
Marisa Brini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/67492/publications.pdf Version: 2024-02-01

MADISA RDINI

#	Article	IF	CITATIONS
1	Monitoring calcium handling by the plant endoplasmic reticulum with a lowâ€Ca ²⁺ â€affinity targeted aequorin reporter. Plant Journal, 2022, 109, 1014-1027.	5.7	5
2	Angiotensin II Promotes SARS-CoV-2 Infection via Upregulation of ACE2 in Human Bronchial Cells. International Journal of Molecular Sciences, 2022, 23, 5125.	4.1	11
3	Stable Integration of Inducible SPLICS Reporters Enables Spatio-Temporal Analysis of Multiple Organelle Contact Sites upon Modulation of Cholesterol Traffic. Cells, 2022, 11, 1643.	4.1	3
4	The PLEKHA7–PDZD11 complex regulates the localization of the calcium pump PMCA and calcium handling in cultured cells. Journal of Biological Chemistry, 2022, 298, 102138.	3.4	2
5	Split Green Fluorescent Protein–Based Contact Site Sensor (SPLICS) for Heterotypic Organelle Juxtaposition as Applied to ER–Mitochondria Proximities. Methods in Molecular Biology, 2021, 2275, 363-378.	0.9	2
6	Membrane Transport Plasma Membrane Calcium Pump: Structure and Function. , 2021, , 1063-1069.		0
7	Ca2+ handling at the mitochondria-ER contact sites in neurodegeneration. Cell Calcium, 2021, 98, 102453.	2.4	49
8	Quantification of organelle contact sites by split-GFP-based contact site sensors (SPLICS) in living cells. Nature Protocols, 2021, 16, 5287-5308.	12.0	30
9	An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo. Nature Communications, 2020, 11, 6069.	12.8	43
10	ER–Mitochondria Contact Sites Reporters: Strengths and Weaknesses of the Available Approaches. International Journal of Molecular Sciences, 2020, 21, 8157.	4.1	30
11	Play Around with mtDNA. DNA and Cell Biology, 2020, 39, 1369-1369.	1.9	0
12	PINK1/Parkin Mediated Mitophagy, Ca2+ Signalling, and ER–Mitochondria Contacts in Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 1772.	4.1	105
13	ER-Mitochondria Calcium Transfer, Organelle Contacts and Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2020, 1131, 719-746.	1.6	29
14	Impaired Mitochondrial ATP Production Downregulates Wnt Signaling via ER Stress Induction. Cell Reports, 2019, 28, 1949-1960.e6.	6.4	56
15	<i>Call for Papers:</i> Special Issue on Mitochondrial DNA in Health and Disease. DNA and Cell Biology, 2019, 38, 1167-1168.	1.9	0
16	A split-GFP tool reveals differences in the sub-mitochondrial distribution of wt and mutant alpha-synuclein. Cell Death and Disease, 2019, 10, 857.	6.3	14
17	splitGFP Technology Reveals Dose-Dependent ER-Mitochondria Interface Modulation by α-Synuclein A53T and A30P Mutants. Cells, 2019, 8, 1072.	4.1	34
18	Calcium, Dopamine and Neuronal Calcium Sensor 1: Their Contribution to Parkinson's Disease. Frontiers in Molecular Neuroscience, 2019, 12, 55.	2.9	29

#	Article	IF	CITATIONS
19	A V1143F mutation in the neuronal-enriched isoform 2 of the PMCA pump is linked with ataxia. Neurobiology of Disease, 2018, 115, 157-166.	4.4	15
20	The PMCA pumps in genetically determined neuronal pathologies. Neuroscience Letters, 2018, 663, 2-11.	2.1	21
21	SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death and Differentiation, 2018, 25, 1131-1145.	11.2	174
22	Alphaâ€synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Reports, 2018, 19, .	4.5	88
23	Lipid-Mediated Modulation of Intracellular Ion Channels and Redox State: Physiopathological Implications. Antioxidants and Redox Signaling, 2018, 28, 949-972.	5.4	8
24	Editorial. Neuroscience Letters, 2018, 663, 1.	2.1	0
25	Mammalian Calcium Pumps in Health and Disease. , 2018, , 49-59.		0
26	Parkin-dependent regulation of the MCU complex component MICU1. Scientific Reports, 2018, 8, 14199.	3.3	31
27	Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacological Research, 2018, 138, 43-56.	7.1	152
28	The Close Encounter Between Alpha-Synuclein and Mitochondria. Frontiers in Neuroscience, 2018, 12, 388.	2.8	99
29	Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca2+ handling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3247-3256.	3.8	88
30	Regulation of Cell Calcium and Role of Plasma Membrane Calcium ATPases. International Review of Cell and Molecular Biology, 2017, 332, 259-296.	3.2	49
31	A novel PMCA3 mutation in an ataxic patient with hypomorphic phosphomannomutase 2 (PMM2) heterozygote mutations: Biochemical characterization of the pump defect. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 3303-3312.	3.8	17
32	The plasma membrane calcium pumps: focus on the role in (neuro)pathology. Biochemical and Biophysical Research Communications, 2017, 483, 1116-1124.	2.1	44
33	Emerging (and converging) pathways in Parkinson's disease: keeping mitochondrial wellness. Biochemical and Biophysical Research Communications, 2017, 483, 1020-1030.	2.1	42
34	The ataxia related G1107D mutation of the plasma membrane Ca 2+ ATPase isoform 3 affects its interplay with calmodulin and the autoinhibition process. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 165-173.	3.8	25
35	Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. Biological Chemistry, 2017, 398, 77-100.	2.5	50
36	Spontaneous shaker rat mutant – a new model for X-linked tremor-ataxia. DMM Disease Models and Mechanisms, 2016, 9, 553-62.	2.4	17

#	Article	IF	CITATIONS
37	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
38	Reduced mitochondrial Ca2+ transients stimulate autophagy in human fibroblasts carrying the 13514A>C mutation of the ND5 subunit of NADH dehydrogenase. Cell Death and Differentiation, 2016, 23, 231-241.	11.2	51
39	Calcium Handling by Endoplasmic Reticulum and Mitochondria in a Cell Model of Huntington's Disease. PLOS Currents, 2016, 8, .	1.4	10
40	The Plasma Membrane Ca2+ ATPases: Isoform Specificity and Functional Versatility. , 2016, , 13-26.		0
41	A Novel Mutation in Isoform 3 of the Plasma Membrane Ca2+ Pump Impairs Cellular Ca2+ Homeostasis in a Patient with Cerebellar Ataxia and Laminin Subunit 1α Mutations. Journal of Biological Chemistry, 2015, 290, 16132-16141.	3.4	41
42	A new split-GFP-based probe reveals DJ-1 translocation into the mitochondrial matrix to sustain ATP synthesis upon nutrient deprivation. Human Molecular Genetics, 2015, 24, 1045-1060.	2.9	38
43	Mitochondrial Calcium Homeostasis and Implications for Human Health. Food and Nutritional Components in Focus, 2015, , 448-467.	0.1	1
44	Mammalian Calcium Pumps in Health and Disease. , 2014, , 43-53.		2
45	Methods to Measure Intracellular Ca2+ Fluxes with Organelle-Targeted Aequorin-Based Probes. Methods in Enzymology, 2014, 543, 21-45.	1.0	35
46	Inhibition of Ubiquitin Proteasome System Rescues the Defective Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA1) Protein Causing Chianina Cattle Pseudomyotonia. Journal of Biological Chemistry, 2014, 289, 33073-33082.	3.4	14
47	Neuronal calcium signaling: function and dysfunction. Cellular and Molecular Life Sciences, 2014, 71, 2787-2814.	5.4	501
48	Calcium signaling in Parkinson's disease. Cell and Tissue Research, 2014, 357, 439-454.	2.9	100
49	Calcium and Endoplasmic Reticulum-Mitochondria Tethering in Neurodegeneration. DNA and Cell Biology, 2013, 32, 140-146.	1.9	53
50	Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 495-508.	3.8	185
51	Intracellular Calcium Homeostasis and Signaling. Metal Ions in Life Sciences, 2013, 12, 119-168.	2.8	116
52	The plasma membrane calcium pump in health and disease. FEBS Journal, 2013, 280, 5385-5397.	4.7	139
53	Measurements of Ca2+ Concentration with Recombinant Targeted Luminescent Probes. Methods in Molecular Biology, 2013, 937, 273-291.	0.9	13
54	The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering. Human Molecular Genetics, 2013, 22, 2152-2168.	2.9	177

#	Article	IF	CITATIONS
55	Calcium in Health and Disease. Metal Ions in Life Sciences, 2013, 13, 81-137.	2.8	105
56	Ca2+-activated Nucleotidase 1, a Novel Target Gene for the Transcriptional Repressor DREAM (Downstream Regulatory Element Antagonist Modulator), Is Involved in Protein Folding and Degradation. Journal of Biological Chemistry, 2012, 287, 18478-18491.	3.4	12
57	α-Synuclein Controls Mitochondrial Calcium Homeostasis by Enhancing Endoplasmic Reticulum-Mitochondria Interactions. Journal of Biological Chemistry, 2012, 287, 17914-17929.	3.4	256
58	NAD+ Levels Control Ca2+ Store Replenishment and Mitogen-induced Increase of Cytosolic Ca2+ by Cyclic ADP-ribose-dependent TRPM2 Channel Gating in Human T Lymphocytes. Journal of Biological Chemistry, 2012, 287, 21067-21081.	3.4	50
59	Calcium Pumps: Why So Many?. , 2012, 2, 1045-1060.		34
60	Mutation of plasma membrane Ca ²⁺ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca ²⁺ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14514-14519.	7.1	113
61	Hair cells, plasma membrane Ca2+ ATPase and deafness. International Journal of Biochemistry and Cell Biology, 2012, 44, 679-683.	2.8	20
62	Mitochondrial Ca2+ as a Key Regulator of Mitochondrial Activities. Advances in Experimental Medicine and Biology, 2012, 942, 53-73.	1.6	36
63	Reduced Mid1 Expression and Delayed Neuromotor Development in daDREAM Transgenic Mice. Frontiers in Molecular Neuroscience, 2012, 5, 58.	2.9	15
64	Mitochondrial Ca2+ and neurodegeneration. Cell Calcium, 2012, 52, 73-85.	2.4	110
65	Mutations in PMCA2 and hereditary deafness: A molecular analysis of the pump defect. Cell Calcium, 2011, 50, 569-576.	2.4	31
66	The Plasma Membrane Ca2+ ATPase and the Plasma Membrane Sodium Calcium Exchanger Cooperate in the Regulation of Cell Calcium. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004168-a004168.	5.5	237
67	Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. BioFactors, 2011, 37, 228-240.	5.4	101
68	Translocation of signalling proteins to the plasma membrane revealed by a new bioluminescent procedure. BMC Cell Biology, 2011, 12, 27.	3.0	9
69	TAT-Mediated Aequorin Transduction: An Alternative Approach for Effective Calcium Measurements in Plant Cells. Plant and Cell Physiology, 2011, 52, 2225-2235.	3.1	17
70	Calcium Pumps. , 2010, , 943-947.		1
71	Plasma Membrane Ca2+-ATPase Overexpression Depletes Both Mitochondrial and Endoplasmic Reticulum Ca2+ Stores and Triggers Apoptosis in Insulin-secreting BRIN-BD11 Cells. Journal of Biological Chemistry, 2010, 285, 30634-30643.	3.4	33
72	The Novel PMCA2 Pump Mutation Tommy Impairs Cytosolic Calcium Clearance in Hair Cells and Links to Deafness in Mice. Journal of Biological Chemistry, 2010, 285, 37693-37703.	3.4	53

#	Article	IF	CITATIONS
73	Deletions and Mutations in the Acidic Lipid-binding Region of the Plasma Membrane Ca2+ Pump. Journal of Biological Chemistry, 2010, 285, 30779-30791.	3.4	22
74	Bioluminescent Ca2+ Indicators. Neuromethods, 2010, , 81-100.	0.3	2
75	Calcium Pumps in Health and Disease. Physiological Reviews, 2009, 89, 1341-1378.	28.8	553
76	Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 335-344.	1.0	254
77	Plasma membrane Ca2+-ATPase: from a housekeeping function to a versatile signaling role. Pflugers Archiv European Journal of Physiology, 2009, 457, 657-664.	2.8	73
78	Inhibitory interaction of the 14-3-3 proteins with ubiquitous (PMCA1) and tissue-specific (PMCA3) isoforms of the plasma membrane Ca2+ pump. Cell Calcium, 2008, 43, 550-561.	2.4	34
79	Calcium-sensitive photoproteins. Methods, 2008, 46, 160-166.	3.8	56
80	Interplay of the Ca2+-binding Protein DREAM with Presenilin in Neuronal Ca2+ Signaling. Journal of Biological Chemistry, 2008, 283, 27494-27503.	3.4	23
81	Calcium Homeostasis and Mitochondrial Dysfunction in Striatal Neurons of Huntington Disease. Journal of Biological Chemistry, 2008, 283, 5780-5789.	3.4	168
82	The Novel Mouse Mutation Oblivion Inactivates the PMCA2 Pump and Causes Progressive Hearing Loss. PLoS Genetics, 2008, 4, e1000238.	3.5	56
83	A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1516-1521.	7.1	116
84	Plasma-membrane calcium pumps and hereditary deafness. Biochemical Society Transactions, 2007, 35, 913-918.	3.4	10
85	Functional Specificity of PMCA Isoforms?. Annals of the New York Academy of Sciences, 2007, 1099, 237-246.	3.8	28
86	Inhibitory Interaction of the Plasma Membrane Na+/Ca2+ Exchangers with the 14-3-3 Proteins. Journal of Biological Chemistry, 2006, 281, 19645-19654.	3.4	24
87	Mitochondrial calcium signalling in cell death. FEBS Journal, 2005, 272, 4013-4022.	4.7	25
88	Ca2+ Signaling in HEK-293 and Skeletal Muscle Cells Expressing Recombinant Ryanodine Receptors Harboring Malignant Hyperthermia and Central Core Disease Mutations. Journal of Biological Chemistry, 2005, 280, 15380-15389.	3.4	58
89	Inhibitory Interaction of the 14-3-3ïµ Protein with Isoform 4 of the Plasma Membrane Ca2+-ATPase Pump. Journal of Biological Chemistry, 2005, 280, 37195-37203.	3.4	67
90	The Prion Protein and Its Paralogue Doppel Affect Calcium Signaling in Chinese Hamster Ovary Cells. Molecular Biology of the Cell, 2005, 16, 2799-2808.	2.1	28

#	Article	IF	CITATIONS
91	Ryanodine receptor defects in muscle genetic diseases. Biochemical and Biophysical Research Communications, 2004, 322, 1245-1255.	2.1	60
92	Ca2+ signalling in mitochondria: mechanism and role in physiology and pathology. Cell Calcium, 2003, 34, 399-405.	2.4	95
93	A Comparative Functional Analysis of Plasma Membrane Ca2+ Pump Isoforms in Intact Cells. Journal of Biological Chemistry, 2003, 278, 24500-24508.	3.4	90
94	Recombinant Expression of the Plasma Membrane Na+/Ca2+ Exchanger Affects Local and Clobal Ca2+ Homeostasis in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2002, 277, 38693-38699.	3.4	14
95	The role of calcium in oligogalacturonide-activated signalling in soybean cells. Planta, 2002, 215, 596-605.	3.2	69
96	A Study of the Activity of the Plasma Membrane Na/Ca Exchanger in the Cellular Environment. Annals of the New York Academy of Sciences, 2002, 976, 376-381.	3.8	4
97	Generation, Control, and Processing of Cellular Calcium Signals. Critical Reviews in Biochemistry and Molecular Biology, 2001, 36, 107-260.	5.2	459
98	Serca1 Truncated Proteins Unable to Pump Calcium Reduce the Endoplasmic Reticulum Calcium Concentration and Induce Apoptosis. Journal of Cell Biology, 2001, 153, 1301-1314.	5.2	87
99	Measuring Ca2+ in the Nucleoplasm of Intact Cells. , 2001, , 105-130.		0
100	Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Current Opinion in Chemical Biology, 2000, 4, 152-161.	6.1	147
101	Expression, partial purification and functional properties of themuscle-specific calpain isoform p94. FEBS Journal, 1999, 265, 839-846.	0.2	56
102	A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nature Medicine, 1999, 5, 951-954.	30.7	154
103	Mitochondria as biosensors of calcium microdomains. Cell Calcium, 1999, 26, 193-200.	2.4	164
104	Targeted recombinant aequorins: Tools for monitoring [Ca2+] in the various compartments of a living cell. , 1999, 46, 380-389.		81
105	Transient and Long-Lasting Openings of the Mitochondrial Permeability Transition Pore Can Be Monitored Directly in Intact Cells by Changes in Mitochondrial Calcein Fluorescence. Biophysical Journal, 1999, 76, 725-734.	0.5	628
106	New light on mitochondrial calcium. BioFactors, 1998, 8, 243-253.	5.4	43
107	Chapter 5: Targeting GFP to Organelles. Methods in Cell Biology, 1998, 58, 75-85.	1.1	42
108	Doubleâ€stranded DNA can be translocated across a planar membrane containing purified mitochondrial porin. FASEB Journal, 1998, 12, 495-502.	0.5	62

#	Article	IF	CITATIONS
109	DNA Translocation Across Planar Bilayers Containing Bacillus subtilis Ion Channels. Journal of Biological Chemistry, 1997, 272, 25275-25282.	3.4	58
110	Targeting aequorin and green fluorescent protein to intracellular organelles. Gene, 1996, 173, 113-117.	2.2	61
111	Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Current Biology, 1996, 6, 183-188.	3.9	225
112	[30] Photoprotein-mediated measurement of calcium ion concentration in mitochondria of living cells. Methods in Enzymology, 1995, 260, 417-428.	1.0	77
113	Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Current Biology, 1995, 5, 635-642.	3.9	492
114	Transfected Aequorin in the Measurement of Cytosolic Ca2+ Concentration ([Ca2+]c). Journal of Biological Chemistry, 1995, 270, 9896-9903.	3.4	342
115	Cytosolic free calcium concentration in the mitogenic stimulation of T lymphocytes by anti-CD3 monoclonal antibodies. Cell Calcium, 1994, 16, 167-180.	2.4	9
116	Nuclear targeting of aequorin. Cell Calcium, 1994, 16, 259-268.	2.4	88
117	Gene transfer into satellite cell from regenerating muscle: Bupivacaine allows β-gal transfection and expression in vitro and in vivo. In Vitro Cellular and Developmental Biology - Animal, 1994, 30, 131-133.	1.5	33
118	Targeting Recombinant Aequorin to Specific Intracellular Organelles. Methods in Cell Biology, 1994, 40, 339-358.	1.1	68
119	Intracellular targeting of the photoprotein aequorin: A new approach for measuring, in living cells, Ca2+ concentrations in defined cellular compartments. Cytotechnology, 1993, 11, S44-S46.	1.6	23
120	Structure of the promoter region of the gene encoding cytochrome c oxidase subunit V in Dictyostelium. FEBS Journal, 1993, 211, 411-414.	0.2	3
121	Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature, 1992, 358, 325-327.	27.8	902
122	The most conserved nuclear-encoded polypeptide of cytochrome c oxidase is the putative zinc-binding subunit: primary structure of subunit V from the slime mold Dictyostelium discoideum. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1129, 100-104.	2.4	22