
Harold P Erickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6752316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FtsZ at mid-cell is essential in Escherichia coli until the late stage of constriction. Microbiology (United Kingdom), 2022, 168, .	1.8	1
2	How Teichoic Acids Could Support a Periplasm in Gram-Positive Bacteria, and Let Cell Division Cheat Turgor Pressure. Frontiers in Microbiology, 2021, 12, 664704.	3.5	10
3	The Arabidopsis thaliana chloroplast division protein FtsZ1 counterbalances FtsZ2 filament stability inÂvitro. Journal of Biological Chemistry, 2021, 296, 100627.	3.4	6
4	Progress and Challenges in the Biology of FNDC5 and Irisin. Endocrine Reviews, 2021, 42, 436-456.	20.1	85
5	A Unified Model for Treadmilling and Nucleation of Single-Stranded FtsZ Protofilaments. Biophysical Journal, 2020, 119, 792-805.	0.5	20
6	High-resolution crystal structures of <i>Escherichia coli</i> FtsZ bound to GDP and GTP. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 94-102.	0.8	22
7	Microtubule Assembly from Single Flared Protofilaments—Forget the Cozy Corner?. Biophysical Journal, 2019, 116, 2240-2245.	0.5	8
8	Determinants of Tenascin-C and HIV-1 envelope binding and neutralization. Mucosal Immunology, 2019, 12, 1004-1012.	6.0	18
9	L form bacteria growth in low-osmolality medium. Microbiology (United Kingdom), 2019, 165, 842-851.	1.8	12
10	The cell division protein MinD from Pseudomonas aeruginosa dominates the assembly of the MinC–MinD copolymers. Journal of Biological Chemistry, 2018, 293, 7786-7795.	3.4	17
11	Turgor Pressure and Possible Constriction Mechanisms in Bacterial Division. Frontiers in Microbiology, 2018, 9, 111.	3.5	43
12	Protein unfolding under isometric tension — what force can integrins generate, and can it unfold FNIII domains?. Current Opinion in Structural Biology, 2017, 42, 98-105.	5.7	12
13	The discovery of the prokaryotic cytoskeleton: 25th anniversary. Molecular Biology of the Cell, 2017, 28, 357-358.	2.1	20
14	The Chloroplast Tubulin Homologs FtsZA and FtsZB from the Red Alga Galdieria sulphuraria Co-assemble into Dynamic Filaments. Journal of Biological Chemistry, 2017, 292, 5207-5215.	3.4	14
15	FtsZ Constriction Force – Curved Protofilaments Bending Membranes. Sub-Cellular Biochemistry, 2017, 84, 139-160.	2.4	32
16	Spontaneous Unfolding-Refolding of Fibronectin Type III Domains Assayed by Thiol Exchange. Journal of Biological Chemistry, 2017, 292, 955-966.	3.4	7
17	How bacterial cell division might cheat turgor pressure – a unified mechanism of septal division in Gramâ€positive and Gramâ€negative bacteria. BioEssays, 2017, 39, 1700045.	2.5	30
18	ZipA and FtsA* stabilize FtsZ-GDP miniring structures. Scientific Reports, 2017, 7, 3650.	3.3	20

#	Article	IF	CITATIONS
19	Fibronectin Conformation and Assembly: Analysis of Fibronectin Deletion Mutants and Fibronectin Glomerulopathy (GFND) Mutants. Biochemistry, 2017, 56, 4584-4591.	2.5	8
20	Probing for Binding Regions of the FtsZ Protein Surface through Site-Directed Insertions: Discovery of Fully Functional FtsZ-Fluorescent Proteins. Journal of Bacteriology, 2017, 199, .	2.2	62
21	Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models. Cell Reports, 2017, 21, 3681-3690.	6.4	97
22	Whole genome re-sequencing to identify suppressor mutations of mutant and foreign Escherichia coli FtsZ. PLoS ONE, 2017, 12, e0176643.	2.5	4
23	FtsZ Protofilament Curvature Is the Opposite of Tubulin Rings. Biochemistry, 2016, 55, 4085-4091.	2.5	19
24	How the kinetochore couples microtubule force and centromere stretch to move chromosomes. Nature Cell Biology, 2016, 18, 382-392.	10.3	70
25	The Presence and Anti-HIV-1 Function of Tenascin C in Breast Milk and Genital Fluids. PLoS ONE, 2016, 11, e0155261.	2.5	16
26	Irisin – a myth rather than an exercise-inducible myokine. Scientific Reports, 2015, 5, 8889.	3.3	259
27	FtsZ filament capping by MciZ, a developmental regulator of bacterial division. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2130-8.	7.1	65
28	Structural determinants of the interaction between the Haemophilus influenzae Hap autotransporter and fibronectin. Microbiology (United Kingdom), 2014, 160, 1182-1190.	1.8	8
29	The Structure of Irisin Reveals a Novel Intersubunit β-Sheet Fibronectin Type III (FNIII) Dimer. Journal of Biological Chemistry, 2013, 288, 33738-33744.	3.4	169
30	Tenascin-C is an innate broad-spectrum, HIV-1–neutralizing protein in breast milk. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18220-18225.	7.1	73
31	Rapid in Vitro Assembly of Caulobacter crescentus FtsZ Protein at pH 6.5 and 7.2. Journal of Biological Chemistry, 2013, 288, 23675-23679.	3.4	14
32	The <scp>C</scp> â€ŧerminal linker of <i><scp>E</scp>scherichia coli</i> â€ <scp>FtsZ</scp> functions as an intrinsically disordered peptide. Molecular Microbiology, 2013, 89, 264-275.	2.5	76
33	Irisin and FNDC5 in retrospect. Adipocyte, 2013, 2, 289-293.	2.8	169
34	Liposome division by a simple bacterial division machinery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11000-11004.	7.1	180
35	Gene product 0.4 increases bacteriophage T7 competitiveness by inhibiting host cell division. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19549-19554.	7.1	46
36	SulA Inhibits Assembly of FtsZ by a Simple Sequestration Mechanism. Biochemistry, 2012, 51, 3100-3109.	2.5	110

#	Article	IF	CITATIONS
37	Bacterial Actin Homolog ParM: Arguments for an Apolar, Antiparallel Double Helix. Journal of Molecular Biology, 2012, 422, 461-463.	4.2	3
38	Negative-Stain Electron Microscopy of Inside-Out FtsZ Rings Reconstituted on Artificial Membrane Tubules Show Ribbons of Protofilaments. Biophysical Journal, 2012, 103, 59-68.	0.5	44
39	Conformational Changes of FtsZ Reported by Tryptophan Mutants. Biochemistry, 2011, 50, 4675-4684.	2.5	43
40	Insideâ€out Z rings – constriction with and without GTP hydrolysis. Molecular Microbiology, 2011, 81, 571-579.	2.5	76
41	Probing the Folded State of Fibronectin Type III Domains in Stretched Fibrils by Measuring Buried Cysteine Accessibility. Journal of Biological Chemistry, 2011, 286, 26375-26382.	3.4	40
42	Fibronectin Aggregation and Assembly. Journal of Biological Chemistry, 2011, 286, 39188-39199.	3.4	33
43	Cell division without FtsZ – a variety of redundant mechanisms. Molecular Microbiology, 2010, 78, 267-270.	2.5	26
44	Suprastructures and Dynamic Properties of Mycobacterium tuberculosis FtsZ. Journal of Biological Chemistry, 2010, 285, 11281-11289.	3.4	42
45	FtsZ in Bacterial Cytokinesis: Cytoskeleton and Force Generator All in One. Microbiology and Molecular Biology Reviews, 2010, 74, 504-528.	6.6	533
46	The Coiled Coils of Cohesin Are Conserved in Animals, but Not In Yeast. PLoS ONE, 2009, 4, e4674.	2.5	7
47	BtubA-BtubB Heterodimer Is an Essential Intermediate in Protofilament Assembly. PLoS ONE, 2009, 4, e7253.	2.5	25
48	Modeling the physics of FtsZ assembly and force generation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9238-9243.	7.1	113
49	Structural Determinants of Autoproteolysis of the <i>Haemophilus influenzae</i> Hap Autotransporter. Infection and Immunity, 2009, 77, 4704-4713.	2.2	22
50	Tubular Liposomes with Variable Permeability for Reconstitution of FtsZ Rings. Methods in Enzymology, 2009, 464, 3-17.	1.0	8
51	FtsZ condensates: An in vitro electron microscopy study. Biopolymers, 2009, 91, 340-350.	2.4	108
52	Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biological Procedures Online, 2009, 11, 32-51.	2.9	1,194
53	Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO Journal, 2009, 28, 3476-3484.	7.8	154
54	FtsZ Filament Dynamics at Steady State: Subunit Exchange with and without Nucleotide Hydrolysis. Biochemistry, 2009, 48, 6664-6673.	2.5	67

#	Article	IF	CITATIONS
55	Improved Specimen Preparations for Electron Microscopy of FtsZ Protofilaments. Biophysical Journal, 2009, 96, 519a.	0.5	0
56	1SP6-05 FtsZ (bacterial tubulin) bending and constricting liposomes(1SP6 Membrane transformers!! :) Tj ETQq0	0 0 rgBT / 0.1	Overlock 10 0
57	Display of Cell Surface Sites for Fibronectin Assembly Is Modulated by Cell Adherence to 1F3 and C-Terminal Modules of Fibronectin. PLoS ONE, 2009, 4, e4113.	2.5	26
58	Reconstitution of Contractile FtsZ Rings in Liposomes. Science, 2008, 320, 792-794.	12.6	462
59	In Vitro Assembly Studies of FtsZ/Tubulin-like Proteins (TubZ) from Bacillus Plasmids. Journal of Biological Chemistry, 2008, 283, 8102-8109.	3.4	48
60	Designing an extracellular matrix protein with enhanced mechanical stability. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9633-9637.	7.1	66
61	The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. Journal of Cell Biology, 2007, 178, 167-178.	5.2	183
62	Assembly Dynamics of Mycobacterium tuberculosis FtsZ. Journal of Biological Chemistry, 2007, 282, 27736-27743.	3.4	62
63	Evolution of the cytoskeleton. BioEssays, 2007, 29, 668-677.	2.5	119
64	An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins. Protein Science, 2007, 16, 1429-1438.	7.6	135
65	Understanding the elasticity of fibronectin fibrils: Unfolding strengths of FN-III and CFP domains measured by single molecule force spectroscopy. Matrix Biology, 2006, 25, 175-184.	3.6	70
66	Sequence divergence of coiled coils—structural rods, myosin filament packing, and the extraordinary conservation of cohesins. Journal of Structural Biology, 2006, 154, 111-121.	2.8	19
67	FtsZ from Divergent Foreign Bacteria Can Function for Cell Division in Escherichia coli. Journal of Bacteriology, 2006, 188, 7132-7140.	2.2	36
68	Rapid in Vitro Assembly Dynamics and Subunit Turnover of FtsZ Demonstrated by Fluorescence Resonance Energy Transfer. Journal of Biological Chemistry, 2005, 280, 22549-22554.	3.4	153
69	In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. Journal of Cell Biology, 2005, 169, 233-238.	5.2	72
70	Domain Unfolding Plays a Role in Superfibronectin Formation. Journal of Biological Chemistry, 2005, 280, 39143-39151.	3.4	57
71	Probing the domain structure of FtsZ by random truncation and insertion of GFP. Microbiology (United Kingdom), 2005, 151, 4033-4043.	1.8	28
72	Mutants of FtsZ Targeting the Protofilament Interface: Effects on Cell Division and GTPase Activity. Journal of Bacteriology, 2005, 187, 2727-2736.	2.2	88

#	Article	IF	CITATIONS
73	A Rapid Fluorescence Assay for FtsZ Assembly Indicates Cooperative Assembly with a Dimer Nucleus. Biophysical Journal, 2005, 88, 505-514.	0.5	137
74	Localization of a Cryptic Binding Site for Tenascin on Fibronectin. Journal of Biological Chemistry, 2004, 279, 28132-28135.	3.4	46
75	The Disulfide Bonding Pattern in Ficolin Multimers. Journal of Biological Chemistry, 2004, 279, 6534-6539.	3.4	45
76	Assembly Dynamics of FtsZ Rings in <i>Bacillus subtilis</i> and <i>Escherichia coli</i> and Effects of FtsZ-Regulating Proteins. Journal of Bacteriology, 2004, 186, 5775-5781.	2.2	280
77	Force Measurements of the α5β1 Integrin–Fibronectin Interaction. Biophysical Journal, 2003, 84, 1252-1262.	0.5	363
78	In Vivo Characterization of <i>Escherichia coli ftsZ</i> Mutants: Effects on Z-Ring Structure and Function. Journal of Bacteriology, 2003, 185, 4796-4805.	2.2	87
79	Apparent Cooperative Assembly of the Bacterial Cell Division Protein FtsZ Demonstrated by Isothermal Titration Calorimetry. Journal of Biological Chemistry, 2003, 278, 13784-13788.	3.4	59
80	Rapid assembly dynamics of the <i>Escherichia coli</i> FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3171-3175.	7.1	339
81	Structural Evidence that the P/Q Domain of ZipA Is an Unstructured, Flexible Tether between the Membrane and the C-Terminal FtsZ-Binding Domain. Journal of Bacteriology, 2002, 184, 4313-4315.	2.2	70
82	Condensin and cohesin display different arm conformations with characteristic hinge angles. Journal of Cell Biology, 2002, 156, 419-424.	5.2	343
83	Tenascin-C expression and distribution in cultured human chondrocytes and chondrosarcoma cells. Journal of Orthopaedic Research, 2002, 20, 834-841.	2.3	13
84	Stretching fibronectin. Journal of Muscle Research and Cell Motility, 2002, 23, 575-580.	2.0	71
85	Dual labeling of the fibronectin matrix and actin cytoskeleton with green fluorescent protein variants. Journal of Cell Science, 2002, 115, 1221-1229.	2.0	92
86	Dual labeling of the fibronectin matrix and actin cytoskeleton with green fluorescent protein variants. Journal of Cell Science, 2002, 115, 1221-9.	2.0	84
87	Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. Journal of Cell Science, 2002, 115, 2581-90.	2.0	67
88	Tenascin-C Splice Variant Adhesive/anti-Adhesive Effects on Chondrosarcoma Cell Attachment to Fibronectin Cell Structure and Function, 2001, 26, 179-187.	1.1	30
89	Disulfide-mediated dimerization of L1 lg domains. Journal of Neuroscience Research, 2001, 66, 347-355.	2.9	3
90	Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis Nature Medicine, 2001, 7, 324-330.	30.7	311

#	Article	IF	CITATIONS
91	C-terminal opening mimics 'inside-out' activation of integrin alpha5beta1. Nature Structural Biology, 2001, 8, 412-416.	9.7	239
92	Evolution in bacteria. Nature, 2001, 413, 30-30.	27.8	30
93	The FtsZ protofilament and attachment of ZipA—structural constraints on the FtsZ power stroke. Current Opinion in Cell Biology, 2001, 13, 55-60.	5.4	55
94	Site-specific mutations of FtsZeffects on GTPase and in vitro assembly. BMC Microbiology, 2001, 1, 7.	3.3	85
95	Ultrastructure and Function of Dimeric, Soluble Intercellular Adhesion Molecule-1 (ICAM-1). Journal of Biological Chemistry, 2001, 276, 29019-29027.	3.4	62
96	Structure of the Rad50·Mre11 DNA Repair Complex fromSaccharomyces cerevisiae by Electron Microscopy. Journal of Biological Chemistry, 2001, 276, 37027-37033.	3.4	97
97	Polymerization of FtsZ, a Bacterial Homolog of Tubulin. Journal of Biological Chemistry, 2001, 276, 11743-11753.	3.4	192
98	Cell Adhesion Molecule L1 in Folded (Horseshoe) and Extended Conformations. Molecular Biology of the Cell, 2001, 12, 1765-1773.	2.1	75
99	XMAP215 is a long thin molecule that does not increase microtubule stiffness. Journal of Cell Science, 2001, 114, 3025-3033.	2.0	86
100	Î ³ -tubulin nucleation: template or protofilament?. Nature Cell Biology, 2000, 2, E93-E95.	10.3	28
101	Straight and Curved Conformations of FtsZ Are Regulated by GTP Hydrolysis. Journal of Bacteriology, 2000, 182, 164-170.	2.2	273
102	Ultrastructure and Function of the Fractalkine Mucin Domain in CX3C Chemokine Domain Presentation. Journal of Biological Chemistry, 2000, 275, 3781-3786.	3.4	81
103	Identification of Amino Acid Sequences in Fibrinogen γ-Chain and Tenascin C C-terminal Domains Critical for Binding to Integrin αvβ3. Journal of Biological Chemistry, 2000, 275, 16891-16898.	3.4	77
104	Dynamin and Ftsz. Journal of Cell Biology, 2000, 148, 1103-1106.	5.2	72
105	Defining Fibronectin's Cell Adhesion Synergy Site by Site-Directed Mutagenesis. Journal of Cell Biology, 2000, 149, 521-527.	5.2	168
106	The Compact Conformation of Fibronectin Is Determined by Intramolecular Ionic Interactions. Journal of Biological Chemistry, 1999, 274, 15473-15479.	3.4	160
107	The Straight and Curved Conformation of FtsZ Protofilaments-evidence for Rapid Exchange of GTP into the Curved Protofilament Cell Structure and Function, 1999, 24, 285-290.	1.1	24
108	The molecular elasticity of the extracellular matrix protein tenascin. Nature, 1998, 393, 181-185.	27.8	820

#	Article	IF	CITATIONS
109	Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain. Nature Structural Biology, 1998, 5, 55-59.	9.7	105
110	Atomic structures of tubulin and FtsZ. Trends in Cell Biology, 1998, 8, 133-137.	7.9	119
111	FtsZ fromEscherichia coli,Azotobacter vinelandii, andThermotoga maritima—quantitation, GTP hydrolysis, and assembly. Cytoskeleton, 1998, 40, 71-86.	4.4	161
112	Oligomeric Structure and Tissue Distribution of Ficolins from Mouse, Pig and Human. Archives of Biochemistry and Biophysics, 1998, 360, 223-232.	3.0	92
113	The Symmetrical Structure of Structural Maintenance of Chromosomes (SMC) and MukB Proteins: Long, Antiparallel Coiled Coils, Folded at a Flexible Hinge. Journal of Cell Biology, 1998, 142, 1595-1604.	5.2	354
114	Ultrastructural and Biochemical Properties of the 120-kDa Form of Chick Kinectin. Journal of Biological Chemistry, 1998, 273, 31738-31743.	3.4	18
115	[25] Purificationa and assembly of FtsZ. Methods in Enzymology, 1998, 298, 305-313.	1.0	28
116	FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima—quantitation, GTP hydrolysis, and assembly. Cytoskeleton, 1998, 40, 71-86.	4.4	10
117	Two Oligomeric Forms of Plasma Ficolin Have Differential Lectin Activity. Journal of Biological Chemistry, 1997, 272, 14220-14226.	3.4	60
118	Tenascin Supports Lymphocyte Rolling. Journal of Cell Biology, 1997, 137, 755-765.	5.2	67
119	Protein Biophysics: Enhanced: Stretching Single Protein Molecules: Titin Is a Weird Spring. Science, 1997, 276, 1090-1092.	12.6	101
120	Expression inEscherichia coliof the Thermostable DNA Polymerase fromPyrococcus furiosus. Protein Expression and Purification, 1997, 11, 179-184.	1.3	29
121	Extracellular annexin II. International Journal of Biochemistry and Cell Biology, 1997, 29, 1219-1223.	2.8	113
122	A tenascin knockout with a phenotype. Nature Genetics, 1997, 17, 5-7.	21.4	28
123	Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin. Structure, 1997, 5, 949-959.	3.3	88
124	How calcium causes microtubule depolymerization. Cytoskeleton, 1997, 36, 125-135.	4.4	135
125	Tenascin-C knockout mouse has no detectable tenascin-C protein. , 1997, 47, 109-117.		24
126	How calcium causes microtubule depolymerization. Cytoskeleton, 1997, 36, 125-135.	4.4	1

#	Article	IF	CITATIONS
127	Structural Analysis of a Human Glial Variant Laminin. Experimental Cell Research, 1996, 227, 80-88.	2.6	14
128	2.0 Ã Crystal Structure of a Four-Domain Segment of Human Fibronectin Encompassing the RGD Loop and Synergy Region. Cell, 1996, 84, 155-164.	28.9	623
129	Tenascin-C expression in dystrophin-related muscular dystrophy. , 1996, 19, 147-154.		26
130	Visualization of P-selectin Glycoprotein Ligand-1 as a Highly Extended Molecule and Mapping of Protein Epitopes for Monoclonal Antibodies. Journal of Biological Chemistry, 1996, 271, 6342-6348.	3.4	182
131	Binding of Tenascin-C to Soluble Fibronectin and Matrix Fibrils. Journal of Biological Chemistry, 1995, 270, 29012-29017.	3.4	94
132	A novel alternative splice domain in zebrafish tenascin-C. Gene, 1995, 156, 307-308.	2.2	7
133	FtsZ, a prokaryotic homolog of tubulin?. Cell, 1995, 80, 367-370.	28.9	294
134	LFA-1 Binding Site in ICAM-3 Contains a Conserved Motif and Non-Contiguous Amino Acids. Cell Adhesion and Communication, 1994, 2, 429-440.	1.7	41
135	Crystallization of a fragment of human fibronectin: Introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins: Structure, Function and Bioinformatics, 1994, 19, 48-54.	2.6	86
136	Tenascin-C in Rat Lung: Distribution, Ontogeny and Role in Branching Morphogenesis. Developmental Biology, 1994, 161, 615-625.	2.0	86
137	Localization of Tenascin in Uterine Sarcomas and Partially Transformed Endometrial Stromal Cells. Pathobiology, 1993, 61, 67-76.	3.8	7
138	Dilution-induced disassembly of microtubules: Relation to dynamic instability and the GTP cap. Cytoskeleton, 1991, 18, 55-62.	4.4	66
139	The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell, 1990, 61, 243-254.	28.9	710
140	Tenascin: An Extracellular Matrix Protein Prominent in Specialized Embryonic Tissues and Tumors. Annual Review of Cell Biology, 1989, 5, 71-92.	26.1	582
141	DOMAIN STRUCTURE OF PHYTOCHROME FROM <i>Avena sativa</i> VISUALIZED BY ELECTRON MICROSCOPY* [,] â€. Photochemistry and Photobiology, 1989, 49, 479-483.	2.5	60
142	Biochemical and structural studies of tenascin/hexabrachion proteins. Journal of Cellular Biochemistry, 1989, 41, 71-90.	2.6	70
143	Co-operativity in protein-protein association. Journal of Molecular Biology, 1989, 206, 465-474.	4.2	161
144	Assembly of pure tubulin in the absence of free GTP: effect of magnesium, glycerol, ATP, and the nonhydrolyzable GTP analogs. Biochemistry, 1989, 28, 1413-1422.	2.5	44

#	Article	IF	CITATIONS
145	Purification and reconstitution of the calcium release channel from skeletal muscle. Nature, 1988, 331, 315-319.	27.8	840
146	Enhancer-origin interaction in plasmid R6K involves a DNA loop mediated by initiator protein. Cell, 1988, 52, 375-383.	28.9	133
147	Evidence for a junctional feet-ryanodine receptor complex from sarcoplasmic reticulum. Biochemical and Biophysical Research Communications, 1987, 143, 704-709.	2.1	96
148	Nucleation of Microtubule Assembly Annals of the New York Academy of Sciences, 1986, 466, 552-565.	3.8	9
149	Lateral packing of protofibrils in fibrin fibers and fibrinogen polymers. Biopolymers, 1986, 25, 2359-2373.	2.4	23
150	Concentration of protein in fibrin fibers and fibrinogen polymers determined by refractive index matching. Biopolymers, 1986, 25, 2375-2384.	2.4	28
151	A structural comparison of tryptic fragments of three types of intermediate filaments. Journal of Ultrastructure Research, 1985, 90, 251-260.	1.1	4
152	A six-armed oligomer isolated from cell surface fibronectin preparations. Nature, 1984, 311, 267-269.	27.8	263
153	Structural characteristics of the desmin protofilament. Journal of Ultrastructure Research, 1984, 89, 179-186.	1.1	10
154	Assembly of proteolytically cleaved tubulin. Archives of Biochemistry and Biophysics, 1983, 220, 46-51.	3.0	44
155	ELECTRON MICROSCOPY OF FIBRINOGEN, ITS PLASMIC FRAGMENTS AND SMALL POLYMERS. Annals of the New York Academy of Sciences, 1983, 408, 146-163.	3.8	123
156	Electron microscopy of map 2 (microtubule-associated protein 2). Journal of Ultrastructure Research, 1982, 80, 374-382.	1.1	138
157	Fibrin Assembly: A Comparison of Electron Microscopic and Light Scattering Results. Thrombosis and Haemostasis, 1980, 44, 119-124.	3.4	81
158	Tubulin rings: Curved filaments with limited flexibility and two modes of association. Journal of Supramolecular Structure, 1979, 10, 419-431.	2.3	40
159	Trinodular structure of fibrinogen. Journal of Molecular Biology, 1979, 134, 241-249.	4.2	268
160	[4] Image reconstruction in electron microscopy: Enhancement of periodic structure by optical filtering. Methods in Enzymology, 1978, 49, 39-63.	1.0	33
161	NEGATIVELY STAINED VINBLASTINE AGGREGATES. Annals of the New York Academy of Sciences, 1975, 253, 51-52.	3.8	44
162	THE STRUCTURE AND ASSEMBLY OF MICROTUBULES. Annals of the New York Academy of Sciences, 1975, 253, 60-77.	3.8	47

#	Article	IF	CITATIONS
163	MICROTUBULE SURFACE LATTICE AND SUBUNIT STRUCTURE AND OBSERVATIONS ON REASSEMBLY. Journal of Cell Biology, 1974, 60, 153-167.	5.2	215
164	Assembly of microtubules from preformed, ring-shaped protofilaments and 6-s tubulin. Journal of Supramolecular Structure, 1974, 2, 393-411.	2.3	147
165	Rapid nucleotide separation by chromatography on cation-exchange columns. Analytical Biochemistry, 1967, 18, 220-227.	2.4	72