List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6750834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunogenicity of a Third Dose of BNT162b2 to Ancestral Severe Acute Respiratory Syndrome Coronavirus 2 and the Omicron Variant in Adults Who Received 2 Doses of Inactivated Vaccine. Clinical Infectious Diseases, 2023, 76, e299-e307.	5.8	16
2	Monitoring International Travelers Arriving in Hong Kong for Genomic Surveillance of SARS-CoV-2. Emerging Infectious Diseases, 2022, 28, 247-250.	4.3	8
3	Probable Transmission of SARS-CoV-2 Omicron Variant in Quarantine Hotel, Hong Kong, China, November 2021. Emerging Infectious Diseases, 2022, 28, 460-462.	4.3	150
4	Are COVID-19 Vaccine Boosters Needed? The Science behind Boosters. Journal of Virology, 2022, 96, JVI0197321.	3.4	35
5	Neutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nature Medicine, 2022, 28, 486-489.	30.7	305
6	SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature, 2022, 603, 715-720.	27.8	577
7	Use of sewage surveillance for COVID-19 to guide public health response: A case study in Hong Kong. Science of the Total Environment, 2022, 821, 153250.	8.0	31
8	Comparison of virus concentration methods and RNA extraction methods for SARS-CoV-2 wastewater surveillance. Science of the Total Environment, 2022, 824, 153687.	8.0	49
9	Genomic epidemiology of SARS-CoV-2 under an elimination strategy in Hong Kong. Nature Communications, 2022, 13, 736.	12.8	26
10	Transparent Anti-SARS-CoV-2 and Antibacterial Silver Oxide Coatings. ACS Applied Materials & Interfaces, 2022, 14, 8718-8727.	8.0	28
11	Exploring the landscape of immune responses to influenza infection and vaccination. Nature Medicine, 2022, 28, 239-240.	30.7	2
12	A human pluripotent stem cell-based model of SARS-CoV-2 infection reveals an ACE2-independent inflammatory activation of vascular endothelial cells through TLR4. Stem Cell Reports, 2022, 17, 538-555.	4.8	22
13	Universal influenza vaccines are futile when benchmarked against seasonal influenza vaccines. Lancet Infectious Diseases, The, 2022, 22, 750-751.	9.1	1
14	Transmission of SARS-CoV-2 delta variant (AY.127) from pet hamsters to humans, leading to onward human-to-human transmission: a case study. Lancet, The, 2022, 399, 1070-1078.	13.7	140
15	Next-generation T cell–activating vaccination increases influenza virus mutation prevalence. Science Advances, 2022, 8, eabl5209.	10.3	5
16	Use of Sewage Surveillance for COVID-19: A Large-Scale Evidence-Based Program in Hong Kong. Environmental Health Perspectives, 2022, 130, 57008.	6.0	20
17	Evaluation of RT-qPCR Primer-Probe Sets to Inform Public Health Interventions Based on COVID-19 Sewage Tests. Environmental Science & amp; Technology, 2022, 56, 8875-8884.	10.0	11
18	Increased Stability of SARS-CoV-2 Omicron Variant over Ancestral Strain. Emerging Infectious Diseases, 2022, 28, 1515-1517.	4.3	15

#	Article	IF	CITATIONS
19	SARS-CoV-2 accessory proteins reveal distinct serological signatures in children. Nature Communications, 2022, 13, .	12.8	22
20	Effect of Surface Porosity on SARS-CoV-2 Fomite Infectivity. ACS Omega, 2022, 7, 18238-18246.	3.5	8
21	An early warning system for emerging SARS-CoV-2 variants. Nature Medicine, 2022, 28, 1110-1115.	30.7	47
22	Evaluation of a SARS-CoV-2 Surrogate Virus Neutralization Test for Detection of Antibody in Human, Canine, Cat, and Hamster Sera. Journal of Clinical Microbiology, 2021, 59, .	3.9	102
23	Cupric Oxide Coating That Rapidly Reduces Infection by SARS-CoV-2 via Solids. ACS Applied Materials & Interfaces, 2021, 13, 5919-5928.	8.0	94
24	OUP accepted manuscript. Clinical Chemistry, 2021, , .	3.2	3
25	Introduction of ORF3a-Q57H SARS-CoV-2 Variant Causing Fourth Epidemic Wave of COVID-19, Hong Kong, China. Emerging Infectious Diseases, 2021, 27, 1492-1495.	4.3	33
26	SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nature Microbiology, 2021, 6, 821-823.	13.3	221
27	Phenotypic and genetic characterization of MERS coronaviruses from Africa to understand their zoonotic potential. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
28	SARS-CoV-2 specific T cell responses are lower in children and increase with age and time after infection. Nature Communications, 2021, 12, 4678.	12.8	100
29	A novel mechanism of enhanced transcription activity and fidelity for influenza A viral RNA-dependent RNA polymerase. Nucleic Acids Research, 2021, 49, 8796-8810.	14.5	5
30	Air travel-related outbreak of multiple SARS-CoV-2 variants. Journal of Travel Medicine, 2021, 28, .	3.0	14
31	The first case study of wastewater-based epidemiology of COVID-19 in Hong Kong. Science of the Total Environment, 2021, 790, 148000.	8.0	50
32	Genetic Diversity of SARS-CoV-2 among Travelers Arriving in Hong Kong. Emerging Infectious Diseases, 2021, 27, 2666-2668.	4.3	8
33	Neutralizing antibody titres in SARS-CoV-2 infections. Nature Communications, 2021, 12, 63.	12.8	303
34	Reduction of Infectivity of SARS-CoV-2 by Zinc Oxide Coatings. ACS Biomaterials Science and Engineering, 2021, 7, 5022-5027.	5.2	31
35	Transparent and Sprayable Surface Coatings that Kill Drug-Resistant Bacteria Within Minutes and Inactivate SARS-CoV-2 Virus. ACS Applied Materials & Interfaces, 2021, 13, 54706-54714.	8.0	28
36	SARS-CoV-2 virus transfers to skin through contact with contaminated solids. Scientific Reports, 2021, 11, 22868.	3.3	29

#	Article	IF	CITATIONS
37	Onâ€Ðemand Droplet Collection for Capturing Single Cells. Small, 2020, 16, e1902889.	10.0	29
38	Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature, 2020, 583, 834-838.	27.8	1,185
39	A Surface Coating that Rapidly Inactivates SARS-CoV-2. ACS Applied Materials & amp; Interfaces, 2020, 12, 34723-34727.	8.0	168
40	Serologic Responses in Healthy Adult with SARS-CoV-2 Reinfection, Hong Kong, August 2020. Emerging Infectious Diseases, 2020, 26, 3076-3078.	4.3	41
41	Evaluation on the use of Nanopore sequencing for direct characterization of coronaviruses from respiratory specimens, and a study on emerging missense mutations in partial RdRP gene of SARS-CoV-2. Virology Journal, 2020, 17, 183.	3.4	17
42	Phylogenetic Analysis of MERS-CoV in a Camel Abattoir, Saudi Arabia, 2016–2018. Emerging Infectious Diseases, 2020, 26, 3089-3091.	4.3	8
43	Effect of moist heat reprocessing of N95 respirators on SARS-CoV-2 inactivation and respirator function. Cmaj, 2020, 192, E1189-E1197.	2.0	44
44	The Cause of Severe Acute Respiratory Syndrome: What Did We Learn from It?. Clinical Chemistry, 2020, 66, 1349-1350.	3.2	0
45	Vaccination with ADCC activating HA peptide epitopes provides partial protection from influenza infection. Vaccine, 2020, 38, 5885-5890.	3.8	8
46	Infection of dogs with SARS-CoV-2. Nature, 2020, 586, 776-778.	27.8	580
47	SARS-CoV-2 Virus Culture and Subgenomic RNA for Respiratory Specimens from Patients with Mild Coronavirus Disease. Emerging Infectious Diseases, 2020, 26, 2701-2704.	4.3	197
48	Stability of SARS-CoV-2 in different environmental conditions – Authors' reply. Lancet Microbe, The, 2020, 1, e146.	7.3	66
49	ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nature Immunology, 2020, 21, 1293-1301.	14.5	198
50	Heterosubtypic Protection Induced by a Live Attenuated Influenza Virus Vaccine Expressing Galactose-α-1,3-Galactose Epitopes in Infected Cells. MBio, 2020, 11, .	4.1	10
51	Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Respiratory Medicine,the, 2020, 8, 687-695.	10.7	437
52	Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Cell Reports, 2020, 31, 107725.	6.4	353
53	Multivariate analyses of codon usage of SARS-CoV-2 and other betacoronaviruses. Virus Evolution, 2020, 6, veaa032.	4.9	39
54	The Phylodynamics of Seasonal Influenza A/H1N1pdm Virus in China Between 2009 and 2019. Frontiers in Microbiology, 2020, 11, 735.	3.5	16

#	Article	IF	CITATIONS
55	A sixâ€plex droplet digital RTâ€PCR assay for seasonal influenza virus typing, subtyping, and lineage determination. Influenza and Other Respiratory Viruses, 2020, 14, 720-729.	3.4	14
56	Antibody Profiles in Mild and Severe Cases of COVID-19. Clinical Chemistry, 2020, 66, 1102-1104.	3.2	57
57	Viral dynamics in mild and severe cases of COVID-19. Lancet Infectious Diseases, The, 2020, 20, 656-657.	9.1	1,421
58	The SARS-CoV-2 Outbreak: Diagnosis, Infection Prevention, and Public Perception. Clinical Chemistry, 2020, 66, 644-651.	3.2	40
59	Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Isolated in Nepal. Microbiology Resource Announcements, 2020, 9, .	0.6	122
60	Viral load of SARS-CoV-2 in clinical samples. Lancet Infectious Diseases, The, 2020, 20, 411-412.	9.1	1,385
61	Emergence of a novel human coronavirus threatening human health. Nature Medicine, 2020, 26, 317-319.	30.7	125
62	Statement in support of the scientists, public health professionals, and medical professionals of China combatting COVID-19. Lancet, The, 2020, 395, e42-e43.	13.7	182
63	Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clinical Chemistry, 2020, 66, 549-555.	3.2	1,098
64	OTUB1 Is a Key Regulator of RIG-I-Dependent Immune Signaling and Is Targeted for Proteasomal Degradation by Influenza A NS1. Cell Reports, 2020, 30, 1570-1584.e6.	6.4	46
65	Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe, The, 2020, 1, e10.	7.3	1,479
66	Multiplex Screening Assay for Identifying Cytotoxic CD8+ T Cell Epitopes. Frontiers in Immunology, 2020, 11, 400.	4.8	5
67	The first 2019 novel coronavirus case in Nepal. Lancet Infectious Diseases, The, 2020, 20, 279-280.	9.1	190
68	Reply to â€~Reconciling disparate estimates of viral genetic diversity during human influenza infections'. Nature Genetics, 2019, 51, 1301-1303.	21.4	3
69	Dinucleotide evolutionary dynamics in influenza A virus. Virus Evolution, 2019, 5, vez038.	4.9	23
70	Diversity of Dromedary Camel Coronavirus HKU23 in African Camels Revealed Multiple Recombination Events among Closely Related Betacoronaviruses of the Subgenus Embecovirus. Journal of Virology, 2019, 93, .	3.4	29
71	Risk Assessment of the Tropism and Pathogenesis of the Highly Pathogenic Avian Influenza A/H7N9 Virus Using Ex Vivo and In Vitro Cultures of Human Respiratory Tract. Journal of Infectious Diseases, 2019, 220, 578-588.	4.0	9
72	MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proceedings of the United States of America, 2018, 115, 3144-3149.	7.1	142

#	Article	IF	CITATIONS
73	Immune Responses to Twice-Annual Influenza Vaccination in Older Adults in Hong Kong. Clinical Infectious Diseases, 2018, 66, 904-912.	5.8	23
74	Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia. Journal of Infection and Public Health, 2018, 11, 331-338.	4.1	38
75	Combined use of live-attenuated and inactivated influenza vaccines to enhance heterosubtypic protection. Virology, 2018, 525, 73-82.	2.4	3
76	Circulation of Influenza A(H5N8) Virus, Saudi Arabia. Emerging Infectious Diseases, 2018, 24, 1961-1964.	4.3	6
77	Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science, 2018, 362, 598-602.	12.6	170
78	Mini viral RNAs act as innate immune agonists during influenza virus infection. Nature Microbiology, 2018, 3, 1234-1242.	13.3	96
79	Replicative virus shedding in the respiratory tract of patients with Middle East respiratory syndrome coronavirus infection. International Journal of Infectious Diseases, 2018, 72, 8-10.	3.3	17
80	The Hurdles From Bench to Bedside in the Realization and Implementation of a Universal Influenza Vaccine. Frontiers in Immunology, 2018, 9, 1479.	4.8	29
81	Protection by universal influenza vaccine is mediated by memory CD4 T cells. Vaccine, 2018, 36, 4198-4206.	3.8	27
82	Lack of serological evidence of Middle East respiratory syndrome coronavirus infection in virus exposed camel abattoir workers in Nigeria, 2016. Eurosurveillance, 2018, 23, .	7.0	21
83	Identification of influenza polymerase inhibitors targeting polymerase PB2 cap-binding domain through virtual screening. Antiviral Research, 2017, 144, 186-195.	4.1	6
84	Coronavirus infections in horses in Saudi Arabia and Oman. Transboundary and Emerging Diseases, 2017, 64, 2093-2103.	3.0	35
85	Characterization of influenza A viruses with polymorphism in PB2 residues 701 and 702. Scientific Reports, 2017, 7, 11361.	3.3	9
86	Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015. Emerging Microbes and Infections, 2017, 6, 1-7.	6.5	59
87	MERS-CoV Antibody Responses 1 Year after Symptom Onset, South Korea, 2015. Emerging Infectious Diseases, 2017, 23, 1079-1084.	4.3	204
88	A46â \in f MERS-CoV in Arabian camels in Africa and Central Asia. Virus Evolution, 2017, 3, .	4.9	2
89	Age-specific genetic and antigenic variations of influenza A viruses in Hong Kong, 2013–2014. Scientific Reports, 2016, 6, 30260	3.3	2
90	Stalking influenza by vaccination with pre-fusion headless HA mini-stem. Scientific Reports, 2016, 6, 22666.	3.3	104

#	Article	IF	CITATIONS
91	Preexisting Antibody-Dependent Cellular Cytotoxicity–Activating Antibody Responses Are Stable Longitudinally and Cross-reactive Responses Are Not Boosted by Recent Influenza Exposure. Journal of Infectious Diseases, 2016, 214, 1159-1163.	4.0	7
92	Quantifying influenza virus diversity and transmission in humans. Nature Genetics, 2016, 48, 195-200.	21.4	182
93	Recombinant influenza virus with a pandemic H2N2 polymerase complex has a higher adaptive potential than one with seasonal H2N2 polymerase complex. Journal of General Virology, 2016, 97, 611-619.	2.9	2
94	Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015. Emerging Infectious Diseases, 2015, 21, 2197-2200.	4.3	66
95	Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea. Emerging Infectious Diseases, 2015, 21, 2186-2189.	4.3	132
96	Absence of MERS-Coronavirus in Bactrian Camels, Southern Mongolia, November 2014. Emerging Infectious Diseases, 2015, 21, 1269-1271.	4.3	43
97	Inhalable Dry Powder Formulations of siRNA and pH-Responsive Peptides with Antiviral Activity Against H1N1 Influenza Virus. Molecular Pharmaceutics, 2015, 12, 910-921.	4.6	41
98	Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature, 2015, 522, 102-105.	27.8	201
99	Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets. Journal of Virology, 2015, 89, 9939-9951.	3.4	26
100	Pseudoparticle Neutralization Assay for Detecting Ebola- Neutralizing Antibodies in Biosafety Level 2 Settings. Clinical Chemistry, 2015, 61, 885-886.	3.2	5
101	Evidence for an Ancestral Association of Human Coronavirus 229E with Bats. Journal of Virology, 2015, 89, 11858-11870.	3.4	204
102	Lack of Middle East Respiratory Syndrome Coronavirus Transmission from Infected Camels. Emerging Infectious Diseases, 2015, 21, 699-701.	4.3	75
103	Generation of Live Attenuated Influenza Virus by Using Codon Usage Bias. Journal of Virology, 2015, 89, 10762-10773.	3.4	38
104	Comparison of serological assays in human Middle East respiratory syndrome (MERS)-coronavirus infection. Eurosurveillance, 2015, 20, .	7.0	39
105	Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015. Eurosurveillance, 2015, 20, .	7.0	59
106	Substitution at Aspartic Acid 1128 in the SARS Coronavirus Spike Glycoprotein Mediates Escape from a S2 Domain-Targeting Neutralizing Monoclonal Antibody. PLoS ONE, 2014, 9, e102415.	2.5	30
107	MERS Coronavirus in Dromedary Camel Herd, Saudi Arabia. Emerging Infectious Diseases, 2014, 20, 1231-4.	4.3	230
108	MERS Coronaviruses in Dromedary Camels, Egypt. Emerging Infectious Diseases, 2014, 20, 1049-1053.	4.3	259

#	Article	IF	CITATIONS
109	Molecular Epidemiology of Influenza A(H1N1)pdm09 Virus among Humans and Swine, Sri Lanka. Emerging Infectious Diseases, 2014, 20, 2080-4.	4.3	5
110	Expansion of Genotypic Diversity and Establishment of 2009 H1N1 Pandemic-Origin Internal Genes in Pigs in China. Journal of Virology, 2014, 88, 10864-10874.	3.4	79
111	IL-15 adjuvanted multivalent vaccinia-based universal influenza vaccine requires CD4 ⁺ T cells for heterosubtypic protection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5676-5681.	7.1	46
112	Amino Acid Substitutions in Polymerase Basic Protein 2 Gene Contribute to the Pathogenicity of the Novel A/H7N9 Influenza Virus in Mammalian Hosts. Journal of Virology, 2014, 88, 3568-3576.	3.4	146
113	A novel molecular test for influenza B virus detection and lineage differentiation. Journal of Medical Virology, 2014, 86, 2171-2176.	5.0	5
114	Anti-inflammatory and antiviral effects of indirubin derivatives in influenza A (H5N1) virus infected primary human peripheral blood-derived macrophages and alveolar epithelial cells. Antiviral Research, 2014, 106, 95-104.	4.1	34
115	Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: an in-vitro and ex-vivo study. Lancet Respiratory Medicine,the, 2014, 2, 813-822.	10.7	86
116	Use of fractional factorial design to study the compatibility of viral ribonucleoprotein gene segments of human H7N9 virus and circulating human influenza subtypes. Influenza and Other Respiratory Viruses, 2014, 8, 580-584.	3.4	2
117	Generation and characterization of influenza A viruses with altered polymerase fidelity. Nature Communications, 2014, 5, 4794.	12.8	94
118	Influenza A viruses with different amino acid residues at PB2-627 display distinct replication properties in vitro and in vivo : Revealing the sequence plasticity of PB2-627 position. Virology, 2014, 468-470, 545-555.	2.4	18
119	The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature, 2013, 502, 241-244.	27.8	429
120	A statistical strategy to identify recombinant viral ribonucleoprotein of avian, human, and swine influenza <scp>A</scp> viruses with elevated polymerase activity. Influenza and Other Respiratory Viruses, 2013, 7, 969-978.	3.4	3
121	A Case for the Ancient Origin of Coronaviruses. Journal of Virology, 2013, 87, 7039-7045.	3.4	186
122	Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex-vivo and in-vitro cultures of the human respiratory tract. Lancet Respiratory Medicine,the, 2013, 1, 534-542.	10.7	88
123	Molecular Detection of Human H7N9 Influenza A Virus Causing Outbreaks in China. Clinical Chemistry, 2013, 59, 1062-1067.	3.2	15
124	Infectivity, Transmission, and Pathology of Human-Isolated H7N9 Influenza Virus in Ferrets and Pigs. Science, 2013, 341, 183-186.	12.6	273
125	Commentary: Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. Journal of Virology, 2013, 87, 7790-7792.	3.4	1,012
126	The Emergence of Human Coronavirus EMC: How Scared Should We Be?. MBio, 2013, 4, e00191-13.	4.1	7

#	Article	IF	CITATIONS
127	Swine Influenza in Sri Lanka. Emerging Infectious Diseases, 2013, 19, 481-484.	4.3	16
128	Tropism of and Innate Immune Responses to the Novel Human Betacoronavirus Lineage C Virus in Human <i>Ex Vivo</i> Respiratory Organ Cultures. Journal of Virology, 2013, 87, 6604-6614.	3.4	158
129	The Viruses of Wild Pigeon Droppings. PLoS ONE, 2013, 8, e72787.	2.5	108
130	Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013. Eurosurveillance, 2013, 18, 20659.	7.0	198
131	Surveillance of Animal Influenza for Pandemic Preparedness. Science, 2012, 335, 1173-1174.	12.6	42
132	Highly Conserved Protective Epitopes on Influenza B Viruses. Science, 2012, 337, 1343-1348.	12.6	705
133	Human Annexin A6 Interacts with Influenza A Virus Protein M2 and Negatively Modulates Infection. Journal of Virology, 2012, 86, 1789-1801.	3.4	74
134	Emergence and Dissemination of a Swine H3N2 Reassortant Influenza Virus with 2009 Pandemic H1N1 Genes in Pigs in China. Journal of Virology, 2012, 86, 2375-2378.	3.4	52
135	A Novel Group of Avian Astroviruses in Wild Aquatic Birds. Journal of Virology, 2012, 86, 13772-13778.	3.4	69
136	The Evolving Threat of Influenza Viruses of Animal Origin and the Challenges in Developing Appropriate Diagnostics. Clinical Chemistry, 2012, 58, 1527-1533.	3.2	22
137	Viral reassortment as an information exchange between viral segments. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3341-3346.	7.1	61
138	Characterization of a novel gyrovirus in human stool and chicken meat. Journal of Clinical Virology, 2012, 55, 209-213.	3.1	68
139	Quantitative analysis of four rapid antigen assays for detection of pandemic H1N1 2009 compared with seasonal H1N1 and H3N2 influenza A viruses on nasopharyngeal aspirates from patients with influenza. Journal of Virological Methods, 2012, 186, 184-188.	2.1	16
140	Entry of Influenza A Virus with a α2,6-Linked Sialic Acid Binding Preference Requires Host Fibronectin. Journal of Virology, 2012, 86, 10704-10713.	3.4	54
141	Detection of highly pathogenic influenza and pandemic influenza virus in formalin fixed tissues by immunohistochemical methods. Journal of Virological Methods, 2012, 179, 409-413.	2.1	20
142	Viral genetic sequence variations in pandemic H1N1/2009 and seasonal H3N2 influenza viruses within an individual, a household and a community. Journal of Clinical Virology, 2011, 52, 146-150.	3.1	31
143	Mass extinctions, biodiversity and mitochondrial function: are bats â€~special' as reservoirs for emerging viruses?. Current Opinion in Virology, 2011, 1, 649-657.	5.4	163
144	Long-term evolution and transmission dynamics of swine influenza A virus. Nature, 2011, 473, 519-522.	27.8	219

#	Article	IF	CITATIONS
145	A Highly Conserved Neutralizing Epitope on Group 2 Influenza A Viruses. Science, 2011, 333, 843-850.	12.6	772
146	DNA intercalator stimulates influenza transcription and virus replication. Virology Journal, 2011, 8, 120.	3.4	0
147	SARS coronavirus 8b reduces viral replication by down-regulating E via an ubiquitin-independent proteasome pathway. Microbes and Infection, 2011, 13, 179-188.	1.9	16
148	Tissue Tropism of Swine Influenza Viruses and Reassortants in <i>Ex Vivo</i> Cultures of the Human Respiratory Tract and Conjunctiva. Journal of Virology, 2011, 85, 11581-11587.	3.4	35
149	Genogroup I and II Picobirnaviruses in Respiratory Tracts of Pigs. Emerging Infectious Diseases, 2011, 17, 2328-2330.	4.3	39
150	Avian Coronavirus in Wild Aquatic Birds. Journal of Virology, 2011, 85, 12815-12820.	3.4	135
151	Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14264-14269.	7.1	197
152	The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Advances in Virology, 2011, 2011, 1-7.	1.1	735
153	Rapid Genotyping of Swine Influenza Viruses. Emerging Infectious Diseases, 2011, 17, 691-694.	4.3	5
154	Evaluation of novel H1N1-specific primer-probe sets using commercial RT-PCR mixtures and a premixed reaction stored in a lyophilized format. Journal of Virological Methods, 2010, 165, 302-304.	2.1	4
155	Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus. BMC Evolutionary Biology, 2010, 10, 253.	3.2	295
156	Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. Journal of General Virology, 2010, 91, 1058-1062.	2.9	96
157	BPR2-D2 targeting viral ribonucleoprotein complex-associated function inhibits oseltamivir-resistant influenza viruses. Journal of Antimicrobial Chemotherapy, 2010, 65, 63-71.	3.0	23
158	Rapid Detection of Reassortment of Pandemic H1N1/2009 Influenza Virus. Clinical Chemistry, 2010, 56, 1340-1344.	3.2	26
159	Influenza A Virus Expresses High Levels of an Unusual Class of Small Viral Leader RNAs in Infected Cells. MBio, 2010, 1, .	4.1	80
160	Reassortment of Pandemic H1N1/2009 Influenza A Virus in Swine. Science, 2010, 328, 1529-1529.	12.6	339
161	Tropism and Innate Host Responses of the 2009 Pandemic H1N1 Influenza Virus in ex Vivo and in Vitro Cultures of Human Conjunctiva and Respiratory Tract. American Journal of Pathology, 2010, 176, 1828-1840.	3.8	111
162	Detection of novel astroviruses in urban brown rats and previously known astroviruses in humans. Journal of General Virology, 2010, 91, 2457-2462.	2.9	91

#	Article	IF	CITATIONS
163	Detection of SARS Coronavirus. Methods in Molecular Biology, 2010, 665, 369-382.	0.9	6
164	Full Factorial Analysis of Mammalian and Avian Influenza Polymerase Subunits Suggests a Role of an Efficient Polymerase for Virus Adaptation. PLoS ONE, 2009, 4, e5658.	2.5	53
165	Detection of diverse astroviruses from bats in China. Journal of General Virology, 2009, 90, 883-887.	2.9	91
166	Dating the emergence of pandemic influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11709-11712.	7.1	387
167	Induction of Proinflammatory Cytokines in Primary Human Macrophages by Influenza A Virus (H5N1) Is Selectively Regulated by IFN Regulatory Factor 3 and p38 MAPK. Journal of Immunology, 2009, 182, 1088-1098.	0.8	135
168	Vaccinia Virus-Based Multivalent H5N1 Avian Influenza Vaccines Adjuvanted with IL-15 Confer Sterile Cross-Clade Protection in Mice. Journal of Immunology, 2009, 182, 3063-3071.	0.8	56
169	Novel coronaviruses and astroviruses in bats. Virologica Sinica, 2009, 24, 100-104.	3.0	3
170	Analytical sensitivity of rapid influenza antigen detection tests for swine-origin influenza virus (H1N1). Journal of Clinical Virology, 2009, 45, 205-207.	3.1	114
171	Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans. Journal of Clinical Virology, 2009, 45, 169-173.	3.1	302
172	A Novel Small-Molecule Inhibitor of the Avian Influenza H5N1 Virus Determined through Computational Screening against the Neuraminidase. Journal of Medicinal Chemistry, 2009, 52, 2667-2672.	6.4	61
173	One step closer to universal influenza epitopes. Expert Review of Anti-Infective Therapy, 2009, 7, 687-690.	4.4	14
174	Molecular Detection of a Novel Human Influenza (H1N1) of Pandemic Potential by Conventional and Real-Time Quantitative RT-PCR Assays. Clinical Chemistry, 2009, 55, 1555-1558.	3.2	110
175	The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology, 2008, 380, 243-254.	2.4	140
176	Heterologous influenza vRNA segments with identical non-coding sequences stimulate viral RNA replication in trans. Virology Journal, 2008, 5, 2.	3.4	11
177	Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells. PLoS ONE, 2008, 3, e3942.	2.5	676
178	Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats. Journal of General Virology, 2008, 89, 1282-1287.	2.9	92
179	Hyperinduction of Cyclooxygenaseâ€2–Mediated Proinflammatory Cascade: A Mechanism for the Pathogenesis of Avian Influenza H5N1 Infection. Journal of Infectious Diseases, 2008, 198, 525-535.	4.0	111
180	Novel Astroviruses in Insectivorous Bats. Journal of Virology, 2008, 82, 9107-9114.	3.4	249

#	Article	IF	CITATIONS
181	Comparison of the NucliSens easyMAG and Qiagen BioRobot 9604 Nucleic Acid Extraction Systems for Detection of RNA and DNA Respiratory Viruses in Nasopharyngeal Aspirate Samples. Journal of Clinical Microbiology, 2008, 46, 2195-2199.	3.9	47
182	Detection of Group 1 Coronaviruses in Bats Using Universal Coronavirus Reverse Transcription Polymerase Chain Reactions. Methods in Molecular Biology, 2008, 454, 13-26.	0.9	6
183	Detection of SARS Coronavirus in Humans and Animals by Conventional and Quantitative (Real Time) Reverse Transcription Polymerase Chain Reactions. Methods in Molecular Biology, 2008, 454, 61-72.	0.9	7
184	Generic Detection of Coronaviruses and Differentiation at the Prototype Strain Level by Reverse Transcription-PCR and Nonfluorescent Low-Density Microarray. Journal of Clinical Microbiology, 2007, 45, 1049-1052.	3.9	118
185	Establishment of Influenza A Virus (H6N1) in Minor Poultry Species in Southern China. Journal of Virology, 2007, 81, 10402-10412.	3.4	106
186	Detection of a Novel and Highly Divergent Coronavirus from Asian Leopard Cats and Chinese Ferret Badgers in Southern China. Journal of Virology, 2007, 81, 6920-6926.	3.4	127
187	Loop-Mediated Isothermal Amplification for Influenza A (H5N1) Virus. Emerging Infectious Diseases, 2007, 13, 899-901.	4.3	84
188	Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nature Medicine, 2007, 13, 147-149.	30.7	303
189	Reliable universal RT-PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes. Journal of Virological Methods, 2007, 142, 218-222.	2.1	52
190	Biology of Influenza A Virus. Annals of the New York Academy of Sciences, 2007, 1102, 1-25.	3.8	111
191	Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants. PLoS Medicine, 2006, 3, e237.	8.4	594
192	Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nature Genetics, 2006, 38, 38-46.	21.4	127
193	Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. Virology, 2006, 350, 258-268.	2.4	212
194	Coronaviruses in bent-winged bats (Miniopterus spp.). Journal of General Virology, 2006, 87, 2461-2466.	2.9	68
195	Three Indonesian Clusters of H5N1 Virus Infection in 2005. New England Journal of Medicine, 2006, 355, 2186-2194.	27.0	321
196	Time Course and Cellular Localization of SARS-CoV Nucleoprotein and RNA in Lungs from Fatal Cases of SARS. PLoS Medicine, 2006, 3, e27.	8.4	127
197	Avian influenza H5N1 in viverrids: implications for wildlife health and conservation. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1729-1732.	2.6	80
198	Prevalence and Genetic Diversity of Coronaviruses in Bats from China. Journal of Virology, 2006, 80, 7481-7490.	3.4	301

#	Article	IF	CITATIONS
199	Sensitive and Inexpensive Molecular Test for Falciparum Malaria: Detecting Plasmodium falciparum DNA Directly from Heat-Treated Blood by Loop-Mediated Isothermal Amplification,. Clinical Chemistry, 2006, 52, 303-306.	3.2	422
200	Sars and Other Coronaviruses in Humans and Animals. Advances in Experimental Medicine and Biology, 2006, 581, 457-462.	1.6	3
201	Evaluation of Real-Time Reverse Transcriptase PCR and Real-Time Loop-Mediated Amplification Assays for Severe Acute Respiratory Syndrome Coronavirus Detection. Journal of Clinical Microbiology, 2005, 43, 3457-3459.	3.9	56
202	Recurrent mutations associated with isolation and passage of SARS coronavirus in cells from non-human primates. Journal of Medical Virology, 2005, 76, 435-440.	5.0	27
203	Cytokine Responses in Severe Acute Respiratory Syndrome Coronavirus-Infected Macrophages In Vitro: Possible Relevance to Pathogenesis. Journal of Virology, 2005, 79, 7819-7826.	3.4	394
204	Serological Responses in Patients with Severe Acute Respiratory Syndrome Coronavirus Infection and Cross-Reactivity with Human Coronaviruses 229E, OC43, and NL63. Vaccine Journal, 2005, 12, 1317-1321.	3.1	102
205	Detection of Human Influenza A Viruses by Loop-Mediated Isothermal Amplification. Journal of Clinical Microbiology, 2005, 43, 427-430.	3.9	136
206	Identification of a Novel Coronavirus in Bats. Journal of Virology, 2005, 79, 2001-2009.	3.4	330
207	Generation of recombinant influenza A virus without M2 ion-channel protein by introduction of a point mutation at the 5′ end of the viral intron. Journal of General Virology, 2005, 86, 1447-1454.	2.9	23
208	Human Coronavirus NL63 Infection and Other Coronavirus Infections in Children Hospitalized with Acute Respiratory Disease in Hong Kong, China. Clinical Infectious Diseases, 2005, 40, 1721-1729.	5.8	282
209	Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia. Journal of Virology, 2005, 79, 884-895.	3.4	1,269
210	Clinical evaluation of real-time PCR assays for rapid diagnosis of SARS coronavirus during outbreak and post-epidemic periods. Journal of Clinical Virology, 2005, 33, 19-24.	3.1	16
211	Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respiratory Research, 2005, 6, 135.	3.6	442
212	Detection of SARS Coronavirus in Patients with Suspected SARS. Emerging Infectious Diseases, 2004, 10, 294-299.	4.3	285
213	Viral Loads in Clinical Specimens and SARS Manifestations. Emerging Infectious Diseases, 2004, 10, 1550-1557.	4.3	240
214	Initial viral load and the outcomes of SARS. Cmaj, 2004, 171, 1349-1352.	2.0	179
215	Potent Inhibition of SARS-Associated Coronavirus (SCoV) Infection and Replication by Type I Interferons (IFN- <i>α/β</i>) but Not by Type II Interferon (IFN- <i>γ</i>). Journal of Interferon and Cytokine Research, 2004, 24, 388-390.	1.2	73
216	Influenza: Emergence and Control. Journal of Virology, 2004, 78, 8951-8959.	3.4	199

#	Article	IF	CITATIONS
217	Rapid Detection of the Severe Acute Respiratory Syndrome (SARS) Coronavirus by a Loop-Mediated Isothermal Amplification Assay. Clinical Chemistry, 2004, 50, 1050-1052.	3.2	111
218	Editorial Commentary: Crouching Tiger, Hidden Dragon: The Laboratory Diagnosis of Severe Acute Respiratory Syndrome. Clinical Infectious Diseases, 2004, 38, 297-299.	5.8	19
219	Detection of SARS Coronavirus in Patients with Severe Acute Respiratory Syndrome by Conventional and Real-Time Quantitative Reverse Transcription-PCR Assays. Clinical Chemistry, 2004, 50, 67-72.	3.2	121
220	Continuing Evolution of H9N2 Influenza Viruses in Southeastern China. Journal of Virology, 2004, 78, 8609-8614.	3.4	230
221	Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004, 59, 252-256.	5.6	1,361
222	H5N1 influenza: A protean pandemic threat. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8156-8161.	7.1	364
223	Reemerging H5N1 Influenza Viruses in Hong Kong in 2002 Are Highly Pathogenic to Ducks. Journal of Virology, 2004, 78, 4892-4901.	3.4	357
224	Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature, 2004, 430, 209-213.	27.8	1,147
225	The nsp9 Replicase Protein of SARS-Coronavirus, Structure and Functional Insights. Structure, 2004, 12, 341-353.	3.3	225
226	Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein. Virology, 2004, 326, 140-149.	2.4	62
227	Transgenic plant-derived siRNAs can suppress propagation of influenza virus in mammalian cells. FEBS Letters, 2004, 577, 345-350.	2.8	14
228	A one step quantitative RT-PCR for detection of SARS coronavirus with an internal control for PCR inhibitors. Journal of Clinical Virology, 2004, 30, 214-217.	3.1	51
229	The aetiology, origins, and diagnosis of severe acute respiratory syndrome. Lancet Infectious Diseases, The, 2004, 4, 663-671.	9.1	148
230	Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome. Lancet, The, 2004, 363, 99-104.	13.7	127
231	Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China. Science, 2003, 302, 276-278.	12.6	2,062
232	Characterization of H9 Subtype Influenza Viruses from the Ducks of Southern China: a Candidate for the Next Influenza Pandemic in Humans?. Journal of Virology, 2003, 77, 6988-6994.	3.4	237
233	Early diagnosis of SARS Coronavirus infection by real time RT-PCR. Journal of Clinical Virology, 2003, 28, 233-238.	3.1	194
234	Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage. Journal of Molecular Biology, 2003, 331, 991-1004.	4.2	1,092

#	Article	IF	CITATIONS
235	The ins and outs of fetal DNA in maternal plasma. Lancet, The, 2003, 361, 193-194.	13.7	22
236	Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, The, 2003, 361, 1319-1325.	13.7	2,636
237	Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet, The, 2003, 361, 1767-1772.	13.7	2,149
238	Lung pathology of fatal severe acute respiratory syndrome. Lancet, The, 2003, 361, 1773-1778.	13.7	979
239	Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet, The, 2003, 362, 1353-1358.	13.7	1,301
240	Serial Analysis of the Plasma Concentration of SARS Coronavirus RNA in Pediatric Patients with Severe Acute Respiratory Syndrome. Clinical Chemistry, 2003, 49, 2085-2088.	3.2	66
241	Rapid Diagnosis of a Coronavirus Associated with Severe Acute Respiratory Syndrome (SARS). Clinical Chemistry, 2003, 49, 953-955.	3.2	128
242	Inhibition of SARS-Associated Coronavirus Infection and Replication by RNA Interference. JAMA - Journal of the American Medical Association, 2003, 290, 2665-2666.	7.4	105
243	The Severe Acute Respiratory Syndrome (SARS) Coronavirus NTPase/Helicase Belongs to a Distinct Class of 5′ to 3′ Viral Helicases. Journal of Biological Chemistry, 2003, 278, 39578-39582.	3.4	183
244	Evaluation of Reverse Transcription-PCR Assays for Rapid Diagnosis of Severe Acute Respiratory Syndrome Associated with a Novel Coronavirus. Journal of Clinical Microbiology, 2003, 41, 4521-4524.	3.9	155
245	Reassortants of H5N1 Influenza Viruses Recently Isolated from Aquatic Poultry in Hong Kong SAR. Avian Diseases, 2003, 47, 911-913.	1.0	21
246	The Complete Genome Sequence of Severe Acute Respiratory Syndrome Coronavirus Strain HKU-39849 (HK-39). Experimental Biology and Medicine, 2003, 228, 866-873.	2.4	60
247	Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?. Lancet, The, 2002, 360, 1831-1837.	13.7	808
248	Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clinical Chemistry, 2002, 48, 35-41.	3.2	56
249	Circulating fetal DNA in maternal plasma. Clinica Chimica Acta, 2001, 313, 151-155.	1.1	17
250	Effects of Blood-Processing Protocols on Fetal and Total DNA Quantification in Maternal Plasma. Clinical Chemistry, 2001, 47, 1607-1613.	3.2	330
251	Mutagenic Analysis of the 5′ Arm of the Influenza A Virus Virion RNA Promoter Defines the Sequence Requirements for Endonuclease Activity. Journal of Virology, 2001, 75, 134-142.	3.4	34
252	Circulating Fetal RNA in Maternal Plasma. Annals of the New York Academy of Sciences, 2001, 945, 207-210.	3.8	12

1

#	Article	IF	CITATIONS
253	Messenger RNAs that are not synthesized by RNA polymerase II can be 3′ end cleaved and polyadenylated. EMBO Reports, 2000, 1, 513-518.	4.5	14
254	Presence of Fetal RNA in Maternal Plasma. Clinical Chemistry, 2000, 46, 1832-1834.	3.2	258
255	Polyuridylated mRNA Synthesized by a Recombinant Influenza Virus Is Defective in Nuclear Export. Journal of Virology, 2000, 74, 418-427.	3.4	30
256	Prenatal detection of fetal Down's syndrome from maternal plasma. Lancet, The, 2000, 356, 1819-1820.	13.7	61
257	Direct Evidence that the Poly(A) Tail of Influenza A Virus mRNA Is Synthesized by Reiterative Copying of a U Track in the Virion RNA Template. Journal of Virology, 1999, 73, 3473-3476.	3.4	178
258	Retinoic acid induces down-regulation of Wnt-3a, apoptosis and diversion of tail bud cells to a neural fate in the mouse embryo. Mechanisms of Development, 1999, 84, 17-30.	1.7	89
259	A Hairpin Loop at the 5′ End of Influenza A Virus Virion RNA Is Required for Synthesis of Poly(A) ⁺ mRNA In Vitro. Journal of Virology, 1999, 73, 2109-2114.	3.4	64
260	The RNA Polymerase of Influenza Virus, Bound to the 5′ End of Virion RNA, Acts in <i>cis</i> To Polyadenylate mRNA. Journal of Virology, 1998, 72, 8214-8219.	3.4	63
261	Polyadenylation of Influenza Virus mRNA Transcribed In Vitro from Model Virion RNA Templates: Requirement for 5′ Conserved Sequences. Journal of Virology, 1998, 72, 1280-1286.	3.4	77

262 Emerging Nidovirus Infections. , 0, , 409-418.