Tobias M Hohl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6748845/publications.pdf

Version: 2024-02-01

74 papers 6,874 citations

94433 37 h-index 71 g-index

83 all docs

83 docs citations

83 times ranked

10741 citing authors

#	Article	IF	CITATIONS
1	The Effect of Neutropenia and Filgrastim (G-CSF) on Cancer Patients With Coronavirus Disease 2019 (COVID-19) Infection. Clinical Infectious Diseases, 2022, 74, 567-574.	5.8	26
2	$Identification \ of a \ novel < i > Candida \ metapsilosis < / i > isolate \ reveals \ multiple \ hybridization \ events. \ G3: Genes, Genomes, Genetics, 2022, 12, .$	1.8	6
3	Clinical and Genomic Characterization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS) Tj ETQq1 1 CD Diseases, 2022, 75, e774-e782.).784314 ı 5.8	rgBT /Overloci 5
4	Customization of a DADA2-based pipeline for fungal internal transcribed spacer 1 (ITS1) amplicon data sets. JCI Insight, 2022, 7 , .	5.0	9
5	American Society of Transplantation and Cellular Therapy Series, 2: Management and Prevention of Aspergillosis in Hematopoietic Cell Transplantation Recipients. Transplantation and Cellular Therapy, 2021, 27, 201-211.	1.2	23
6	Fungal Bioreporters to Monitor Outcomes of Aspergillus: Host–Cell Interactions. Methods in Molecular Biology, 2021, 2260, 121-132.	0.9	0
7	Mycobiota dysbiosis and gastric tumorigenesis. Theranostics, 2021, 11, 7488-7490.	10.0	10
8	Aspergillus fumigatus Strain-Specific Conidia Lung Persistence Causes an Allergic Broncho-Pulmonary Aspergillosis-Like Disease Phenotype. MSphere, 2021, 6, .	2.9	9
9	Exploring Candida auris in its habitat. Cell Host and Microbe, 2021, 29, 150-151.	11.0	1
10	Rapid transcriptional and metabolic adaptation of intestinal microbes to host immune activation. Cell Host and Microbe, 2021, 29, 378-393.e5.	11.0	52
11	Mitochondrial Reactive Oxygen Species Enhance Alveolar Macrophage Activity against Aspergillus fumigatus but Are Dispensable for Host Protection. MSphere, 2021, 6, e0026021.	2.9	9
12	Global guideline for the diagnosis and management of the endemic mycoses: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology. Lancet Infectious Diseases, The, 2021, 21, e364-e374.	9.1	99
13	Fungal Bioreporters to Monitor Outcomes of Blastomyces: Host–Cell Interactions. Methods in Molecular Biology, 2021, 2260, 111-119.	0.9	O
14	Candida albicans Isolates 529L and CHN1 Exhibit Stable Colonization of the Murine Gastrointestinal Tract. MBio, 2021, 12, e0287821.	4.1	21
15	Haematopoietic cell transplantation outcomes are linked to intestinal mycobiota dynamics and an expansion of Candida parapsilosis complex species. Nature Microbiology, 2021, 6, 1505-1515.	13.3	35
16	High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nature Medicine, 2020, 26, 59-64.	30.7	193
17	Bacterial immunotherapy for cancer induces CD4-dependent tumor-specific immunity through tumor-intrinsic interferon- \hat{I}^3 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18627-18637.	7.1	58
18	The gut microbiota is associated with immune cell dynamics in humans. Nature, 2020, 588, 303-307.	27.8	273

#	Article	IF	CITATIONS
19	Call to Action: How to Tackle Emerging Nosocomial Fungal Infections. Cell Host and Microbe, 2020, 27, 859-862.	11.0	15
20	Enhancing mucosal immunity by transient microbiota depletion. Nature Communications, 2020, 11, 4475.	12.8	12
21	Fungal Infections Associated With the Use of Novel Immunotherapeutic Agents. Current Clinical Microbiology Reports, 2020, 7, 142-149.	3.4	12
22	During Aspergillus Infection, Monocyte-Derived DCs, Neutrophils, and Plasmacytoid DCs Enhance Innate Immune Defense through CXCR3-Dependent Crosstalk. Cell Host and Microbe, 2020, 28, 104-116.e4.	11.0	52
23	Platelets are critical for survival and tissue integrity during murine pulmonary Aspergillus fumigatus infection. PLoS Pathogens, 2020, 16, e1008544.	4.7	16
24	Determinants of COVID-19 disease severity in patients with cancer. Nature Medicine, 2020, 26, 1218-1223.	30.7	501
25	Minority report: the intestinal mycobiota in systemic infections. Current Opinion in Microbiology, 2020, 56, 1-6.	5.1	24
26	Antibiotic Degradation by Commensal Microbes Shields Pathogens. Infection and Immunity, 2020, 88, .	2.2	17
27	Favorable outcomes of COVID-19 in recipients of hematopoietic cell transplantation. Journal of Clinical Investigation, 2020, 130, 6656-6667.	8.2	101
28	CARD9+ microglia promote antifungal immunity via IL-1 \hat{l}^2 - and CXCL1-mediated neutrophil recruitment. Nature Immunology, 2019, 20, 559-570.	14.5	162
29	Inflammatory monocytes are detrimental to the host immune response during acute infection with Cryptococcus neoformans. PLoS Pathogens, 2019, 15, e1007627.	4.7	42
30	Menacing Mold: Recent Advances in Aspergillus Pathogenesis and Host Defense. Journal of Molecular Biology, 2019, 431, 4229-4246.	4.2	36
31	Response to Comment on "Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death― Science, 2018, 360, .	12.6	1
32	Validation of single nucleotide polymorphisms in invasive aspergillosis following hematopoietic cell transplantation. Blood, 2017, 129, 2693-2701.	1.4	80
33	BCAP inhibits proliferation and differentiation of myeloid progenitors in the steady state and during demand situations. Blood, 2017, 129, 1503-1513.	1.4	9
34	Immune responses to invasive aspergillosis: new understanding and therapeutic opportunities. Current Opinion in Infectious Diseases, 2017, 30, 364-371.	3.1	24
35	Live Imaging of Antifungal Activity by Human Primary Neutrophils and Monocytes in Response to A. fumigatus . Journal of Visualized Experiments, 2017, , .	0.3	16
36	Interleukin $1\hat{l}_{\pm}$ Is Critical for Resistance against Highly Virulent Aspergillus fumigatus Isolates. Infection and Immunity, 2017, 85, .	2.2	65

#	Article	IF	Citations
37	Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science, 2017, 357, 1037-1041.	12.6	92
38	Immunity against fungi. JCI Insight, 2017, 2, .	5.0	105
39	A CCR2+ myeloid cell niche required for pancreatic \hat{l}^2 cell growth. JCI Insight, 2017, 2, .	5.0	16
40	Flow Cytometry of Lung and Bronchoalveolar Lavage Fluid Cells from Mice Challenged with Fluorescent Aspergillus Reporter (FLARE) Conidia. Bio-protocol, 2016, 6, .	0.4	21
41	DAP12 Inhibits Pulmonary Immune Responses to Cryptococcus neoformans. Infection and Immunity, 2016, 84, 1879-1886.	2.2	6
42	Heterogeneity among Isolates Reveals that Fitness in Low Oxygen Correlates with Aspergillus fumigatus Virulence. MBio, 2016, 7, .	4.1	131
43	New advances in invasive aspergillosis immunobiology leading the way towards personalized therapeutic approaches. Cytokine, 2016, 84, 63-73.	3.2	10
44	Translocation from nuclei to cytoplasm is necessary for anti Aâ€PCD activity and turnover of the Type II IAP BcBir1. Molecular Microbiology, 2016, 99, 393-406.	2.5	4
45	Role of Granulocyte-Macrophage Colony-Stimulating Factor Signaling in Regulating Neutrophil Antifungal Activity and the Oxidative Burst During Respiratory Fungal Challenge. Journal of Infectious Diseases, 2016, 213, 1289-1298.	4.0	52
46	Zinc and Manganese Chelation by Neutrophil S100A8/A9 (Calprotectin) Limits Extracellular <i>Aspergillus fumigatus </i> Hyphal Growth and Corneal Infection. Journal of Immunology, 2016, 196, 336-344.	0.8	130
47	Monocyte-mediated defense against bacteria, fungi, and parasites. Seminars in Immunology, 2015, 27, 397-409.	5.6	56
48	Deploying FLAREs to Visualize Functional Outcomes of Hostâ€"Pathogen Encounters. PLoS Pathogens, 2015, 11, e1004912.	4.7	20
49	Intestinal Monocyte-Derived Macrophages Control Commensal-Specific Th17 Responses. Cell Reports, 2015, 12, 1314-1324.	6.4	119
50	Compartment-Specific and Sequential Role of MyD88 and CARD9 in Chemokine Induction and Innate Defense during Respiratory Fungal Infection. PLoS Pathogens, 2015, 11, e1004589.	4.7	93
51	Calnexin Bridges the Gap toward a Pan-Fungal Vaccine. Cell Host and Microbe, 2015, 17, 421-423.	11.0	4
52	CARD9-Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System. PLoS Pathogens, 2015, 11, e1005293.	4.7	184
53	Inflammatory Monocytes Orchestrate Innate Antifungal Immunity in the Lung. PLoS Pathogens, 2014, 10, e1003940.	4.7	154
54	Myeloid Derived Hypoxia Inducible Factor 1-alpha Is Required for Protection against Pulmonary Aspergillus fumigatus Infection. PLoS Pathogens, 2014, 10, e1004378.	4.7	71

#	Article	IF	CITATIONS
55	Inflammatory Monocytes Mediate Early and Organ-Specific Innate Defense During Systemic Candidiasis. Journal of Infectious Diseases, 2014, 209, 109-119.	4.0	113
56	Overview of vertebrate animal models of fungal infection. Journal of Immunological Methods, 2014, 410, 100-112.	1.4	58
57	Nitric Oxide Regulates BAFF Expression and T Cell–Independent Antibody Responses. Journal of Immunology, 2014, 193, 1110-1120.	0.8	23
58	Measurement of apoptosis by SCAN©, a system for counting and analysis of fluorescently labelled nuclei. Microbial Cell, 2014, 1, 406-415.	3.2	7
59	Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Frontiers in Oncology, 2012, 2, 97.	2.8	40
60	Tracing Conidial Fate and Measuring Host Cell Antifungal Activity Using a Reporter of Microbial Viability in the Lung. Cell Reports, 2012, 2, 1762-1773.	6.4	113
61	Bone Marrow Mesenchymal Stem and Progenitor Cells Induce Monocyte Emigration in Response to Circulating Toll-like Receptor Ligands. Immunity, 2011, 34, 590-601.	14.3	425
62	Apoptosis-like programmed cell death in the grey mould fungus <i>Botrytis cinerea</i> : genes and their role in pathogenicity. Biochemical Society Transactions, 2011, 39, 1493-1498.	3.4	27
63	Anti-Apoptotic Machinery Protects the Necrotrophic Fungus Botrytis cinerea from Host-Induced Apoptotic-Like Cell Death during Plant Infection. PLoS Pathogens, 2011, 7, e1002185.	4.7	147
64	In vivo Hypoxia and a Fungal Alcohol Dehydrogenase Influence the Pathogenesis of Invasive Pulmonary Aspergillosis. PLoS Pathogens, 2011, 7, e1002145.	4.7	208
65	Monocytic CCR2+ Myeloid Derived Suppressor Cells Promote Immune Escape by Limiting Activated CD8 T Cell Infiltration Into the Tumor Microenvironment. Blood, 2011, 118, 2171-2171.	1.4	0
66	Selective Expansion of the Monocytic Lineage Directed by Bacterial Infection. Journal of Immunology, 2009, 183, 1900-1910.	0.8	107
67	Essential Role for Neutrophils but not Alveolar Macrophages at Early Time Points following < i > Aspergillus fumigatus < / i > Infection. Journal of Infectious Diseases, 2009, 200, 647-656.	4.0	201
68	Fungal apoptosis: function, genes and gene function. FEMS Microbiology Reviews, 2009, 33, 833-854.	8.6	167
69	Inflammatory Monocytes Facilitate Adaptive CD4 T Cell Responses during Respiratory Fungal Infection. Cell Host and Microbe, 2009, 6, 470-481.	11.0	301
70	Stage-specific innate immune recognition of <i>Aspergillus fumigatus </i> echinocandin drugs. Medical Mycology, 2009, 47, S192-S198.	0.7	12
71	Monocyte-Mediated Defense Against Microbial Pathogens. Annual Review of Immunology, 2008, 26, 421-452.	21.8	945
72	<i>Aspergillus fumigatus</i> : Principles of Pathogenesis and Host Defense. Eukaryotic Cell, 2007, 6, 1953-1963.	3.4	214

Tobias M Hohl

#	Article	lF	CITATIONS
73	Immunity to fungi. Current Opinion in Immunology, 2006, 18, 465-472.	5.5	77
74	Aspergillus fumigatus Triggers Inflammatory Responses by Stage-Specific \hat{l}^2 -Glucan Display. PLoS Pathogens, 2005, 1, e30.	4.7	377