.8	0
249	Identification, characterization, and comparison of RNA-degrading enzymes of wheat and barley. Biochemical Genetics, 1993, 31, 133-145.	1.7	4
250	Yield and yield component response of barley in subarctic and temperate environments. Canadian Journal of Plant Science, 1992, 72, 663-669.	0.9	4
251	A better way to construct recombinant chromosome lines and their controls. Genome, 1992, 35, 827-830.	2.0	22
252	Genotype and Environment Effects on Quality Characteristics of Hard Red Winter Wheat. Crop Science, 1992, 32, 98-103.	1.8	221

#	Article	IF	CITATIONS
253	Portable and Desktop Computer Integrated Field Book and Data Collection System for Agronomists. Agronomy Journal, 1992, 84, 119-121.	1.8	4
254	Chromosomal Location of Wheat Quantitative Trait Loci Affecting Agronomic Performance of Seven Traits, Using Reciprocal Chromosome Substitutions. Crop Science, 1992, 32, 621-627.	1.8	46
255	Chromosomal Location of Wheat Quantitative Trait Loci Affecting Stability of Six Traits, Using Reciprocal Chromosome Substitutions. Crop Science, 1992, 32, 628-633.	1.8	34
256	The Effect of Gelling Agents on Wheat Anther and Immature Embryo Culture. Plant Breeding, 1992, 109, 211-217.	1.9	15
257	Registration of "Rawhide―Wheat. Crop Science, 1992, 32, 283-283.	1.8	4
258	Evidence for microspore embryogenesis in wheat anther culture. In Vitro Cellular and Developmental Biology - Plant, 1991, 27, 168-174.	2.1	23
259	Registration of â€~Newcale' Winter Triticale. Crop Science, 1991, 31, 489-490.	1.8	2
260	Response of different wheat tissues to increasing doses of ethyl methanesulfonate. Plant Cell, Tissue and Organ Culture, 1991, 26, 141-146.	2.3	2
261	The effects of interactions of culture environment with genotype on wheat (Triticum aestivum) anther culture response. Plant Cell Reports, 1990, 8, 525-529.	5.6	34
262	Effect of genotype and medium on wheat (Triticum aestivum L.) anther culture. Plant Cell, Tissue and Organ Culture, 1990, 21, 253-258.	2.3	13
263	Inheritance of the blue aleurone trait in diverse wheat crosses. Genome, 1990, 33, 525-529.	2.0	27
264	The Challenges of Attracting Graduate Students to Plant Breeding. Journal of Agronomic Education, 1990, 19, 205-210.	0.2	0
265	Registration of â€~Perkins' Winter Barley. Crop Science, 1990, 30, 1355-1355.	1.8	2
266	Agronomic Performance of Wheat Doubled-Haploid Lines Derived from Cultivars by Anther Culture. Plant Breeding, 1989, 103, 101-109.	1.9	45
267	Stability of ploidy in meristems of plants regenerated from anther calli of wheat (Triticum aestivum L.) Tj ETQq1 1	0,78431 2.0	4 rgBT /Overl
268	Cytogenetic studies of progenies from crosses between 'Centurk' wheat and its doubled haploids derived from anther culture. Genome, 1989, 32, 622-628.	2.0	11
269	Quantifying Gametoclonal Variation in Wheat Doubled Haploids. , 1989, , 1-9.		7
270	Registration of â€~Arapahoe' Wheat. Crop Science, 1989, 29, 832-832.	1.8	23

#	Article	IF	CITATIONS
271	Planting Date in Relation to Yield and Yield Components of Wheat in the Middle Atlantic Region. Agronomy Journal, 1988, 80, 30-34.	1.8	8
272	Yield and Grain Quality Responses of Soft Red Winter Wheat Exposed to Ozone During Anthesis 1. Agronomy Journal, 1986, 78, 593-600.	1.8	36
273	Production, morphology, and cytogenetic analysis of Elymus caninus (Agropyron caninum) x Triticum aestivum F1 hybrids and backcross-1 derivatives. Theoretical and Applied Genetics, 1986, 71, 750-756.	3.6	29
274	Effect of Cultivar, Environment, and Their Interaction and Stability Analyses on Milling and Baking Quality of Soft Red Winter Wheat ¹ . Crop Science, 1985, 25, 5-8.	1.8	85
275	The Physical Environment in Relation to High Frequency Callus and Plantlet Development in Anther Cultures of Wheat (Triticum aestivum L.) cv. Chris. Journal of Plant Physiology, 1985, 121, 103-109.	3.5	43
276	Performance of four winter wheat cultivars in blended populations. Field Crops Research, 1985, 10, 135-142.	5.1	8
277	Identification and Characterization of the Gene Conditioning Powdery Mildew Resistance in â€~Amigo' Wheat 1. Crop Science, 1984, 24, 129-132.	1.8	24
278	Photosynthate partitioning in diploid and autotetraploid barley (Hordeum vulgare). Physiologia Plantarum, 1984, 60, 239-246.	5.2	10
279	Combining abilities and heritability of callus formation and plantlet regeneration in wheat (Triticum) Tj ETQq1	0.784314	rgBT /Overloo
280	Cultivar and cultivar x environment effects on the development of callus and polyhaploid plants from anther cultures of wheat. Theoretical and Applied Genetics, 1984, 67, 273-277.	3.6	80
281	The Significance of Doubled Haploid Variation. Stadler Genetics Symposia Series, 1984, , 385-414.	0.0	25
282	Registration of a MD286 Wheat Germplasm. Crop Science, 1984, 24, 391.	1.8	0
283	Breeding for Disease Resistance. , 1984, , 427-452.		1
284	Cytogenetic characteristics of wheat plants regenerated from anther calli of 'Centurk'. Genome, 1983, 25, 513-517.	0.7	19
285	The Effects of Genes Controlling Barley Leaf and Sheath Waxes on Agronomic Performance in Irrigated and Dryland Environments 1. Crop Science, 1983, 23, 116-120.	1.8	25
286	Winter Barley Composite Cross XL Germplasm. Crop Science, 1983, 23, 1017-1017.	1.8	4
287	Soft Red Winter Wheat Germplasm Segregating for a Dominant Male Sterile Gene. Crop Science, 1983, 23, 1022-1022.	1.8	0
288	Anther culture of wheat (Triticum aestivum L.) F1's and their reciprocal crosses. Theoretical and Applied Genetics, 1982, 62, 155-159.	3.6	110

#	Article	IF	CITATIONS
289	Genes Conditioning Resistance of Hordeum spontaneum to Erysiphe graminis f. sp. hordei 1. Crop Science, 1981, 21, 229-232.	1.8	25
290	Registration of Barley Composite Crosses XXXVIIâ€A, â€B, and â€C (Reg. Nos. GP55 to GP57) ¹ . Crop Science, 1981, 21, 351-352.	1.8	9
291	Effect of Reducing Plant Population on Yield and Kernel Characteristics of Sugaryâ€2 and Normal Maize 1. Crop Science, 1980, 20, 444-447.	1.8	13
292	Dry Matter Accumulation in Maize Hybrids Near Isogenic for Endosperm Mutants Conditioning Protein Quality 1. Crop Science, 1979, 19, 345-349.	1.8	11
293	Haploid Plant Development from Anthers and In Vitro Embryo Culture of Wheat ¹ . Crop Science, 1979, 19, 697-702.	1.8	91
294	Effects of Powdery Mildew on Yield and Quality of Isogenic Lines of â€~Chancellor' Wheat 1. Crop Science, 1979, 19, 349-352.	1.8	56
295	Registration of Barley Composite Crosses XXXV, XXXVâ€A, â€B, and 1 (Reg. Nos. GP27 to GP30) ^{1Crop Science, 1979, 19, 750-751.}	`1.8	4
296	A proposal for increased research on chemical induction of fertility in genetic male-sterile barley. Euphytica, 1978, 27, 109-111.	1.2	9
297	Protein Body Size and Distribution and Protein Matrix Morphology in Various Endosperm Mutants of Zea mays L. 1. Crop Science, 1977, 17, 415-421.	1.8	4
298	Simulating Crop Phenological Responses to Water Deficits. Advances in Agricultural Systems Modeling, 0, , 277-300.	0.3	8
299	Analysis of Genotype-by-Environment Interaction in Winter Wheat Growth in Organic Production System. Emirates Journal of Food and Agriculture, 0, , 212.	1.0	3
300	Genetic architecture of the high inorganic phosphate phenotype derived from a low phytate mutant in winter wheat (<i>Triticum aestivum</i> L.). Crop Science, 0, , .	1.8	2