Azizeh-Mitra Yousefi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6748274/publications.pdf

Version: 2024-02-01

567281 477307 1,330 30 15 29 citations g-index h-index papers 30 30 30 2257 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In vitro characterization of hierarchical 3D scaffolds produced by combining additive manufacturing and thermally induced phase separation. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 454-476.	3.5	7
2	Cultivation of hierarchical 3D scaffolds inside a perfusion bioreactor: scaffold design and finite-element analysis of fluid flow. SN Applied Sciences, 2021, 3, 1.	2.9	4
3	lâ€Optimal design of poly(lacticâ€coâ€glycolic) acid/hydroxyapatite threeâ€dimensional scaffolds produced by thermally induced phase separation. Polymer Engineering and Science, 2019, 59, 1146-1157.	3.1	7
4	A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001987259.	1.6	57
5	I-Optimal Design of Hierarchical 3D Scaffolds Produced by Combining Additive Manufacturing and Thermally Induced Phase Separation. ACS Applied Bio Materials, 2019, 2, 685-696.	4.6	17
6	Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 195-216.	3.5	11
7	Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments. Biofabrication, 2017, 9, 015023.	7.1	51
8	Prospect of Stem Cells in Bone Tissue Engineering: A Review. Stem Cells International, 2016, 2016, 1-13.	2.5	140
9	Cryogel Tissue Phantoms with Uniform Elasticity for Medical Imaging. , 2016, , 149-178.		0
10	Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells. Journal of Materials Science: Materials in Medicine, 2015, 26, 116.	3.6	24
11	Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. Journal of Biomedical Materials Research - Part A, 2015, 103, 2460-2481.	4.0	169
12	Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering. Nanotechnology Reviews, 2014, 3, .	5.8	46
13	Producing homogeneous cryogel phantoms for medical imaging: a finite-element approach. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 181-202.	3.5	10
14	Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1856-1874.	3.5	23
15	Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1304-1315.	3.4	154
16	Probing the temperature sensitivity of induction time in latent cure epoxy resins. Polymer International, 2013, 62, 1451-1456.	3.1	2
17	Improving the homogeneity of tissueâ€mimicking cryogel phantoms for medical imaging. Medical Physics, 2012, 39, 6796-6807.	3.0	14
18	Streptavidin Inhibits Self-Assembly of CdTe Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 3249-3256.	4.6	7

#	Article	IF	CITATIONS
19	Hierarchical scaffold design for mesenchymal stem cell-based gene therapy of hemophilia B. Biomaterials, 2011, 32, 295-305.	11.4	39
20	Design and Dynamic Culture of 3D-Scaffolds for Cartilage Tissue Engineering. Journal of Biomaterials Applications, 2011, 25, 429-444.	2.4	51
21	Threeâ€dimensional porous scaffolds at the crossroads of tissue engineering and cellâ€based gene therapy. Journal of Cellular Biochemistry, 2009, 108, 537-546.	2.6	57
22	Modeling of complex parison formation in extrusion blow molding: Effect of medium to large die heads and fuel tank geometry. Polymer Engineering and Science, 2009, 49, 229-239.	3.1	12
23	A modeling approach to the effect of resin characteristics on parison formation in extrusion blow molding. Polymer Engineering and Science, 2009, 49, 251-263.	3.1	13
24	Design and Fabrication of 3D Porous Scaffolds to Facilitate Cell-Based Gene Therapy. Tissue Engineering - Part A, 2008, 14, 1037-1048.	3.1	39
25	Design and Fabrication of 3D Porous Scaffolds to Facilitate Cell-Based Gene Therapy. Tissue Engineering - Part A, 2008, 14, 080422095744451.	3.1	10
26	A comprehensive experimental study and numerical modeling of parison formation in extrusion blow molding. Polymer Engineering and Science, 2007, 47, 1-13.	3.1	15
27	Design and fabrication of 3D-plotted polymeric scaffolds in functional tissue engineering. Polymer Engineering and Science, 2007, 47, 608-618.	3.1	37
28	The effects of cobalt promoter and glass fibers on the curing behavior of unsaturated polyester resin. Journal of Vinyl and Additive Technology, 1997, 3, 157-169.	3.4	8
29	Kinetic studies of thermoset cure reactions: A review. Polymer Composites, 1997, 18, 157-168.	4.6	290
30	Numerical analysis of promoted polyester and vinylester reinforced composites in RTM molds. Polymer Engineering and Science, 1997, 37, 757-771.	3.1	16