Johan Hofkens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6750486/publications.pdf

Version: 2024-02-01

569 papers

31,980 citations

94 h-index 148 g-index

627 all docs

 $\begin{array}{c} 627 \\ \text{docs citations} \end{array}$

times ranked

627

32661 citing authors

#	Article	IF	CITATIONS
1	Planar heterojunction boosts solar-driven photocatalytic performance and stability of halide perovskite solar photocatalyst cell. Applied Catalysis B: Environmental, 2022, 301, 120760.	20.2	33
2	Flexible Metal Halide Perovskite Photodetector Arrays via Photolithography and Dry Liftâ€Off Patterning. Advanced Engineering Materials, 2022, 24, 2100930.	3.5	19
3	Metal–biomolecule frameworks (BioMOFs): a novel approach for "green―optoelectronic applications. Chemical Communications, 2022, 58, 677-680.	4.1	7
4	Spatial Heterogeneity of n-Phases Leads to Different Photophysical Properties in Quasi-Two-Dimensional Methylammonium Lead Bromide Perovskite. Journal of Physical Chemistry C, 2022, 126, 478-486.	3.1	4
5	Spatial Proteomic Analysis of Isogenic Metastatic Colorectal Cancer Cells Reveals Key Dysregulated Proteins Associated with Lymph Node, Liver, and Lung Metastasis. Cells, 2022, 11, 447.	4.1	13
6	Atomically dispersed Pt sites on porous metal–organic frameworks to enable dual reaction mechanisms for enhanced photocatalytic hydrogen conversion. Journal of Catalysis, 2022, 407, 1-9.	6.2	21
7	Intramolecular charge transfer and molecular flexibility: Key parameters to be considered in the design of highly fluorescent p-phenylene vinylene derivatives. Dyes and Pigments, 2022, 199, 110105.	3.7	5
8	Aryl-hydrocarbon receptor-interacting protein regulates tumorigenic and metastatic properties of colorectal cancer cells driving liver metastasis. British Journal of Cancer, 2022, 126, 1604-1615.	6.4	9
9	Metal Halide Perovskite Based Heterojunction Photocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
10	Metal Halide Perovskite Based Heterojunction Photocatalysts. Angewandte Chemie, 2022, 134, .	2.0	11
11	An Integrated Bulk and Surface Modification Strategy for Gasâ€Quenched Inverted Perovskite Solar Cells with Efficiencies Exceeding 22%. Solar Rrl, 2022, 6, .	5.8	10
12	Photothermal Suzuki Coupling Over a Metal Halide Perovskite/Pd Nanocube Composite Catalyst. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17185-17194.	8.0	23
13	Absolute measurement of cellular activities using photochromic single-fluorophore biosensors and intermittent quantification. Nature Communications, 2022, 13, 1850.	12.8	16
14	Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis. Journal of Physical Chemistry Letters, 2022, 13, 25-41.	4.6	10
15	Topochemistryâ€Driven Synthesis of Transitionâ€Metal Selenides with Weakened Van Der Waals Force to Enable 3Dâ€Printed Naâ€lon Hybrid Capacitors. Advanced Functional Materials, 2022, 32, .	14.9	91
16	Siteâ€Sensitive Selective CO ₂ Photoreduction to CO over Gold Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, e202204563.	13.8	33
17	High-entropy perovskite oxides: A versatile class of materials for nitrogen reduction reactions. Science China Materials, 2022, 65, 2711-2720.	6.3	13
18	Siteâ€Sensitive Selective CO ₂ Photoreduction to CO over Gold Nanoparticles. Angewandte Chemie, 2022, 134, .	2.0	5

#	Article	IF	CITATIONS
19	Intense Electrical Pulsing of Perovskite Light Emitting Diodes under Cryogenic Conditions. Advanced Optical Materials, 2022, 10, .	7.3	4
20	Atomic-scale detection of individual lead clusters confined in Linde Type A zeolites. Nanoscale, 2022, 14, 9323-9330.	5 . 6	2
21	Chemical Control Over Optical Trapping Force at an Interface. Advanced Optical Materials, 2022, 10, .	7.3	7
22	Expansion microscopy allows high resolution single cell analysis of epigenetic readers. Nucleic Acids Research, 2022, 50, e100-e100.	14.5	4
23	Semicrystalline Conjugated Polymers with Wellâ€Defined Active Sites for Nitrogen Fixation in a Seawater Electrolyte. Advanced Materials, 2022, 34, .	21.0	12
24	Promoting Photocatalytic Hydrogen Evolution Activity of Graphitic Carbon Nitride with Holeâ€Transfer Agents. ChemSusChem, 2021, 14, 306-312.	6.8	17
25	Covalent functionalization of molybdenum disulfide by chemically activated diazonium salts. Nanoscale, 2021, 13, 2972-2981.	5.6	23
26	The bionic sunflower: a bio-inspired autonomous light tracking photocatalytic system. Energy and Environmental Science, 2021, 14, 3931-3937.	30.8	39
27	Heterogeneities and Emissive Defects in MAPbl ₃ Perovskite Revealed by Spectrally Resolved Luminescence Blinking. Advanced Optical Materials, 2021, 9, 2001380.	7.3	10
28	Nature of the different emissive states and strong exciton–phonon couplings in quasi-two-dimensional perovskites derived from phase-modulated two-photon micro-photoluminescence spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 3983-3992.	2.8	7
29	Texture Formation in Polycrystalline Thin Films of Allâ€Inorganic Lead Halide Perovskite. Advanced Materials, 2021, 33, e2007224.	21.0	18
30	Tailoring the d-Band Center of Double-Perovskite LaCo <i>_{<./i>}</i> Nanorods for High Activity in Artificial N <td>8.0</td> <td>14</td>	8.0	14
31	Challenges and Opportunities for CsPbBr ₃ Perovskites in Low- and High-Energy Radiation Detection. ACS Energy Letters, 2021, 6, 1290-1314.	17.4	80
32	Investigation of Many-Body Exciton Recombination and Optical Anisotropy in Two-Dimensional Perovskites Having Different Layers with Alternating Cations in the Interlayer Space. Journal of Physical Chemistry C, 2021, 125, 7799-7807.	3.1	12
33	Dual-Channel Charge Carrier Transfer in CsPbX ₃ Perovskite/W ₁₈ O ₄₉ Composites for Selective Photocatalytic Benzyl Alcohol Oxidation. ACS Applied Energy Materials, 2021, 4, 3460-3468.	5.1	19
34	Experimental Evidence of Chlorideâ€Induced Trap Passivation in Lead Halide Perovskites through Single Particle Blinking Studies. Advanced Optical Materials, 2021, 9, 2002240.	7.3	8
35	Operationally Stable Perovskite Light Emitting Diodes with High Radiance. Advanced Optical Materials, 2021, 9, 2100586.	7.3	13
36	Resonantly Enhanced Optical Trapping of Single Dye-Doped Particles at an Interface. ACS Photonics, 2021, 8, 1832-1839.	6.6	19

#	Article	IF	CITATIONS
37	Structural dynamics of the A _{2A} adenosine receptor revealed by singleâ€molecule FRET. FASEB Journal, 2021, 35, .	0.5	O
38	Vibrational study of lead bromide perovskite materials with variable cations based on Raman spectroscopy and density functional theory. Journal of Raman Spectroscopy, 2021, 52, 2338-2347.	2.5	14
39	Quantification of FRET-induced angular displacement by monitoring sensitized acceptor anisotropy using a dim fluorescent donor. Nature Communications, 2021, 12, 2541.	12.8	11
40	Self-contained and modular structured illumination microscope. Biomedical Optics Express, 2021, 12, 4414.	2.9	5
41	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
42	All-Evaporated, All-Inorganic CsPbI ₃ Perovskite-Based Devices for Broad-Band Photodetector and Solar Cell Applications. ACS Applied Electronic Materials, 2021, 3, 3023-3033.	4.3	12
43	Tunable Luminescence from Stable Silver Nanoclusters Confined in Microporous Zeolites. Advanced Optical Materials, 2021, 9, 2100526.	7.3	12
44	Trojans That Flip the Black Phase: Impurity-Driven Stabilization and Spontaneous Strain Suppression in \hat{l}^3 -CsPbI ₃ Perovskite. Journal of the American Chemical Society, 2021, 143, 10500-10508.	13.7	33
45	Fluorescence Photoswitching in a Series of Metalâ€Organic Frameworks Loaded with Different Anthracenes. European Journal of Inorganic Chemistry, 2021, 2021, 2986-2992.	2.0	4
46	A Universal Labeling Strategy for Nucleic Acids in Expansion Microscopy. Journal of the American Chemical Society, 2021, 143, 13782-13789.	13.7	14
47	Photon Momentum Dictates the Shape of Swarming Gold Nanoparticles in Optical Trapping at an Interface. Journal of Physical Chemistry C, 2021, 125, 19013-19021.	3.1	6
48	Tuning the Linkers in Polymer-Based Cathodes to Realize High Sulfur Content and High-Performance Potassium–Sulfur Batteries. Journal of Physical Chemistry C, 2021, 125, 18604-18613.	3.1	10
49	Cooperative Optical Trapping of Polystyrene Microparticle and Protein Forming a Submillimeter Linear Assembly of Microparticle. Journal of Physical Chemistry C, 2021, 125, 18988-18999.	3.1	8
50	Assessing the Resolution of Methyltransferase-Mediated DNA Optical Mapping. ACS Omega, 2021, 6, 21276-21283.	3.5	2
51	Long-lived highly emissive MOFs as potential candidates for multiphotonic applications. Journal of Materials Chemistry C, 2021, 9, 15463-15469.	5.5	13
52	Highly Mobile Large Polarons in Black Phase CsPbl ₃ . ACS Energy Letters, 2021, 6, 568-573.	17.4	40
53	Two-dimensional perovskites with alternating cations in the interlayer space for stable light-emitting diodes. Nanophotonics, 2021, 10, 2145-2156.	6.0	17
54	Optical encoding of luminescent carbon nanodots in confined spaces. Chemical Communications, 2021, 57, 11952-11955.	4.1	1

#	Article	IF	CITATIONS
55	lon Motion Determines Multiphase Performance Dynamics of Perovskite LEDs. Advanced Optical Materials, 2021, 9, 2101560.	7.3	9
56	Synergy of Advanced Experimental and Modeling Tools to Underpin the Synthesis of Static Step-Growth-Based Networks Involving Polymeric Precursor Building Blocks. Macromolecules, 2021, 54, 9280-9298.	4.8	18
57	Third-Order Nonlinear Optical Properties and Saturation of Two-Photon Absorption in Lead-Free Double Perovskite Nanocrystals under Femtosecond Excitation. ACS Photonics, 2021, 8, 3365-3374.	6.6	30
58	Versatile and Robust Method for Antibody Conjugation to Nanoparticles with High Targeting Efficiency. Pharmaceutics, 2021, 13, 2153.	4.5	4
59	Identifying microbial species by single-molecule DNA optical mapping and resampling statistics. NAR Genomics and Bioinformatics, 2020, 2, Iqz007.	3.2	15
60	It's a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 2020, 7, 397-410.	12.2	345
61	Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11, 170.	12.8	147
62	Subsurface Defect Engineering in Single-Unit-Cell Bi ₂ WO ₆ Monolayers Boosts Solar-Driven Photocatalytic Performance. ACS Catalysis, 2020, 10, 1439-1443.	11.2	138
63	Two-Photon-Induced [2 + 2] Cycloaddition of Bis-thymines: A Biocompatible and Reversible Approach. ACS Omega, 2020, 5, 11547-11552.	3.5	2
64	Highly Luminescent Metal Clusters Confined in Zeolites. Structure and Bonding, 2020, , 75-103.	1.0	5
65	Efficient Photocatalytic CO2 Reduction with MIL-100(Fe)-CsPbBr3 Composites. Catalysts, 2020, 10, 1352.	3.5	23
66	Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. Applied Materials Today, 2020, 21, 100817.	4.3	28
67	Optical Force-Induced Dynamics of Assembling, Rearrangement, and Three-Dimensional Pistol-like Ejection of Microparticles at the Solution Surface. Journal of Physical Chemistry C, 2020, 124, 27107-27117.	3.1	9
68	FRET-based intracellular investigation of nanoprodrugs toward highly efficient anticancer drug delivery. Nanoscale, 2020, 12, 16710-16715.	5.6	17
69	Accurate modeling of a biological nanopore with an extended continuum framework. Nanoscale, 2020, 12, 16775-16795.	5.6	26
70	Threeâ€Phase Boundary in Crossâ€Coupled Microâ€Mesoporous Networks Enabling 3Dâ€Printed and Ionogelâ€Based Quasiâ€Solidâ€State Microâ€Supercapacitors. Advanced Materials, 2020, 32, e2002474.	21.0	54
71	Incorporation of Cesium Lead Halide Perovskites into g-C ₃ N ₄ for Photocatalytic CO ₂ Reduction. ACS Omega, 2020, 5, 24495-24503.	3.5	28
72	Tuning the Structural and Optoelectronic Properties of Cs ₂ AgBiBr ₆ Doubleâ€Perovskite Single Crystals through Alkaliâ€Metal Substitution. Advanced Materials, 2020, 32, e2001878.	21.0	72

#	Article	IF	Citations
73	Electroluminescent Nanoparticles: Electroluminescent Guest@MOF Nanoparticles for Thin Film Optoelectronics and Solidâ€State Lighting (Advanced Optical Materials 16/2020). Advanced Optical Materials, 2020, 8, 2070066.	7.3	0
74	Phase Transitions and Anion Exchange in All-Inorganic Halide Perovskites. Accounts of Materials Research, 2020, 1, 3-15.	11.7	67
75	Spatially and Temporally Resolved Heterogeneities in a Miscible Polymer Blend. ACS Omega, 2020, 5, 23931-23939.	3.5	4
76	Celebrating 5 Years of Open Access with <i>ACS Omega</i> . ACS Omega, 2020, 5, 16986-16986.	3.5	2
77	Imaging the Replication of Single Viruses: Lessons Learned from HIV and Future Challenges To Overcome. ACS Nano, 2020, 14, 10775-10783.	14.6	4
78	Autophosphorylation of EGFR at Y954 Facilitated Homodimerization and Enhanced Downstream Signals. Biophysical Journal, 2020, 119, 2127-2137.	0.5	8
79	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie - International Edition, 2020, 59, 13320-13327.	13.8	127
80	A nucleotide-switch mechanism mediates opposing catalytic activities of Rel enzymes. Nature Chemical Biology, 2020, 16, 834-840.	8.0	39
81	Fluorescence Photobleaching as an Intrinsic Tool to Quantify the 3D Expansion Factor of Biological Samples in Expansion Microscopy. ACS Omega, 2020, 5, 6792-6799.	3.5	14
82	Xâ€Rayâ€Induced Growth Dynamics of Luminescent Silver Clusters in Zeolites. Small, 2020, 16, e2002063.	10.0	14
83	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie, 2020, 132, 13422-13429.	2.0	18
84	Direct Z-Scheme Heterojunction of Semicoherent FAPbBr ₃ /Bi ₂ WO ₆ Interface for Photoredox Reaction with Large Driving Force. ACS Nano, 2020, 14, 16689-16697.	14.6	167
85	Electroluminescent Guest@MOF Nanoparticles for Thin Film Optoelectronics and Solidâ€State Lighting. Advanced Optical Materials, 2020, 8, 2000670.	7.3	31
86	Energy-Efficient Ammonia Production from Air and Water Using Electrocatalysts with Limited Faradaic Efficiency. ACS Energy Letters, 2020, 5, 1124-1127.	17.4	29
87	Evaluation of Direct Grafting Strategies <i>via</i> Trivalent Anchoring for Enabling Lipid Membrane and Cytoskeleton Staining in Expansion Microscopy. ACS Nano, 2020, 14, 7860-7867.	14.6	63
88	Controlled Fabrication of Optical Signal Input/Output Sites on Plasmonic Nanowires. Nano Letters, 2020, 20, 2460-2467.	9.1	10
89	Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Letters, 2020, 5, 1107-1123.	17.4	400
90	Dynamic Coupling of Optically Evolved Assembling and Swarming of Gold Nanoparticles with Photothermal Local Phase Separation of Polymer Solution. Journal of Physical Chemistry C, 2020, 124, 16604-16615.	3.1	16

#	Article	IF	CITATIONS
91	White Light Emission by Simultaneous One Pot Encapsulation of Dyes into One-Dimensional Channelled Aluminophosphate. Nanomaterials, 2020, 10, 1173.	4.1	4
92	Fluorescence-free First Hyperpolarizability Values of Fluorescent Proteins and Channel Rhodopsins. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112658.	3.9	4
93	Fluorescent SAM analogues for methyltransferase based DNA labeling. Chemical Communications, 2020, 56, 3317-3320.	4.1	14
94	Capsid-Labelled HIV To Investigate the Role of Capsid during Nuclear Import and Integration. Journal of Virology, 2020, 94, .	3.4	34
95	Fast quantitative time lapse displacement imaging of endothelial cell invasion. PLoS ONE, 2020, 15, e0227286.	2.5	7
96	Image-Based Dynamic Phenotyping Reveals Genetic Determinants of Filamentation-Mediated \hat{l}^2 -Lactam Tolerance. Frontiers in Microbiology, 2020, 11, 374.	3.5	17
97	Photo-induced electrodeposition of metallic nanostructures on graphene. Nanoscale, 2020, 12, 11063-11069.	5.6	8
98	Tunable white emission of silver-sulfur-zeolites as single-phase LED phosphors. Methods and Applications in Fluorescence, 2020, 8, 024004.	2.3	9
99	Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticles at an interface. Optics Express, 2020, 28, 27727.	3.4	21
100	Fast-tracking of single emitters in large volumes with nanometer precision. Optics Express, 2020, 28, 28656.	3.4	25
101	Single-Step Synthesis of Dual Phase Bright Blue-Green Emitting Lead Halide Perovskite Nanocrystal Thin Films. Chemistry of Materials, 2019, 31, 6824-6832.	6.7	26
102	Role of Electron–Phonon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. ACS Energy Letters, 2019, 4, 2205-2212.	17.4	58
103	Thermal unequilibrium of strained black CsPbI ₃ thin films. Science, 2019, 365, 679-684.	12.6	444
104	High-throughput time-resolved morphology screening in bacteria reveals phenotypic responses to antibiotics. Communications Biology, 2019, 2, 269.	4.4	35
105	Hot Ï€â€Electron Tunneling of Metal–Insulator–COF Nanostructures for Efficient Hydrogen Production. Angewandte Chemie - International Edition, 2019, 58, 18290-18294.	13.8	138
106	Photochromic Reaction by Red Light via Triplet Fusion Upconversion. Journal of the American Chemical Society, 2019, 141, 17744-17753.	13.7	55
107	Formation Mechanism and Fluorescence Characterization of a Transient Assembly of Nanoparticles Generated by Femtosecond Laser Trapping. Journal of Physical Chemistry C, 2019, 123, 27823-27833.	3.1	5
108	Hot Ï€â€Electron Tunneling of Metal–Insulator–COF Nanostructures for Efficient Hydrogen Production. Angewandte Chemie, 2019, 131, 18458-18462.	2.0	31

#	Article	IF	Citations
109	Influence of Carbon Nanoparticle Addition (and Impurities) on Selective Laser Melting of Pure Copper. Materials, 2019, 12, 2469.	2.9	58
110	Bipolar luminescent azaindole derivative exhibiting aggregation-induced emission for non-doped organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 1222-1227.	5.5	9
111	Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites. Nature Communications, 2019, 10, 484.	12.8	88
112	Tracking Structural Phase Transitions in Leadâ€Halide Perovskites by Means of Thermal Expansion. Advanced Materials, 2019, 31, e1900521.	21.0	88
113	Silver Zeolite Composite-Based LEDs: Origin of Electroluminescence and Charge Transport. ACS Applied Materials & Description (1998) App	8.0	14
114	A Facetâ€Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. Advanced Materials, 2019, 31, e1805580.	21.0	87
115	Microscopic insight into non-radiative decay in perovskite semiconductors from temperature-dependent luminescence blinking. Nature Communications, 2019, 10, 1698.	12.8	81
116	Sunny Days for Perovskite Optoelectronics. ChemNanoMat, 2019, 5, 251-252.	2.8	0
117	Structural and Photophysical Characterization of Ag Clusters in LTA Zeolites. Journal of Physical Chemistry C, 2019, 123, 10630-10638.	3.1	25
118	PSF Distortion in Dye–Plasmonic Nanomaterial Interactions: Friend or Foe?. ACS Photonics, 2019, 6, 699-708.	6.6	14
119	Linear assembly of lead bromide-based nanoparticles inside lead(<scp>ii</scp>) polymers prepared by mixing the precursors of both the nanoparticle and the polymer. Chemical Communications, 2019, 55, 2968-2971.	4.1	6
120	Luminescent silver–lithium-zeolite phosphors for near-ultraviolet LED applications. Journal of Materials Chemistry C, 2019, 7, 14366-14374.	5.5	17
121	The Preprotein Binding Domain of SecA Displays Intrinsic Rotational Dynamics. Structure, 2019, 27, 90-101.e6.	3.3	12
122	$5,10$ -Dihydrobenzo[$\langle i\rangle a\langle i\rangle$]indolo[$2,3$ - $\langle i\rangle c\langle i\rangle$]carbazoles as Novel OLED Emitters. Journal of Physical Chemistry B, 2019, 123, 1400-1411.	2.6	13
123	Reversible Optical Writing and Data Storage in an Anthraceneâ€Loaded Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 2423-2427.	13.8	102
124	C(sp ³)–H Bond Activation by Perovskite Solar Photocatalyst Cell. ACS Energy Letters, 2019, 4, 203-208.	17.4	114
125	Improved HaloTag Ligand Enables BRET Imaging With NanoLuc. Frontiers in Chemistry, 2019, 7, 938.	3.6	20
126	Photoconversion of Farâ€Red Organic Dyes: Implications for Multicolor Superâ€Resolution Imaging. ChemPhotoChem, 2018, 2, 433-441.	3.0	19

#	Article	IF	Citations
127	Efficient and Selective Photocatalytic Oxidation of Benzylic Alcohols with Hybrid Organic–Inorganic Perovskite Materials. ACS Energy Letters, 2018, 3, 755-759.	17.4	222
128	Confinement of Highly Luminescent Lead Clusters in Zeolite A. Journal of Physical Chemistry C, 2018, 122, 13953-13961.	3.1	24
129	Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, 2018, 9, 1607.	12.8	309
130	Imaging Heterogeneously Distributed Photoâ€Active Traps in Perovskite Single Crystals. Advanced Materials, 2018, 30, e1705494.	21.0	28
131	New OLEDs Based on Zirconium Metalâ€Organic Framework. Advanced Optical Materials, 2018, 6, 1701060.	7.3	42
132	A Conversation with Frans C. De Schryver. ACS Energy Letters, 2018, 3, 191-192.	17.4	0
133	Evaluation of Blue and Far-Red Dye Pairs in Single-Molecule Förster Resonance Energy Transfer Experiments. Journal of Physical Chemistry B, 2018, 122, 4249-4266.	2.6	25
134	A general strategy for direct, enzyme-catalyzed conjugation of functional compounds to DNA. Nucleic Acids Research, 2018, 46, e64-e64.	14.5	14
135	Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors. Science Advances, 2018, 4, eaap9714.	10.3	37
136	Femtosecond Laser Trapping Dynamics of Nanoparticles: A Single Transient Assembly Formation Leading to Their Directional Ejection. Journal of Physical Chemistry C, 2018, 122, 13233-13242.	3.1	6
137	Light- and Temperature-Modulated Magneto-Transport in Organic–Inorganic Lead Halide Perovskites. ACS Energy Letters, 2018, 3, 39-45.	17.4	15
138	Perovskite-Based Devices: Photophysical Pathways in Highly Sensitive Cs2 AgBiBr6 Double-Perovskite Single-Crystal X-Ray Detectors (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870353.	21.0	8
139	Non-radiative processes in metal halide perovskite semiconductors probed by photoluminescence microscopy. EPJ Web of Conferences, 2018, 190, 02011.	0.3	0
140	Reversible Optical Writing and Data Storage in an Anthraceneâ€Loaded Metalâ€Organic Framework. Angewandte Chemie, 2018, 131, 2445.	2.0	24
141	Reversible and Site-Dependent Proton-Transfer in Zeolites Uncovered at the Single-Molecule Level. Journal of the American Chemical Society, 2018, 140, 14195-14205.	13.7	22
142	Photophysical Pathways in Highly Sensitive Cs ₂ AgBiBr ₆ Doubleâ€Perovskite Singleâ€Crystal Xâ€Ray Detectors. Advanced Materials, 2018, 30, e1804450.	21.0	173
143	The 2018 correlative microscopy techniques roadmap. Journal Physics D: Applied Physics, 2018, 51, 443001.	2.8	99
144	Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature, 2018, 561, 63-69.	27.8	136

#	Article	IF	Citations
145	The BOPHY fluorophore with double boron chelation: Synthesis and spectroscopy. Coordination Chemistry Reviews, 2018, 371, 1-10.	18.8	66
146	Giant Electron–Phonon Coupling and Deep Conduction Band Resonance in Metal Halide Double Perovskite. ACS Nano, 2018, 12, 8081-8090.	14.6	190
147	Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nature Chemistry, 2018, 10, 974-980.	13.6	781
148	Highly Photoluminescent Sulfide Clusters Confined in Zeolites. Journal of Physical Chemistry C, 2018, 122, 14761-14770.	3.1	13
149	The Persistence-Inducing Toxin HokB Forms Dynamic Pores That Cause ATP Leakage. MBio, 2018, 9, .	4.1	68
150	Shaping the Optical Properties of Silver Clusters Inside Zeolite A via Guest–Host–Guest Interactions. Journal of Physical Chemistry Letters, 2018, 9, 5344-5350.	4.6	28
151	Fluorescence modulation by fast photochromism of a [2.2]paracyclophane-bridged imidazole dimer possessing a perylene bisimide moiety. Journal of Materials Chemistry C, 2018, 6, 9523-9531.	5.5	15
152	Origin of the bright photoluminescence of few-atom silver clusters confined in LTA zeolites. Science, 2018, 361, 686-690.	12.6	134
153	Atomic scale reversible opto-structural switching of few atom luminescent silver clusters confined in LTA zeolites. Nanoscale, 2018, 10, 11467-11476.	5.6	40
154	Promising Molecules for Optoelectronic Applications: Synthesis of 5,10â€Dihydrobenzo[<i>a</i>]indolo[2,3â€ <i>c</i>]carbazoles by Scholl Reaction of 1,2â€Bis(indolâ€2â€yl)benzenes. European Journal of Organic Chemistry, 2018, 2018, 4683-4688.	2.4	9
155	Femtosecond laser trapping, assembling, and ejection dynamics of dielectric nanoparticles in solution., 2018,,.		1
156	The power of single molecule microscopy: from nanoparticle investigations to microbiome analysis. , 2018, , .		0
157	Facile Morphologyâ€Controlled Synthesis of Organolead Iodide Perovskite Nanocrystals Using Binary Capping Agents. ChemNanoMat, 2017, 3, 223-227.	2.8	18
158	Acidâ€Sensitive BODIPY Dyes: Synthesis through Pdâ€Catalyzed Direct C(sp ³)â^'H Arylation and Photophysics. Chemistry - A European Journal, 2017, 23, 4687-4699.	3.3	25
159	The ER Stress Sensor PERK Coordinates ER-Plasma Membrane Contact Site Formation through Interaction with Filamin-A and F-Actin Remodeling. Molecular Cell, 2017, 65, 885-899.e6.	9.7	165
160	Die Methyltransferaseâ€gesteuerte Markierung von Biomolekülen und ihre Anwendungen. Angewandte Chemie, 2017, 129, 5266-5285.	2.0	13
161	A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film. Chemical Communications, 2017, 53, 5121-5124.	4.1	56
162	Defocused Imaging of UV-Driven Surface-Bound Molecular Motors. Journal of the American Chemical Society, 2017, 139, 7156-7159.	13.7	27

#	Article	IF	Citations
163	"Supertrap―at Work: Extremely Efficient Nonradiative Recombination Channels in MAPbl ₃ Perovskites Revealed by Luminescence Super-Resolution Imaging and Spectroscopy. ACS Nano, 2017, 11, 5391-5404.	14.6	92
164	Curve computation by geodesics and graph modelling for polymer analysis. Signal, Image and Video Processing, 2017, 11, 1469-1476.	2.7	0
165	Superconducting Ferromagnetic Nanodiamond. ACS Nano, 2017, 11, 5358-5366.	14.6	25
166	Plasmon-Mediated Surface Engineering of Silver Nanowires for Surface-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2017, 8, 2774-2779.	4.6	38
167	Aminobacter sp. MSH1 invades sand filter community biofilms while retaining 2,6-dichlorobenzamide degradation functionality under C and N limiting conditions. FEMS Microbiology Ecology, 2017, 93, .	2.7	7
168	Unprecedented \hat{l}_{\pm} -substituted BOPHY dyes via a key 3,8-dichloroBOPHY intermediate. Dyes and Pigments, 2017, 142, 249-254.	3.7	24
169	Genetic (In)stability of 2,6-Dichlorobenzamide Catabolism in Aminobacter sp. Strain MSH1 Biofilms under Carbon Starvation Conditions. Applied and Environmental Microbiology, 2017, 83, .	3.1	14
170	Methyltransferase-directed covalent coupling of fluorophores to DNA. Chemical Science, 2017, 8, 3804-3811.	7.4	19
171	Methyltransferaseâ€Directed Labeling of Biomolecules and its Applications. Angewandte Chemie - International Edition, 2017, 56, 5182-5200.	13.8	60
172	Simple Donor–Acceptor Luminogen Based on an Azaindole Derivative as Solid-State Emitter for Organic Light-Emitting Devices. ACS Energy Letters, 2017, 2, 2653-2658.	17.4	9
173	Facet-Dependent Diol-Induced Density of States of Anatase TiO ₂ Crystal Surface. ACS Omega, 2017, 2, 4032-4038.	3.5	12
174	Form Follows Function: Warming White LEDs Using Metal Cluster-Loaded Zeolites as Phosphors. ACS Energy Letters, 2017, 2, 2491-2497.	17.4	25
175	Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties. Accounts of Chemical Research, 2017, 50, 2353-2361.	15.6	72
176	Carbon catabolite repression and cell dispersal affects degradation of the xenobiotic compound 3,4-dichloroaniline in Comamonas testosteroni WDL7 biofilms. FEMS Microbiology Ecology, 2017, 93, fix004.	2.7	4
177	Direct Laser Writing of \hat{l} - to \hat{l} ±-Phase Transformation in Formamidinium Lead Iodide. ACS Nano, 2017, 11, 8072-8083.	14.6	66
178	Bosonic Confinement and Coherence in Disordered Nanodiamond Arrays. ACS Nano, 2017, 11, 11746-11754.	14.6	16
179	Selfâ€Assembling Azaindole Organogel for Organic Lightâ€Emitting Devices (OLEDs). Advanced Functional Materials, 2017, 27, 1702176.	14.9	15
180	Decorating the Edges of a 2D Polymer with a Fluorescence Label. Journal of the American Chemical Society, 2016, 138, 8976-8981.	13.7	19

#	Article	IF	CITATIONS
181	Assessing Photocatalytic Activity at the Nanoscale Using Integrated Optical and Electron Microscopy. Particle and Particle Systems Characterization, 2016, 33, 412-418.	2.3	14
182	Development and applications of nonlinear optical spectroscopy: 14th ECONOS/34th ECW meeting in Leuven (Belgium). Journal of Raman Spectroscopy, 2016, 47, 1109-1110.	2.5	1
183	Optically Active Materials: Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative (Adv. Funct. Mater. 48/2016). Advanced Functional Materials, 2016, 26, 9083-9083.	14.9	0
184	Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nature Communications, 2016, 7, 13693.	12.8	77
185	Field-Controlled Charge Separation in a Conductive Matrix at the Single-Molecule Level: Toward Controlling Single-Molecule Fluorescence Intermittency. ACS Omega, 2016, 1, 1383-1392.	3.5	4
186	Simple microfluidic stagnation point flow geometries. Biomicrofluidics, 2016, 10, 043506.	2.4	6
187	Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters. Journal of Materials Chemistry C, 2016, 4, 4259-4268.	5.5	22
188	FRET Reveals an Interplay of the HIV-1 Integrase Subunits during its Journey from the Cytoplasm into the Nucleus. Biophysical Journal, 2016, 110, 647a.	0.5	0
189	A Study of SeqA Subcellular Localization in Escherichia Coli using Photo-Activated Localization Microscopy. Biophysical Journal, 2016, 110, 649a.	0.5	0
190	The E.coli Sec Pathway under a Single-Molecule Loupe. Biophysical Journal, 2016, 110, 45a-46a.	0.5	0
191	Photoconvertible Behavior of LSSmOrange Applicable for Single Emission Band Optical Highlighting. Biophysical Journal, 2016, 111, 1014-1025.	0.5	7
192	Measuring the Viscosity of the Escherichia coli Plasma Membrane Using Molecular Rotors. Biophysical Journal, 2016, 111, 1528-1540.	0.5	75
193	Single Molecule Nanospectroscopy Visualizes Proton-Transfer Processes within a Zeolite Crystal. Journal of the American Chemical Society, 2016, 138, 13586-13596.	13.7	71
194	Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative. Advanced Functional Materials, 2016, 26, 8968-8977.	14.9	77
195	Surface Colonization and Activity of the 2,6-Dichlorobenzamide (BAM) Degrading <i>Aminobacter</i> sp. Strain MSH1 at Macro- and Micropollutant BAM Concentrations. Environmental Science & Environmenta	10.0	21
196	Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps. ACS Omega, 2016, 1, 148-159.	3. 5	76
197	Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites. ACS Nano, 2016, 10, 7604-7611.	14.6	58
198	Dynamic Oligomerization of Integrase Orchestrates HIV Nuclear Entry. Scientific Reports, 2016, 6, 36485.	3. 3	28

#	Article	IF	Citations
199	Effect of the substitution position (2, 3 or 8) on the spectroscopic and photophysical properties of BODIPY dyes with a phenyl, styryl or phenylethynyl group. RSC Advances, 2016, 6, 102899-102913.	3.6	27
200	Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors. Journal of Visualized Experiments, $2016, , .$	0.3	4
201	Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nature Materials, 2016, 15, 1017-1022.	27.5	153
202	Curve Extraction by Geodesics Fusion: Application to Polymer Reptation Analysis. Lecture Notes in Computer Science, 2016, , 79-88.	1.3	1
203	Chemoenzymatic synthesis and utilization of a SAM analog with an isomorphic nucleobase. Organic and Biomolecular Chemistry, 2016, 14, 6189-6192.	2.8	20
204	Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration. Journal of Physical Chemistry Letters, 2016, 7, 561-566.	4.6	234
205	Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids. ACS Nano, 2016, 10, 2455-2466.	14.6	61
206	Synthesis, Ensemble, and Single Molecule Characterization of a Diphenyl-Acetylene Linked Terrylenediimide Dimer. Journal of Physical Chemistry B, 2016, 120, 2333-2342.	2.6	3
207	Photocatalysts in close-up. Nature, 2016, 530, 36-37.	27.8	13
208	Optical Modelling of Luminescent Cascade Systems with the Adding-Doubling Method. Springer Proceedings in Physics, 2016, , 67-80.	0.2	0
209	Nanoscale Study of Polymer Dynamics. ACS Nano, 2016, 10, 1434-1441.	14.6	31
210	SOFI Simulation Tool: A Software Package for Simulating and Testing Super-Resolution Optical Fluctuation Imaging. PLoS ONE, 2016, 11, e0161602.	2.5	41
211	Measurement of the Viscosity of E. coli Membranes using Molecular Rotors and Flim. Biophysical Journal, 2015, 108, 542a.	0.5	1
212	Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. Scientific Reports, 2015, 5, 13532.	3.3	21
213	Experimental validation of adding-doubling modeling of solar cells including luminescent down-shifting layers. Journal of Renewable and Sustainable Energy, 2015, 7, .	2.0	9
214	Radical CH Alkylation of BODIPY Dyes Using Potassium Trifluoroborates or Boronic Acids. Chemistry - A European Journal, 2015, 21, 12667-12675.	3.3	53
215	Controlling Microsized Polymorphic Architectures with Distinct Linear and Nonlinear Optical Properties. Advanced Optical Materials, 2015, 3, 948-956.	7.3	39
216	Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance. Molecular Cell, 2015, 59, 9-21.	9.7	261

#	Article	IF	Citations
217	Ryanodine receptor cluster fragmentation and redistribution in persistent atrial fibrillation enhance calcium release. Cardiovascular Research, 2015, 108, 387-398.	3.8	93
218	Thermally activated LTA(Li)–Ag zeolites with water-responsive photoluminescence properties. Journal of Materials Chemistry C, 2015, 3, 11857-11867.	5.5	70
219	The effect of medium structure complexity on the growth of Saccharomyces cerevisiae in gelatin–dextran systems. International Journal of Food Microbiology, 2015, 199, 8-14.	4.7	5
220	Highâ€Resolution Singleâ€Molecule Fluorescence Imaging of Zeolite Aggregates within Realâ€Life Fluid Catalytic Cracking Particles. Angewandte Chemie - International Edition, 2015, 54, 1836-1840.	13.8	85
221	Radical CH Arylation of the BODIPY Core with Aryldiazonium Salts: Synthesis of Highly Fluorescent Redâ€Shifted Dyes. Angewandte Chemie - International Edition, 2015, 54, 4612-4616.	13.8	116
222	Fluorescence Correlation Spectroscopy in Dilute Polymer Solutions: Effects of Molar Mass Dispersity and the Type of Fluorescent Labeling. ACS Macro Letters, 2015, 4, 171-176.	4.8	12
223	Combing of Genomic DNA from Droplets Containing Picograms of Material. ACS Nano, 2015, 9, 809-816.	14.6	32
224	Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy. Nature Communications, 2015, 6, 6287.	12.8	58
225	Accurate Diffusion Coefficients of Organosoluble Reference Dyes in Organic Media Measured by Dual-Focus Fluorescence Correlation Spectroscopy. ACS Nano, 2015, 9, 7360-7373.	14.6	7
226	The pH-dependent photoluminescence of colloidal CdSe/ZnS quantum dots with different organic coatings. Nanotechnology, 2015, 26, 255703.	2.6	25
227	Tunable Ratiometric Fluorescence Sensing of Intracellular pH by Aggregation-Induced Emission-Active Hyperbranched Polymer Nanoparticles. Chemistry of Materials, 2015, 27, 3450-3455.	6.7	105
228	Mapping Pixel Dissimilarity in Wide-Field Super-Resolution Fluorescence Microscopy. Analytical Chemistry, 2015, 87, 4675-4682.	6.5	7
229	Luminescence of fixed site Ag nanoclusters in a simple oxyfluoride glass host and plasmon absorption of amorphous Ag nanoparticles in a complex oxyfluoride glass host., 2015,,.		1
230	Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell and Tissue Research, 2015, 360, 151-178.	2.9	43
231	Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming. Journal of the American Chemical Society, 2015, 137, 6559-6568.	13.7	69
232	Resolving Interparticle Heterogeneities in Composition and Hydrogenation Performance between Individual Supported Silver on Silica Catalysts. ACS Catalysis, 2015, 5, 6690-6695.	11.2	22
233	A study of SeqA subcellular localization in Escherichia coli using photo-activated localization microscopy. Faraday Discussions, 2015, 184, 425-450.	3.2	9
234	Molecular Dynamic Indicators of the Photoswitching Properties of Green Fluorescent Proteins. Journal of Physical Chemistry B, 2015, 119, 12007-12016.	2.6	13

#	Article	IF	Citations
235	Mechanism Behind the Apparent Large Stokes Shift in LSSmOrange Investigated by Time-Resolved Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 14880-14891.	2.6	11
236	Reshaping anisotropic gold nanoparticles through oxidative etching: the role of the surfactant and nanoparticle surface curvature. RSC Advances, 2015, 5, 6829-6833.	3.6	28
237	Emission Properties of Oxyluciferin and Its Derivatives in Water: Revealing the Nature of the Emissive Species in Firefly Bioluminescence. Journal of Physical Chemistry B, 2015, 119, 2638-2649.	2.6	63
238	Inhibition of Receptor Dimerization as a Novel Negative Feedback Mechanism of EGFR Signaling. PLoS ONE, 2015, 10, e0139971.	2.5	27
239	Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup. Review of Scientific Instruments, 2014, 85, 123115.	1.3	96
240	Cellular localization and dynamics of the Mrr type IV restriction endonuclease of Escherichia coli. Nucleic Acids Research, 2014, 42, 3908-3918.	14.5	8
241	Oxyfluoride glass (SiO_2-PbF_2) co-doped with Ag nanoclusters and Tm^3+ ions for UV-driven, Hg-free, white light generation with a tuneable tint. Optical Materials Express, 2014, 4, 1227.	3.0	26
242	Remote excitation fluorescence correlation spectroscopy using silver nanowires. Proceedings of SPIE, $2014, \ldots$	0.8	0
243	Experimental determination of the absorption and scattering properties of YAG:Ce phosphor. , 2014, , .		5
244	Estimation of the effective phase function of bulk diffusing materials with the inverse adding-doubling method. Applied Optics, 2014, 53, 2117.	1.8	27
245	A hybrid tool for spectral ray tracing simulations of luminescent cascade systems. Optics Express, 2014, 22, 24582.	3.4	5
246	Biofilm formation of a bacterial consortium on linuron at micropollutant concentrations in continuous flow chambers and the impact of dissolved organic matter. FEMS Microbiology Ecology, 2014, 88, 184-194.	2.7	22
247	Photophysical Investigation of Cyano-Substituted Terrylenediimide Derivatives. Journal of Physical Chemistry B, 2014, 118, 14662-14674.	2.6	8
248	Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry. Nucleic Acids Research, 2014, 42, e50-e50.	14.5	49
249	Design and synthesis of nucleolipids as possible activated precursors for oligomer formation via intramolecular catalysis: stability study and supramolecular organization. Journal of Systems Chemistry, 2014, 5, 5.	1.7	11
250	Effect of Microstructure on Population Growth Parameters of Escherichia coli in Gelatin-Dextran Systems. Applied and Environmental Microbiology, 2014, 80, 5330-5339.	3.1	14
251	Taking the spectral overlap between excitation and emission spectra of fluorescent materials into account with Monte Carlo simulations. , 2014 , , .		3
252	Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis. Critical Reviews in Microbiology, 2014, 40, 207-224.	6.1	54

#	Article	IF	Citations
253	The quantity and quality of dissolved organic matter as supplementary carbon source impacts the pesticide-degrading activity of a triple-species bacterial biofilm. Applied Microbiology and Biotechnology, 2014, 98, 931-943.	3.6	11
254	Membrane distribution of the glycine receptor $\hat{l}\pm 3$ studied by optical super-resolution microscopy. Histochemistry and Cell Biology, 2014, 142, 79-90.	1.7	21
255	Single Particle Tracking of ADAMTS13 (A Disintegrin and Metalloprotease with Thrombospondin Type-1) Tj ETQq1 2014, 289, 8903-8915.		l 4 rgBT /O\ 1
256	Analysis of $\hat{l}\pm 3$ GlyR single particle tracking in the cell membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 544-553.	4.1	27
257	Click Reaction Synthesis and Photophysical Studies of Dendritic Metalloporphyrins. European Journal of Organic Chemistry, 2014, 2014, 1766-1777.	2.4	19
258	Excited state dynamics of the photoconvertible fluorescent protein Kaede revealed by ultrafast spectroscopy. Photochemical and Photobiological Sciences, 2014, 13, 867-874.	2.9	14
259	Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chemical Society Reviews, 2014, 43, 990-1006.	38.1	115
260	Photoswitchable Fluorescent Proteins for Superresolution Fluorescence Microscopy Circumventing the Diffraction Limit of Light. Methods in Molecular Biology, 2014, 1076, 793-812.	0.9	14
261	A surface-bound molecule that undergoes optically biased Brownian rotation. Nature Nanotechnology, 2014, 9, 131-136.	31.5	52
262	Green-to-Red Photoconvertible Dronpa Mutant for Multimodal Super-resolution Fluorescence Microscopy. ACS Nano, 2014, 8, 1664-1673.	14.6	87
263	X-ray irradiation-induced formation of luminescent silver clusters in nanoporous matrices. Chemical Communications, 2014, 50, 1350-1352.	4.1	49
264	Rationalizing Inter- and Intracrystal Heterogeneities in Dealuminated Acid Mordenite Zeolites by Stimulated Raman Scattering Microscopy Correlated with Super-resolution Fluorescence Microscopy. ACS Nano, 2014, 8, 12650-12659.	14.6	43
265	Thermocapillary Fingering in Surfactant-Laden Water Droplets. Langmuir, 2014, 30, 13338-13344.	3.5	21
266	Delayed electron–hole pair recombination in iron(<scp>iii</scp>)-oxo metal–organic frameworks. Physical Chemistry Chemical Physics, 2014, 16, 5044-5047.	2.8	46
267	Lead silicate glass SiO2–PbF2 doped with luminescent Ag nanoclusters of a fixed site. RSC Advances, 2014, 4, 20699.	3.6	21
268	Reporter cell activity within hydrogel constructs quantified from oxygen-independent bioluminescence. Biomaterials, 2014, 35, 8065-8077.	11.4	4
269	Membrane Remodeling Processes Induced by Phospholipase Action. Langmuir, 2014, 30, 4743-4751.	3.5	18
270	Fabrication of silver nanoparticles with limited size distribution on TiO ₂ containing zeolites. Physical Chemistry Chemical Physics, 2014, 16, 18690-18693.	2.8	18

#	Article	IF	Citations
271	The use of the adding-doubling method for the optical optimization of planar luminescent down shifting layers for solar cells. Optics Express, 2014, 22, A765.	3.4	14
272	Confocal Imaging with a Fluorescent Bile Acid Analogue Closely Mimicking Hepatic Taurocholate Disposition. Journal of Pharmaceutical Sciences, 2014, 103, 1872-1881.	3.3	41
273	HIV Virions as Nanoscopic Test Tubes for Probing Oligomerization of the Integrase Enzyme. ACS Nano, 2014, 8, 3531-3545.	14.6	11
274	Liveâ€Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides. Advanced Materials, 2014, 26, 5124-5128.	21.0	110
275	Shear-Stress-Induced Conformational Changes of von Willebrand Factor in a Water–Glycerol Mixture Observed with Single Molecule Microscopy. Journal of Physical Chemistry B, 2014, 118, 5660-5669.	2.6	35
276	Probing Protein-Protein Interactions in a Single Virus: Application to HIV Integrase Oligomerization. Biophysical Journal, 2014, 106, 61a.	0.5	0
277	Structural and Functional Alteration of RyR Clusters After Remodeling in Persistent Atrial Fibrillation. Biophysical Journal, 2014, 106, 431a.	0.5	1
278	A Causal Relation between Bioluminescence and Oxygen to Quantify the Cell Niche. PLoS ONE, 2014, 9, e97572.	2.5	15
279	Porphyrin Core Dendrimers with Ether-Linked Carbazole Dendrons: Dual Luminescence of Core and Conformational Flexibility of Dendritic Shell. Macroheterocycles, 2014, 7, 240-248.	0.5	2
280	Quick evaluation method for solar modules with a luminescent down-shifting layer. , 2014, , .		0
281	LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology, 2013, 10, 57.	2.0	127
282	Synthesis and in vitro evaluation of a PDT active BODIPY–NLS conjugate. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3204-3207.	2.2	27
283	lron(III)-Based Metal–Organic Frameworks As Visible Light Photocatalysts. Journal of the American Chemical Society, 2013, 135, 14488-14491.	13.7	502
284	Role of PFKFB3-Driven Glycolysis in Vessel Sprouting. Cell, 2013, 154, 651-663.	28.9	1,117
285	Determination of the bulk scattering parameters of diffusing materials. Applied Optics, 2013, 52, 4083.	1.8	21
286	Threeâ€Dimensional Visualization of Defects Formed during the Synthesis of Metal–Organic Frameworks: A Fluorescence Microscopy Study. Angewandte Chemie - International Edition, 2013, 52, 401-405.	13.8	121
287	Single Molecule Enzyme Catalysis: Steps towards Accurate Kinetic Schemes. Biophysical Journal, 2013, 104, 372a.	0.5	0
288	Engineering, Characterization and usage of a Green-To-Red Photoconvertible Dronpa Mutant. Biophysical Journal, 2013, 104, 682a-683a.	0.5	1

#	Article	IF	Citations
289	Fluorescent Proteins: Shine on, You Crazy Diamond. Journal of the American Chemical Society, 2013, 135, 2387-2402.	13.7	163
290	Determination and Optimization of the Luminescence External Quantum Efficiency of Silver-Clusters Zeolite Composites. Journal of Physical Chemistry C, 2013, 117, 6998-7004.	3.1	64
291	Accelerating the Phase Separation in Aqueous Poly(N-isopropylacrylamide) Solutions by Slight Modification of the Polymer Stereoregularity: A Single Molecule Fluorescence Study. Journal of Physical Chemistry C, 2013, 117, 10818-10824.	3.1	17
292	Fluorescent oxygen sensitive microbead incorporation for measuring oxygen tension in cell aggregates. Biomaterials, 2013, 34, 922-929.	11.4	24
293	Excited State Dynamics of Photoswitchable Fluorescent Protein Padron. Journal of Physical Chemistry B, 2013, 117, 16422-16427.	2.6	14
294	Revealing the Excited-State Dynamics of the Fluorescent Protein Dendra2. Journal of Physical Chemistry B, 2013, 117, 2300-2313.	2.6	21
295	Silver Nanowires Terminated by Metallic Nanoparticles as Effective Plasmonic Antennas. Journal of Physical Chemistry C, 2013, 117, 2547-2553.	3.1	17
296	Time-Resolved Single Molecule Fluorescence Spectroscopy of an α-Chymotrypsin Catalyzed Reaction. Journal of Physical Chemistry B, 2013, 117, 1252-1260.	2.6	17
297	Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nature Communications, 2013, 4, 1757.	12.8	222
298	Behavior of Escherichia coli in a Heterogeneous Gelatin-Dextran Mixture. Applied and Environmental Microbiology, 2013, 79, 3126-3128.	3.1	14
299	Environmental Dissolved Organic Matter Governs Biofilm Formation and Subsequent Linuron Degradation Activity of a Linuron-Degrading Bacterial Consortium. Applied and Environmental Microbiology, 2013, 79, 4534-4542.	3.1	27
300	Automatic particle detection in microscopy using temporal correlations. Microscopy Research and Technique, 2013, 76, 997-1006.	2.2	0
301	EGF RECEPTOR DYNAMICS IN EGF-RESPONDING CELLS REVEALED BY FUNCTIONAL IMAGING DURING SINGLE PARTICLE TRACKING. Biophysical Reviews and Letters, 2013, 08, 229-242.	0.8	7
302	Selfâ€Assembled Organic Microfibers for Nonlinear Optics. Advanced Materials, 2013, 25, 2084-2089.	21.0	119
303	Structural and Optical Properties of ZnWO ₄ :Er ³⁺ Crystals. Journal of Spectroscopy, 2013, 2013, 1-5.	1.3	8
304	Structures of states of a photoconvertible and photoswitchable fluorescent protein engineered from Dronpa. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s305-s305.	0.3	0
305	Exposure to Solute Stress Affects Genome-Wide Expression but Not the Polycyclic Aromatic Hydrocarbon-Degrading Activity of Sphingomonas sp. Strain LH128 in Biofilms. Applied and Environmental Microbiology, 2012, 78, 8311-8320.	3.1	26
306	Extended adding-doubling method for fluorescent applications. Optics Express, 2012, 20, 17856.	3.4	22

#	Article	IF	Citations
307	The $\langle i \rangle$ Escherichia $\langle i \rangle$ â $\in f \langle i \rangle$ coli $\langle i \rangle$ GTPase ObgE modulates hydroxyl radical levels in response to DNA replication fork arrest. FEBS Journal, 2012, 279, 3692-3704.	4.7	9
308	Unraveling the Fluorescence Features of Individual Corrole NH Tautomers. Journal of Physical Chemistry A, 2012, 116, 10695-10703.	2.5	49
309	Photocatalytic growth of dendritic silver nanostructures as SERS substrates. Chemical Communications, 2012, 48, 1559-1561.	4.1	38
310	Variable RyR Cluster Morphology in Sheep Atrial Myocytes: Super Resolution Measurement and Ca2+ Release Simulation. Biophysical Journal, 2012, 102, 309a.	0.5	0
311	Selective photocatalytic oxidation of gaseous ammonia to dinitrogen in a continuous flow reactor. Catalysis Science and Technology, 2012, 2, 1802.	4.1	13
312	Spectroscopic characterization of Venus at the single molecule level. Photochemical and Photobiological Sciences, 2012, 11, 358-363.	2.9	9
313	Influence of processing on the pectin structure–function relationship in broccoli purée. Innovative Food Science and Emerging Technologies, 2012, 15, 57-65.	5.6	40
314	Spectroscopic Properties, Excitation, and Electron Transfer in an Anionic Water-Soluble Poly(fluorene- <i>alt</i> -phenylene)-perylenediimide Copolymer. Journal of Physical Chemistry B, 2012, 116, 7548-7559.	2.6	14
315	Charge transfer effects in graphene-CdSe/ZnS quantum dots composites. Proceedings of SPIE, 2012, , .	0.8	3
316	Fluorescence Microscopy, Single Fluorophores and Nano-Reporters, Super-Resolution Far-Field Microscopy., 2012,, 479-507.		0
317	Design Aspects of Bright Red Emissive Silver Nanoclusters/DNA Probes for MicroRNA Detection. ACS Nano, 2012, 6, 8803-8814.	14.6	177
318	Dynamic Disorder in Single-Enzyme Experiments: Facts and Artifacts. ACS Nano, 2012, 6, 346-354.	14.6	55
319	Structural basis for the influence of a single mutation K145N on the oligomerization and photoswitching rate of Dronpa. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1653-1659.	2.5	8
320	Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor $\hat{l}\pm 3$ isoforms in the cell plasma membrane. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3131-3140.	2.6	29
321	Luminescence of oxyfluoride glasses co-doped with Ag nanoclusters and Yb ³⁺ ions. RSC Advances, 2012, 2, 1496-1501.	3.6	52
322	Excitation Polarization Sensitivity of Plasmon-Mediated Silver Nanotriangle Growth on a Surface. Langmuir, 2012, 28, 8920-8925.	3.5	18
323	Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings. Nanoscale, 2012, 4, 1606.	5.6	117
324	Mapping of Surfaceâ€Enhanced Fluorescence on Metal Nanoparticles using Superâ€Resolution Photoactivation Localization Microscopy. ChemPhysChem, 2012, 13, 973-981.	2.1	62

#	Article	IF	Citations
325	Inside Cover: Mapping of Surface-Enhanced Fluorescence on Metal Nanoparticles using Super-Resolution Photoactivation Localization Microscopy (ChemPhysChem 4/2012). ChemPhysChem, 2012, 13, 882-882.	2.1	0
326	The beneficial effect of CO2 in the low temperature synthesis of high quality carbon nanofibers and thin multiwalled carbon nanotubes from CH4 over Ni catalysts. Carbon, 2012, 50, 372-384.	10.3	29
327	In situ pectin engineering as a tool to tailor the consistency and syneresis of carrot purée. Food Chemistry, 2012, 133, 146-155.	8.2	28
328	Morpholinecarbonyl-Rhodamine 110 Based Substrates for the Determination of Protease Activity with Accurate Kinetic Parameters. Bioconjugate Chemistry, 2011, 22, 1932-1938.	3.6	15
329	Molecular organization of hydrophobic molecules and co-adsorbed water in SBA-15 ordered mesoporous silica material. Physical Chemistry Chemical Physics, 2011, 13, 2706-2713.	2.8	40
330	The Origin of Heterogeneity of Polymer Dynamics near the Glass Temperature As Probed by Defocused Imaging. Macromolecules, 2011, 44, 9703-9709.	4.8	57
331	Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. Chemical Science, 2011, 2, 1548.	7.4	108
332	Single-molecule light absorption. Nature Photonics, 2011, 5, 80-81.	31.4	5
333	Rational Design of Photoconvertible and Biphotochromic Fluorescent Proteins for Advanced Microscopy Applications. Chemistry and Biology, 2011, 18, 1241-1251.	6.0	96
334	Single Layer vs Bilayer Graphene: A Comparative Study of the Effects of Oxygen Plasma Treatment on Their Electronic and Optical Properties. Journal of Physical Chemistry C, 2011, 115, 16619-16624.	3.1	60
335	Physical Properties of Nutritive Shortenings Produced from Regioselective Hardening of Soybean Oil with Pt Containing Zeolite. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 2023-2034.	1.9	21
336	Exploration of Atmospheric Pressure Plasma Nanofilm Technology for Straightforward Bioâ€Active Coating Deposition: Enzymes, Plasmas and Polymers, an Elegant Synergy. Plasma Processes and Polymers, 2011, 8, 965-974.	3.0	61
337	Metal–Organic Framework Single Crystals as Photoactive Matrices for the Generation of Metallic Microstructures. Advanced Materials, 2011, 23, 1788-1791.	21.0	100
338	Fluorophore Selection for Single-Molecule Fluorescence Spectroscopy (SMFS) and Photobleaching Pathways., 2011,, 85-92.		0
339	Energy Transfer Pathways in a Ryleneâ€Based Triad. ChemPhysChem, 2011, 12, 595-608.	2.1	36
340	Optical mapping of DNA: Singleâ€moleculeâ€based methods for mapping genomes. Biopolymers, 2011, 95, 298-311.	2.4	103
341	Light-assisted nucleation of silver nanowires during polyol synthesis. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 220-223.	3.9	27
342	Transition from Metallic to Semiconducting Behavior in Oxygen Plasma-treated Single-layer Graphene. Materials Research Society Symposia Proceedings, 2011, 1336, 20701.	0.1	0

#	Article	IF	Citations
343	The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering. Nucleic Acids Research, 2011, 39, 1310-1325.	14.5	56
344	Local Elongation of Endothelial Cell-anchored von Willebrand Factor Strings Precedes ADAMTS13 Protein-mediated Proteolysis. Journal of Biological Chemistry, 2011, 286, 36361-36367.	3.4	46
345	Quantitative Multicolor Super-Resolution Microscopy Reveals Tetherin HIV-1 Interaction. PLoS Pathogens, 2011, 7, e1002456.	4.7	113
346	Transcriptomic analysis of phenanthrene degrading Sphingomonas biofilms exposed to environmentally relevant solute and matric stresses. Communications in Agricultural and Applied Biological Sciences, 2011, 76, 69-72.	0.0	0
347	Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. Chemical Society Reviews, 2010, 39, 4703.	38.1	150
348	In Situ Observation of the Emission Characteristics of Zeoliteâ€Hosted Silver Species During Heat Treatment. ChemPhysChem, 2010, 11, 1627-1631.	2.1	52
349	Optical Encoding of Silver Zeolite Microcarriers. Advanced Materials, 2010, 22, 957-960.	21.0	115
350	Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions. Advanced Materials, 2010, 22, 2685-2688.	21.0	224
351	The Rylene Colorant Familyâ€"Tailored Nanoemitters for Photonics Research and Applications. Angewandte Chemie - International Edition, 2010, 49, 9068-9093.	13.8	565
352	Highâ€Resolution Singleâ€Turnover Mapping Reveals Intraparticle Diffusion Limitation in Tiâ€MCMâ€41â€Catalyzed Epoxidation. Angewandte Chemie - International Edition, 2010, 49, 908-911.	13.8	128
353	Data storage based on photochromic and photoconvertible fluorescent proteins. Journal of Biotechnology, 2010, 149, 289-298.	3.8	62
354	The influence of diffusion phenomena on catalysis: A study at the single particle level using fluorescence microscopy. Catalysis Today, 2010, 157, 236-242.	4.4	29
355	Caught in a trap. Nature Chemistry, 2010, 2, 157-159.	13.6	2
356	DNA fluorocode: A single molecule, optical map of DNA with nanometre resolution. Chemical Science, 2010, 1, 453.	7.4	88
357	Unraveling Excited-State Dynamics in a Polyfluorene-Perylenediimide Copolymer. Journal of Physical Chemistry B, 2010, 114, 1277-1286.	2.6	17
358	Influence of Lipid Heterogeneity and Phase Behavior on Phospholipase A2 Action at the Single Molecule Level. Biophysical Journal, 2010, 98, 1873-1882.	0.5	48
359	Higher resolution in localizationmicroscopy by slower switching of a photochromic protein. Photochemical and Photobiological Sciences, 2010, 9, 239-248.	2.9	45
360	Transfection of living HeLa cells with fluorescent poly-cytosine encapsulated Ag nanoclusters. Photochemical and Photobiological Sciences, 2010, 9, 716-721.	2.9	90

#	Article	IF	CITATIONS
361	Spectroscopic Rationale for Efficient Stimulated-Emission Depletion Microscopy Fluorophores. Journal of the American Chemical Society, 2010, 132, 5021-5023.	13.7	98
362	A non-invasive fluorescent staining procedure allows Confocal Laser Scanning Microscopy based imaging of Mycobacterium in multispecies biofilms colonizing and degrading polycyclic aromatic hydrocarbons. Journal of Microbiological Methods, 2010, 83, 317-325.	1.6	22
363	Response to mixed substrate feeds of the structure and activity of a linuron-degrading triple-species biofilm. Research in Microbiology, 2010, 161, 660-666.	2.1	12
364	Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 2010, 21, 435203.	2.6	289
365	Improved Method for Counting DNA Molecules on Biofunctionalized Nanoparticles. Langmuir, 2010, 26, 1594-1597.	3.5	18
366	Synthetic and natural photoswitches. Photochemical and Photobiological Sciences, 2010, 9, 127-127.	2.9	3
367	Watching Individual Enzymes at Work. Springer Series in Chemical Physics, 2010, , 495-511.	0.2	2
368	A Critical Assessment of the Synthesis of Diameter and Chirality Controlled CNTs in Zeolites. ECS Transactions, 2009, 19, 161-174.	0.5	2
369	Defocused Wideâ€field Imaging Unravels Structural and Temporal Heterogeneity in Complex Systems. Advanced Materials, 2009, 21, 1079-1090.	21.0	81
370	Linking Phospholipase Mobility to Activity by Singleâ€Molecule Wideâ€Field Microscopy. ChemPhysChem, 2009, 10, 151-161.	2.1	61
371	Photoswitches: Key molecules for subdiffractionâ€resolution fluorescence imaging and molecular quantification. Laser and Photonics Reviews, 2009, 3, 180-202.	8.7	247
372	Superâ€Resolution Reactivity Mapping of Nanostructured Catalyst Particles. Angewandte Chemie - International Edition, 2009, 48, 9285-9289.	13.8	175
373	Direct Evidence of High Spatial Localization of Hot Spots in Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2009, 48, 9932-9935.	13.8	58
374	Focusing Plasmons in Nanoslits for Surfaceâ€Enhanced Raman Scattering. Small, 2009, 5, 2876-2882.	10.0	44
375	On the use of Z-scan fluorescence correlation experiments on giant unilamellar vesicles. Chemical Physics Letters, 2009, 469, 110-114.	2.6	12
376	Synthesis and Photophysics of Coreâ€Substituted Naphthalene Diimides: Fluorophores for Single Molecule Applications. Chemistry - an Asian Journal, 2009, 4, 1542-1550.	3.3	68
377	Fluorescenceâ€based analysis of enzymes at the singleâ€molecule level. Biotechnology Journal, 2009, 4, 465-479.	3.5	35
378	Monitoring the Interaction of a Single G-Protein Key Binding Site with Rhodopsin Disk Membranes upon Light Activation. Biochemistry, 2009, 48, 3801-3803.	2.5	23

#	Article	IF	CITATIONS
379	Preface to the Hiroshi Masuhara Festschrift: Exploration with Lasers into New Areas of Molecular Photoscience. Journal of Physical Chemistry C, 2009, 113, 11425-11427.	3.1	1
380	Measuring Diffusion of Lipid-like Probes in Artificial and Natural Membranes by Raster Image Correlation Spectroscopy (RICS): Use of a Commercial Laser-Scanning Microscope with Analog Detection. Langmuir, 2009, 25, 5209-5218.	3 . 5	58
381	Synthesis, Ensemble, and Single Molecule Characterization of a Diphenyl-Acetylene Linked Perylenediimide Trimer. Journal of Physical Chemistry C, 2009, 113, 11773-11782.	3.1	28
382	Polymers and single molecule fluorescence spectroscopy, what can we learn?. Chemical Society Reviews, 2009, 38, 313-328.	38.1	196
383	Subdiffraction Limited, Remote Excitation of Surface Enhanced Raman Scattering. Nano Letters, 2009, 9, 995-1001.	9.1	136
384	Characterization of Fluorescence in Heat-Treated Silver-Exchanged Zeolites. Journal of the American Chemical Society, 2009, 131, 3049-3056.	13.7	170
385	Size-Dependent Optical Properties of Dendronized Perylenediimide Nanoparticle Prepared by Laser Ablation in Water. Japanese Journal of Applied Physics, 2009, 48, 065002.	1.5	17
386	Towards direct monitoring of discrete events in a catalytic cycle at the single molecule level. Photochemical and Photobiological Sciences, 2009, 8, 453-456.	2.9	40
387	Diffusion of Myelin Oligodendrocyte Glycoprotein in Living OLN-93 Cells Investigated by Raster-Scanning Image Correlation Spectroscopy (RICS). Journal of Fluorescence, 2008, 18, 813-819.	2.5	17
388	Static and Dynamic Bimolecular Fluorescence Quenching of Porphyrin Dendrimers in Solution. Journal of Fluorescence, 2008, 18, 821-826.	2.5	28
389	Fabrication of fluorescent nanoparticles of dendronized perylenediimide by laser ablation in water. Applied Physics A: Materials Science and Processing, 2008, 93, 5-9.	2.3	32
390	Diffraction-unlimited optical microscopy. Materials Today, 2008, 11, 12-21.	14.2	36
391	Protein Immobilization Using Atmosphericâ€Pressure Dielectricâ€Barrier Discharges: A Route to a Straightforward Manufacture of Bioactive Films. Plasma Processes and Polymers, 2008, 5, 186-191.	3.0	49
392	Radical Polymerization Tracked by Single Molecule Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 783-787.	13.8	75
393	Photoactivation of Silverâ€Exchanged Zeoliteâ€A. Angewandte Chemie - International Edition, 2008, 47, 2813-2816.	13.8	95
394	Waterâ€Soluble Monofunctional Perylene and Terrylene Dyes: Powerful Labels for Singleâ€Enzyme Tracking. Angewandte Chemie - International Edition, 2008, 47, 3372-3375.	13.8	112
395	Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. FEMS Microbiology Ecology, 2008, 64, 271-282.	2.7	61
396	<i>Aggregatibacter actinomycetemcomitans</i> adhesion inhibited in a flow cell. Oral Microbiology and Immunology, 2008, 23, 520-524.	2.8	18

#	Article	IF	CITATIONS
397	Colonization of hard and soft surfaces by <i>Aggregatibacter actinomycetemcomitans</i> hydrodynamic conditions. Oral Microbiology and Immunology, 2008, 23, 498-504.	2.8	4
398	Morphology of Large ZSM-5 Crystals Unraveled by Fluorescence Microscopy. Journal of the American Chemical Society, 2008, 130, 5763-5772.	13.7	147
399	Singlet Oxygen Photosensitization by EGFP and its Chromophore HBDI. Biophysical Journal, 2008, 94, 168-172.	0.5	109
400	Dark States in Monomeric Red Fluorescent Proteins Studied by Fluorescence Correlation and Single Molecule Spectroscopy. Biophysical Journal, 2008, 94, 4103-4113.	0.5	133
401	Excitation Energy Migration Processes in Cyclic Porphyrin Arrays Probed by Single Molecule Spectroscopy. Journal of the American Chemical Society, 2008, 130, 1879-1884.	13.7	50
402	Control of Surface Plasmon Localization via Self-Assembly of Silver Nanoparticles along Silver Nanowires. Journal of the American Chemical Society, 2008, 130, 17240-17241.	13.7	61
403	Photoinduced electron-transfer in perylenediimide triphenylamine-based dendrimers: single photon timing and femtosecond transient absorption spectroscopy. Photochemical and Photobiological Sciences, 2008, 7, 597-604.	2.9	40
404	Nano-patterned layers of a grafted coumarinic chromophore. Photochemical and Photobiological Sciences, 2008, 7, 460-466.	2.9	10
405	Exploration of Single Molecule Events in a Haloperoxidase and Its Biomimic: Localization of Halogenation Activity. Journal of the American Chemical Society, 2008, 130, 13192-13193.	13.7	57
406	How Is cisâ^'trans Isomerization Controlled in Dronpa Mutants? A Replica Exchange Molecular Dynamics Study. Journal of Chemical Theory and Computation, 2008, 4, 1012-1020.	5. 3	21
407	Second-Harmonic Generation in GFP-like Proteins. Journal of the American Chemical Society, 2008, 130, 15713-15719.	13.7	66
408	Relating Pore Structure to Activity at the Subcrystal Level for ZSM-5: An Electron Backscattering Diffraction and Fluorescence Microscopy Study. Journal of the American Chemical Society, 2008, 130, 13516-13517.	13.7	62
409	Probing dimerization and intraprotein fluorescence resonance energy transfer in a far-red fluorescent protein from the sea anemone Heteractis crispa. Journal of Biomedical Optics, 2008, 13, 031212.	2.6	6
410	Nanopatterned monolayers of an adsorbed chromophore. Nanotechnology, 2008, 19, 335303.	2.6	0
411	Counting ssDNA on a single nanoparticle. , 2008, , .		0
412	Single Enzyme Kinetics: A Study of the Yeast Enzyme Candida Antarctica Lipase B. Springer Series in Biophysics, 2008, , 163-180.	0.4	0
413	Defocused Imaging in Wide-field Fluorescence Microscopy. Springer Series on Fluorescence, 2007, , 257-284.	0.8	8
414	Fluorescence lifetime fluctuations of single molecules probe the local environment of oligomers around the glass transition temperature. Journal of Chemical Physics, 2007, 126, 184902.	3.0	11

#	Article	IF	CITATIONS
415	Single perylene diimide dendrimers as single-photon sources. Journal of Physics Condensed Matter, 2007, 19, 445004.	1.8	16
416	In situ filming of reactions inside individual zeolite crystals using fluorescence microscopy. Studies in Surface Science and Catalysis, 2007, , 717-723.	1.5	3
417	Imaging of enzyme catalysis by wide field microscopy. Handai Nanophotonics, 2007, 3, 133-141.	0.0	2
418	Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams. Optics Express, 2007, 15, 3372.	3.4	36
419	Single-molecule fluorescence spectroscopy in (bio)catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12603-12609.	7.1	138
420	Naphthalene diimides as tunable fluorophores suitable for single molecule applications. , 2007, , .		1
421	Non-conjugated, phenyl assisted coupling in through bond electron transfer in a perylenemonoimide–triphenylamine system. Photochemical and Photobiological Sciences, 2007, 6, 406-415.	2.9	7
422	Single molecule fluorescence spectroscopy of pH sensitive oligonucleotide switches. Photochemical and Photobiological Sciences, 2007, 6, 614-618.	2.9	12
423	Formation of Vesicles in Block Copolymer-Fluorinated Surfactant Complexes. Langmuir, 2007, 23, 116-122.	3.5	20
424	Subdiffraction Imaging through the Selective Donut-Mode Depletion of Thermally Stable Photoswitchable Fluorophores:  Numerical Analysis and Application to the Fluorescent Protein Dronpa. Journal of the American Chemical Society, 2007, 129, 16132-16141.	13.7	130
425	Single-Molecule Spectroscopic Investigation of Energy Migration Processes in Cyclic Porphyrin Arrays. Journal of the American Chemical Society, 2007, 129, 3539-3544.	13.7	36
426	Ultrafast Excited-State Dynamics of the Photoswitchable Protein Dronpa. Journal of the American Chemical Society, 2007, 129, 4870-4871.	13.7	79
427	Fluorescence Lifetime Standards for Time and Frequency Domain Fluorescence Spectroscopy. Analytical Chemistry, 2007, 79, 2137-2149.	6.5	397
428	Dynamic Disorder and Stepwise Deactivation in a Chymotrypsin Catalyzed Hydrolysis Reaction. Journal of the American Chemical Society, 2007, 129, 15458-15459.	13.7	61
429	Energy and Electron Transfer in Ethynylene Bridged Perylene Diimide Multichromophores. Journal of Physical Chemistry C, 2007, 111, 4861-4870.	3.1	83
430	Fluorescence of Single Molecules in Polymer Films:Â Sensitivity of Blinking to Local Environment. Journal of Physical Chemistry B, 2007, 111, 6987-6991.	2.6	91
431	CTâ^'CT Annihilation in Rigid Perylene End-Capped Pentaphenylenes. Journal of the American Chemical Society, 2007, 129, 610-619.	13.7	36
432	High-Throughput Fabrication of Organic Nanowire Devices with Preferential Internal Alignment and Improved Performance. Nano Letters, 2007, 7, 3639-3644.	9.1	89

#	Article	IF	CITATIONS
433	Visualization of Membrane Rafts Using a Perylene Monoimide Derivative and Fluorescence Lifetime Imaging. Biophysical Journal, 2007, 93, 2877-2891.	0.5	49
434	Highlighted Generation of Fluorescence Signals Using Simultaneous Two-Color Irradiation on Dronpa Mutants. Biophysical Journal, 2007, 92, L97-L99.	0.5	116
435	Origin of Simultaneous Donorâ'Acceptor Emission in Single Molecules of Peryleneimideâ'Terrylenediimide Labeled Polyphenylene Dendrimers. Journal of Physical Chemistry B, 2007, 111, 708-719.	2.6	52
436	A Stroboscopic Approach for Fast Photoactivationâ^'Localization Microscopy with Dronpa Mutants. Journal of the American Chemical Society, 2007, 129, 13970-13977.	13.7	145
437	Fluorescent Perylene Diimide Rotaxanes: Spectroscopic Signatures of Wheel–Chromophore Interactions. Chemistry - A European Journal, 2007, 13, 1291-1299.	3.3	40
438	Space- and Time-Resolved Visualization of Acid Catalysis in ZSM-5 Crystals by Fluorescence Microscopy. Angewandte Chemie - International Edition, 2007, 46, 1706-1709.	13.8	119
439	3D Nanoscopy: Bringing Biological Nanostructures into Sharp Focus. Angewandte Chemie - International Edition, 2007, 46, 8330-8332.	13.8	30
440	Singlet–Singlet Annihilation Leading to a Charge-Transfer Intermediate in Chromophore-End-Capped Pentaphenylenes. ChemPhysChem, 2007, 8, 1386-1393.	2.1	8
441	Fluorescence microscopy: Bridging the phase gap in catalysis. Catalysis Today, 2007, 126, 44-53.	4.4	52
442	Complexation of Lipofectamine and Cholesterol-Modified DNA Sequences Studied by Single-Molecule Fluorescence Techniques. Biomacromolecules, 2007, 8, 3382-3392.	5.4	9
443	Do enzymes sleep and work?. Chemical Communications, 2006, , 935.	4.1	66
444	Fast and Reversible Photoswitching of the Fluorescent Protein Dronpa as Evidenced by Fluorescence Correlation Spectroscopy. Biophysical Journal, 2006, 91, L45-L47.	0.5	50
445	Solvent and pH Dependent Fluorescent Properties of a Dimethylaminostyryl Borondipyrromethene Dye in Solution. Journal of Physical Chemistry A, 2006, 110, 5998-6009.	2.5	222
446	Characterizing the Fluorescence Intermittency and Photobleaching Kinetics of Dye Molecules Immobilized on a Glass Surface. Journal of Physical Chemistry A, 2006, 110, 1726-1734.	2.5	147
447	Inhomogeneity of Electron Injection Rates in Dye-Sensitized TiO2: Comparison of the Mesoporous Film and Single Nanoparticle Behaviorâ€. Journal of Physical Chemistry B, 2006, 110, 25314-25321.	2.6	31
448	Photoconversion in the Red Fluorescent Protein from the Sea Anemone Entacmaea quadricolor: Is Cisâ^'Trans Isomerization Involved?. Journal of the American Chemical Society, 2006, 128, 6270-6271.	13.7	51
449	The fabrication of a thin, circular polymer film based phase shaper for generating doughnut modes. Optics Express, 2006, 14, 6273.	3.4	9
450	Synthesis and single enzyme activity of a clicked lipase–BSA hetero-dimer. Chemical Communications, 2006, , 2012-2014.	4.1	73

#	Article	IF	Citations
451	Probing molecular properties and the role of the environment at the single-molecule level. Pure and Applied Chemistry, 2006, 78, 2261-2266.	1.9	4
452	Probing dynamics of individual bio molecules by single molecule spectroscopy. , 2006, , .		0
453	Inhomogeneity of electron injection rates in dye-sensitized TiO 2 : continuous mesoporous films and single particle behavior., 2006,,.		0
454	Single molecule spectroscopic characterization of a far-red fluorescent protein (HcRed) from the Anthozoa coral Heteractis crispa. , 2006, 6098, 18.		1
455	Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature, 2006, 439, 572-575.	27.8	434
456	Correctly validating results from single molecule data: The case of stretched exponential decay in the catalytic activity of single lipase B molecules. Chemical Physics Letters, 2006, 432, 371-374.	2.6	9
457	Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging. Polymer, 2006, 47, 2511-2518.	3.8	130
458	Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochemical and Photobiological Sciences, 2006, 5, 567.	2.9	81
459	Single-Molecule Surface-Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein EGFP., 2006,, 297-312.		5
460	Single-Molecule Surface-Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein EGFP., 2006,, 297-312.		0
461	Synthesis of and excited state processes in multichromophoric dendritic systems. Journal of Luminescence, 2005, 111, 239-253.	3.1	19
462	Switching of the fluorescence emission of single molecules between the locally excited and charge transfer states. Chemical Physics Letters, 2005, 401, 503-508.	2.6	33
463	Electron Transfer at the Single-Molecule Level in a Triphenylamine-Perylene Imide Molecule. ChemPhysChem, 2005, 6, 942-948.	2.1	46
464	Direct Measurement of the End-to-End Distance of Individual Polyfluorene Polymer Chains. ChemPhysChem, 2005, 6, 2286-2294.	2.1	53
465	In Situ Space- and Time-Resolved Sorption Kinetics of Anionic Dyes on Individual LDH Crystals. ChemPhysChem, 2005, 6, 2295-2299.	2.1	52
466	Frans De Schryver: Forty Years of Photochemistry and Photophysics. ChemPhysChem, 2005, 6, 2215-2217.	2.1	0
467	Single-Enzyme Kinetics of CALB-Catalyzed Hydrolysis. Angewandte Chemie - International Edition, 2005, 44, 560-564.	13.8	177
468	Cover Picture: Single-Enzyme Kinetics of CALB-Catalyzed Hydrolysis (Angew. Chem. Int. Ed. 4/2005). Angewandte Chemie - International Edition, 2005, 44, 495-495.	13.8	0

#	Article	IF	CITATIONS
469	The Photo Physical Properties of Dendrimers Containing 1,4-Dioxo-3,6-Diphenylpyrrolo[3,4-c]pyrrole (DPP) as a Core. Macromolecular Chemistry and Physics, 2005, 206, 25-32.	2.2	20
470	Energy Dissipation in Multichromophoric Single Dendrimers. ChemInform, 2005, 36, no.	0.0	0
471	Ensemble Photophysics of Rigid Polyphenylene Based Dendritic Structures. Advances in Photochemistry, 2005, , 1-51.	0.4	2
472	Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2368-2372.	7.1	273
473	Evidence for the Isomerization and Decarboxylation in the Photoconversion of the Red Fluorescent Protein DsRed. Journal of the American Chemical Society, 2005, 127, 8977-8984.	13.7	82
474	From The Cover: Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9511-9516.	7.1	447
475	Single Molecule Spectroscopy as a Probe for Dyeâ^'Polymer Interactions. Journal of the American Chemical Society, 2005, 127, 12011-12020.	13.7	34
476	Charge transfer enhanced annihilation leading to deterministic single photon emission in rigid perylene end-capped polyphenylenes. Chemical Communications, 2005, , 4973.	4.1	17
477	Energy Dissipation in Multichromophoric Single Dendrimers. Accounts of Chemical Research, 2005, 38, 514-522.	15.6	269
478	Probing Intramolecular Förster Resonance Energy Transfer in a Naphthaleneimideâ^'Peryleneimideâ^'Terrylenediimide-Based Dendrimer by Ensemble and Single-Molecule Fluorescence Spectroscopy. Journal of the American Chemical Society, 2005, 127, 9760-9768.	13.7	156
479	Spectroscopy and microscopy of the autofluorescent protein DsRed from Discosoma genus coral. , 2004, , .		O
480	Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14343-14348.	7.1	108
481	Single Photon Emission from a Dendrimer Containing Eight Perylene Diimide Chromophores. Australian Journal of Chemistry, 2004, 57, 1169.	0.9	13
482	Probing the Influence of O2on Photoinduced Reversible Electron Transfer in Perylenediimide-Triphenylamine-Based Dendrimers by Single-Molecule Spectroscopy. Angewandte Chemie - International Edition, 2004, 43, 6116-6120.	13.8	43
483	Probing the Influence of O2on Photoinduced Reversible Electron Transfer in Perylenediimide-Triphenylamine-Based Dendrimers by Single-Molecule Spectroscopy. Angewandte Chemie, 2004, 116, 6242-6246.	2.0	8
484	Higher-Excited-State Photophysical Pathways in Multichromophoric Systems Revealed by Single-Molecule Fluorescence Spectroscopy. ChemPhysChem, 2004, 5, 1786-1790.	2.1	72
485	Fluorescence Lifetimes and Emission Patterns Probe the 3D Orientation of the Emitting Chromophore in a Multichromophoric System. Journal of the American Chemical Society, 2004, 126, 14310-14311.	13.7	59
486	Multichromophoric Dendrimers as Single-Photon Sources:Â A Single-Molecule Study. Journal of Physical Chemistry B, 2004, 108, 16686-16696.	2.6	76

#	Article	IF	Citations
487	Single-Molecule Conformations Probe Free Volume in Polymers. Journal of the American Chemical Society, 2004, 126, 2296-2297.	13.7	61
488	Photophysics of a Waterâ^'Soluble Rylene Dye:  Comparison with Other Fluorescent Molecules for Biological Applications. Journal of Physical Chemistry B, 2004, 108, 12242-12251.	2.6	101
489	Single molecule surface enhanced resonance Raman scattering (SERRS) of the enhanced green fluorescent protein (EGFP)., 2004,,.		0
490	Single-Molecule Spectroscopy Selectively Probes Donor and Acceptor Chromophores in the Phycobiliprotein Allophycocyanin. Biophysical Journal, 2004, 87, 2598-2608.	0.5	55
491	Single-molecule spectroscopy to probe competitive fluorescence resonance energy transfer pathways in bichromophoric synthetic systems. , 2004, , .		2
492	Chapter 1 Photophysical processes in multichromophoric systems at the ensemble and single molecule level. Handai Nanophotonics, 2004, , 3-21.	0.0	0
493	New Analysis of Single Molecule Fluorescence Using Series of Photon Arrival Times. , 2004, , 299-340.		1
494	Photoluminescence Intensity Fluctuations and Electric-Field-Induced Photoluminescence Quenching in Individual Nanoclusters of Poly(phenylenevinylene). ChemPhysChem, 2003, 4, 260-267.	2.1	60
495	Reversible Intramolecular Electron Transfer at the Single-Molecule Level. Angewandte Chemie - International Edition, 2003, 42, 4209-4214.	13.8	56
496	Host Matrix Dependence on the Photophysical Properties of Individual Conjugated Polymer Chains. Macromolecules, 2003, 36, 500-507.	4.8	101
497	Spatially Heterogeneous Dynamics in Polymer Glasses at Room Temperature Probed by Single Molecule Lifetime Fluctuations. Macromolecules, 2003, 36, 7752-7758.	4.8	43
498	Intramolecular Directional Förster Resonance Energy Transfer at the Single-Molecule Level in a Dendritic System. Journal of the American Chemical Society, 2003, 125, 13609-13617.	13.7	102
499	Probing Förster Type Energy Pathways in a First Generation Rigid Dendrimer Bearing Two Perylene Imide Chromophores. Journal of Physical Chemistry A, 2003, 107, 6920-6931.	2.5	119
500	Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13146-13151.	7.1	168
501	Single-Molecule Surface Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein. Journal of the American Chemical Society, 2003, 125, 8446-8447.	13.7	153
502	Excited state processes in individual multichromophoric systems. , 2003, 4962, 1.		0
503	Parameters Influencing the On- and Off-Times in the Fluorescence Intensity Traces of Single Cyanine Dye Molecules. Journal of Physical Chemistry A, 2002, 106, 4808-4814.	2.5	103
504	Photoinduced Electron Transfer in a Rigid First Generation Triphenylamine Core Dendrimer Substituted with a Peryleneimide Acceptor. Journal of the American Chemical Society, 2002, 124, 9918-9925.	13.7	94

#	Article	IF	CITATIONS
505	Intramolecular FÃ \P rster Energy Transfer in a Dendritic System at the Single Molecule Level. Journal of the American Chemical Society, 2002, 124, 2418-2419.	13.7	118
506	Generation-Dependent Energy Dissipation in Rigid Dendrimers Studied by Femtosecond to Nanosecond Time-Resolved Fluorescence Spectroscopyâ€. Journal of Physical Chemistry A, 2002, 106, 2083-2090.	2.5	36
507	Antibunching in the Emission of a Single Tetrachromophoric Dendritic System. Journal of the American Chemical Society, 2002, 124, 14310-14311.	13.7	129
508	Formation and manipulation of supramolecular structures of oligo(p-phenylenevinylene) terminated poly(propylene imine) dendrimers. Chemical Communications, 2002, , 1264-1265.	4.1	10
509	Resonance Energy Transfer in a Calcium Concentration-Dependent Cameleon Protein. Biophysical Journal, 2002, 83, 3499-3506.	0.5	36
510	Single molecule detection of macromolecules. Macromolecular Symposia, 2002, 178, 1-10.	0.7	4
511	Excitation Energy Transfer in Dendritic Host-Guest Donor-Acceptor Systems. ChemPhysChem, 2002, 3, 1005-1013.	2.1	20
512	Conformational characterization from modulated single molecule fluorescence intensity traces. Chemical Physics Letters, 2002, 362, 534-540.	2.6	26
513	Multiparametric Detection of Fluorescence Emitted from Individual Multichromophoric Systems. Springer Series on Fluorescence, 2002, , 131-151.	0.8	2
514	Intramolecular Energy Hopping in Polyphenylene Dendrimers with an Increasing Number of Peryleneimide Chromophores. Journal of Physical Chemistry A, 2001, 105, 3961-3966.	2.5	86
515	Polyphenylene Dendrimers with Different Fluorescent Chromophores Asymmetrically Distributed at the Periphery. Journal of the American Chemical Society, 2001, 123, 8101-8108.	13.7	151
516	An Experimental Comparison of the Maximum Likelihood Estimation and Nonlinear Least-Squares Fluorescence Lifetime Analysis of Single Molecules. Analytical Chemistry, 2001, 73, 2078-2086.	6.5	224
517	Nanometer space resolved photochemistry. Chemical Communications, 2001, , 585-592.	4.1	22
518	Excited-State Dynamics in the Enhanced Green Fluorescent Protein Mutant Probed by Picosecond Time-Resolved Single Photon Counting Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 4999-5006.	2.6	100
519	Intramolecular Energy Hopping and Energy Trapping in Polyphenylene Dendrimers with Multiple Peryleneimide Donor Chromophores and a Terryleneimide Acceptor Trap Chromophore. Journal of the American Chemical Society, 2001, 123, 7668-7676.	13.7	142
520	Microscopy and optical manipulation of dendrimer-built vesicles. Pure and Applied Chemistry, 2001, 73, 435-441.	1.9	9
521	Use of dual marker transposons to identify new symbiosis genes in Rhizobium. Microbial Ecology, 2001, 41, 325-332.	2.8	18
522	Triplet states as non-radiative traps in multichromophoric entities: single molecule spectroscopy of an artificial and natural antenna system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 2093-2107.	3.9	68

#	Article	IF	CITATIONS
523	A new analysis method of single molecule fluorescence using series of photon arrival times: theory and experiment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 2109-2133.	3.9	13
524	Polarisation Sensitive Single Molecule Fluorescence Detection with Linear Polarised Excitation Light and Modulated Polarisation Direction Applied to Multichromophoric Entities. Single Molecules, 2001, 2, 35-44.	0.9	17
525	Singlet-Singlet Annihilation in Multichromophoric Peryleneimide Dendrimers, Determined by Fluorescence Upconversion. ChemPhysChem, 2001, 2, 49-55.	2.1	58
526	Single-Molecule Spectroscopy of a Dendrimer-Based Host-Guest System. Chemistry - A European Journal, 2001, 7, 4126-4133.	3.3	47
527	Polyphenylene Dendrimers with Perylene Diimide as a Luminescent Core. Chemistry - A European Journal, 2001, 7, 4844-4853.	3.3	97
528	Merging of Hard Spheres by Phototriggered Micromanipulation. Angewandte Chemie - International Edition, 2001, 40, 1710-1714.	13.8	29
529	Influence of Structural and Rotational Isomerism on the Triplet Blinking of Individual Dendrimer Molecules. Angewandte Chemie - International Edition, 2001, 40, 4643-4648.	13.8	68
530	Conformational rearrangements in and twisting of a single molecule. Chemical Physics Letters, 2001, 333, 255-263.	2.6	135
531	New strategies for low light level detection in single molecule spectroscopy. Chemical Physics Letters, 2001, 338, 151-158.	2.6	8
532	Collective effects in individual oligomers of the red fluorescent coral protein DsRed. Chemical Physics Letters, 2001, 336, 415-423.	2.6	42
533	Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14398-14403.	7.1	151
534	New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation. Review of Scientific Instruments, 2001, 72, 36-40.	1.3	105
535	Co. T.G., J.H., and L.L. thank the European Commission for a TMR fellowship within the frame of the Marie Curie program, the FWO, and the Flemish Ministry of Education, respectively. J.W.W. and A.S. acknowledge grants from the EU (BICEPS project) and the Royal Dutch Foundation of Science, respectively. This work was further supported by DWTC (Belgium), and ESF through SMARTON. An	13.8	1
536	Polarisation Sensitive Single Molecule Fluorescence Detection with Linear Polarised Excitation Light and Modulated Polarisation Direction Applied to Multichromophoric Entities. Single Molecules, 2001, 2, 35-44.	0.9	0
537	Theory of time-resolved single-molecule fluorescence spectroscopy. Chemical Physics Letters, 2000, 318, 325-332.	2.6	39
538	Emission of the contact ion pair of rhodamine dyes observed by single molecule spectroscopy. Chemical Physics Letters, 2000, 321, 372-378.	2.6	34
539	Probing Photophysical Processes in Individual Multichromophoric Dendrimers by Single-Molecule Spectroscopy. Journal of the American Chemical Society, 2000, 122, 9278-9288.	13.7	230
540	Mechanical and optical manipulation of porphyrin rings at the submicrometre scale. Nanotechnology, 2000, 11, 16-23.	2.6	24

#	Article	IF	Citations
541	Fluorescence from Azobenzene Functionalized Poly(propylene imine) Dendrimers in Self-Assembled Supramolecular Structures. Journal of the American Chemical Society, 2000, 122, 3445-3452.	13.7	164
542	Effect of Core Structure on Photophysical and Hydrodynamic Properties of Porphyrin Dendrimers. Macromolecules, 2000, 33, 2967-2973.	4.8	96
543	Photophysical study of a multi-chromophoric dendrimer by time-resolved fluorescence and femtosecond transient absorption spectroscopy. Chemical Physics Letters, 1999, 304, 1-9.	2.6	87
544	Intramolecular evolution from a locally excited state to an excimer-like state in a multichromophoric dendrimer evidenced by a femtosecond fluorescence upconversion study. Chemical Physics Letters, 1999, 310, 73-78.	2.6	48
545	Fluorescence Detection from Single Dendrimers with Multiple Chromophores. Angewandte Chemie - International Edition, 1999, 38, 3752-3756.	13.8	92
546	Ring Formation in Evaporating Porphyrin Derivative Solutions. Langmuir, 1999, 15, 3582-3588.	3.5	76
547	Correlation between Ground State Conformation and Excited State Dynamics in a Multichromophoric Dendrimer Studied by Excitation Wavelength Dependent Fluorescence Upconversion. Journal of Physical Chemistry B, 1999, 103, 9378-9381.	2.6	28
548	Confocal and Scanning Probe Microscopy of Surface Modifications of Thin Polymer Films Induced by Infrared Diode Laser Irradiation. Langmuir, 1999, 15, 1364-1372.	3.5	4
549	Excited State Probing of Supramolecular Systems on a Submicron Scale. , 1999, , 119-136.		2
550	Detection of a Single Dendrimer Macromolecule with a Fluorescent Dihydropyrrolopyrroledione (DPP) Core Embedded in a Thin Polystyrene Polymer Film. Macromolecules, 1998, 31, 4493-4497.	4.8	69
551	Transmission and Confocal Fluorescence Microscopy and Time-Resolved Fluorescence Spectroscopy Combined with a Laser Trap:  Investigation of Optically Trapped Block Copolymer Micelles. Journal of Physical Chemistry B, 1998, 102, 8440-8451.	2.6	23
552	Mesostructure of Evaporated Porphyrin Thin Films:  Porphyrin Wheel Formation. Journal of Physical Chemistry B, 1997, 101, 10588-10598.	2.6	72
553	Molecular Assembling by the Radiation Pressure of a Focused Laser Beam:Â Poly(N-isopropylacrylamide) in Aqueous Solution. Langmuir, 1997, 13, 414-419.	3.5	115
554	Molecular Association by the Radiation Pressure of a Focused Laser Beam:Â Fluorescence Characterization of Pyrene-Labeled PNIPAM. Journal of the American Chemical Society, 1997, 119, 2741-2742.	13.7	60
555	Laser Induced Phase Transition in Aqueous Solutions of Hydrophobically Modified Poly(N-Isopropylacrylamide). Molecular Crystals and Liquid Crystals, 1996, 283, 165-172.	0.3	18
556	Excited state relaxation channels of liquid-crystalline cyanobiphenyls and a ring-bridged model compound. Comparison of bulk and dilute solution properties. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 85, 11-21.	3.9	36
557	Time-resolved photoluminescence inYBa2Cu3O6.4andBi2Sr2Ca1â^'zLuzCu2O8. Physical Review B, 1994, 49, 694-697.	3.2	0
558	Compartmental analysis of the fluorescence decay surface of the exciplex formation between 1-methylpyrene and triethylamine. The Journal of Physical Chemistry, 1991, 95, 9375-9381.	2.9	49

#	Article	IF	CITATIONS
559	Fluorescence study of a field-induced director reorientation in a liquid crystalline polyacrylate. Journal of Fluorescence, $1991, 1, 69-76$.	2.5	O
560	Fluorescence study of field-induced director reorientations in low mass liquid crystalline compounds. Journal of Fluorescence, 1991, 1, 193-202.	2.5	2
561	Solvent dynamics and intramolecular charge transfer in4-Cyano-4′-butyloxybiphenyl (4COB) Tetrahedron, 1989, 45, 4693-4706.	1.9	28
562	Synthese und komplexierende Eigenschaften symmetrischer N,N′-Tetra-(8-hydroxychinolyl-5-methyl)-α,ω-diaminoalkane. Archiv Der Pharmazie, 1982, 315, 131-135.	4.1	3
563	Unraveling the threeâ€dimensional morphology and dynamics of the optically evolving polystyrene nanoparticle assembly using dualâ€objective lens microscopy. Journal of the Chinese Chemical Society, 0, , .	1.4	3
564	Connecting Trap Dynamics and Mechanical Response in MAPbI3 perovskites., 0,,.		0
565	Non-radiative recombination in organo-metal halide perovskites: Seeing beyond the ensemble-averaged picture with temperature-dependent photoluminescence microscopy. , 0, , .		O
566	Single Perovskite or Double Perovskite: What's the Difference?. , 0, , .		1
567	Understanding Real-Time Dynamics of Photoluminescence Quenching Traps in Halide Perovskites., 0,,.		O
568	Reactions at the Single-Molecule Level. , 0, , 281-308.		0
569	The Optical Absorption Force Allows Controlling Colloidal Assembly Morphology at an Interface. Advanced Optical Materials, 0, , 2200231.	7.3	5