Emil Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6747350/publications.pdf Version: 2024-02-01

FMIL MADTIN

#	Article	IF	CITATIONS
1	Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9161-9166.	7.1	572
2	Novel Effects of Nitric Oxide. Annual Review of Pharmacology and Toxicology, 2001, 41, 203-236.	9.4	525
3	Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5634-5639.	7.1	120
4	Histidine-tagged RNA polymerase: dissection of the transcription cycle using immobilized enzyme. Gene, 1993, 130, 9-14.	2.2	117
5	A "Sliding Scale Rule―for Selectivity among NO, CO, and O ₂ by Heme Protein Sensors. Biochemistry, 2012, 51, 172-186.	2.5	91
6	Ligand Selectivity of Soluble Guanylyl Cyclase. Journal of Biological Chemistry, 2006, 281, 27836-27845.	3.4	83
7	Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacological Research, 2016, 111, 556-562.	7.1	79
8	Cytochrome b5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and cGMP Signaling. Circulation Research, 2017, 121, 137-148.	4.5	73
9	A Short History of cGMP, Guanylyl Cyclases, and cGMP-Dependent Protein Kinases. Handbook of Experimental Pharmacology, 2009, , 1-14.	1.8	72
10	Soluble Guanylyl Cyclase: The Nitric Oxide Receptor. Methods in Enzymology, 2005, 396, 478-492.	1.0	71
11	Mechanism of Binding of NO to Soluble Guanylyl Cyclase: Implication for the Second NO Binding to the Heme Proximal Site. Biochemistry, 2012, 51, 2737-2746.	2.5	69
12	A constitutively activated mutant of human soluble guanylyl cyclase (sGC): Implication for the mechanism of sGC activation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9208-9213.	7.1	63
13	Kinetic and Cellular Characterization of Novel Inhibitors of S-Nitrosoglutathione Reductase. Journal of Biological Chemistry, 2009, 284, 24354-24362.	3.4	62
14	Role of soluble guanylyl cyclase–cyclic GMP signaling in tumor cell proliferation. Nitric Oxide - Biology and Chemistry, 2010, 22, 43-50.	2.7	57
15	How Do Heme-Protein Sensors Exclude Oxygen? Lessons Learned from Cytochrome c′, <i>Nostoc puntiforme</i> Heme Nitric Oxide/Oxygen-Binding Domain, and Soluble Guanylyl Cyclase. Antioxidants and Redox Signaling, 2012, 17, 1246-1263.	5.4	57
16	Dynamic Ligand Exchange in Soluble Guanylyl Cyclase (sGC). Journal of Biological Chemistry, 2011, 286, 43182-43192.	3.4	52
17	α1 Soluble Guanylyl Cyclase (sGC) Splice Forms as Potential Regulators of Human sGC Activity. Journal of Biological Chemistry, 2008, 283, 15104-15113.	3.4	44
18	CCTΕ, a Novel Soluble Guanylyl Cyclase-interacting Protein. Journal of Biological Chemistry, 2004, 279, 46946-46953.	3.4	43

EMIL MARTIN

#	Article	IF	CITATIONS
19	Resonance Raman and Infrared Spectroscopic Studies of High-Output Forms of Human Soluble Guanylyl Cyclaseâ€. Journal of the American Chemical Society, 2005, 127, 4625-4631.	13.7	41
20	Stimulation of Inducible Nitric Oxide by Hepatitis B Virus Transactivator Protein HBx Requires MTA1 Coregulator. Journal of Biological Chemistry, 2010, 285, 6980-6986.	3.4	41
21	CCAAT-binding factor regulates expression of the Â1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11523-11528.	7.1	29
22	Restoring Soluble Guanylyl Cyclase Expression and Function Blocks the Aggressive Course of Glioma. Molecular Pharmacology, 2011, 80, 1076-1084.	2.3	29
23	Dynamic interplay between nitration and phosphorylation of tubulin cofactor B in the control of microtubule dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19470-19475.	7.1	28
24	Cobinamides Are Novel Coactivators of Nitric Oxide Receptor That Target Soluble Guanylyl Cyclase Catalytic Domain. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 723-732.	2.5	25
25	The fibrate gemfibrozil is a <scp>NO</scp> ―and haemâ€independent activator of soluble <scp>guanylyl cyclase</scp> : <i>in vitro</i> studies. British Journal of Pharmacology, 2015, 172, 2316-2329.	5.4	24
26	Erythrocytes do not activate purified and platelet soluble guanylate cyclases even in conditions favourable for NO synthesis. Cell Communication and Signaling, 2016, 14, 16.	6.5	22
27	Alternative splicing impairs soluble guanylyl cyclase function in aortic aneurysm. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1565-H1575.	3.2	20
28	Hydrogen Peroxide Alters Splicing of Soluble Guanylyl Cyclase and Selectively Modulates Expression of Splicing Regulators in Human Cancer Cells. PLoS ONE, 2012, 7, e41099.	2.5	19
29	RNA splicing in regulation of nitric oxide receptor soluble guanylyl cyclase. Nitric Oxide - Biology and Chemistry, 2011, 25, 265-274.	2.7	17
30	The G-protein regulator LGN modulates the activity of the NO receptor soluble guanylate cyclase. Biochemical Journal, 2012, 446, 445-453.	3.7	16
31	Nitric Oxide Receptor Soluble Guanylyl Cyclase Undergoes Splicing Regulation in Differentiating Human Embryonic Cells. Stem Cells and Development, 2011, 20, 1287-1293.	2.1	14
32	The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor. Antioxidants and Redox Signaling, 2017, 26, 122-136.	5.4	14
33	A new paradigm for gaseous ligand selectivity of hemoproteins highlighted by soluble guanylate cyclase. Journal of Inorganic Biochemistry, 2021, 214, 111267.	3.5	12
34	Involvement of 3′,5′â€cyclic inosine monophosphate in cystathionine γâ€lyaseâ€dependent regulation o vascular tone. British Journal of Pharmacology, 2021, 178, 3765-3782.	f the 5.4	12
35	Synthesis of New Hydrophilic and Hydrophobic Cobinamides as NO-Independent sGC Activators. ACS Medicinal Chemistry Letters, 2012, 3, 476-479.	2.8	10
36	Protoporphyrin IX/Cobyrinate Derived Hybrids – Novel Activators of Soluble Guanylyl Cyclase. European Journal of Organic Chemistry, 2013, 2013, 1530-1537.	2.4	8

EMIL MARTIN

#	Article	IF	CITATIONS
37	Vitamin B12 Derivatives as Activators of Soluble Guanylyl Cyclase. Journal of Medicinal Chemistry, 2012, 55, 8943-8947.	6.4	6
38	Synthesis and Evaluation of Bifunctional sGC Regulators: Optimization of a Connecting Linker. Journal of Medicinal Chemistry, 2013, 56, 7260-7277.	6.4	6
39	Small Alterations in Cobinamide Structure Considerably Influence sGC Activation. ChemMedChem, 2014, 9, 2344-2350.	3.2	5
40	Higher susceptibility to heme oxidation and lower protein stability of the rare α1C517Yβ1 sGC variant associated with moyamoya syndrome. Biochemical Pharmacology, 2021, 186, 114459.	4.4	5
41	Gemfibrozil derivatives as activators of soluble guanylyl cyclase – A structure-activity study. European Journal of Medicinal Chemistry, 2021, 224, 113729.	5.5	3
42	Towards NOâ€free Regulation of sGC: Design and Synthesis of <i>trans</i> â€ABâ€porphyrins. Israel Journal of Chemistry, 2016, 56, 156-168.	2.3	2
43	Homogeneous single-label cGMP detection platform for the functional study of nitric oxide-sensitive (soluble) guanylyl cyclases and cGMP-specific phosphodiesterases. Scientific Reports, 2020, 10, 17469.	3.3	2
44	ML355 Modulates Platelet Activation and Prevents ABT-737 Induced Apoptosis in Platelets. Journal of Pharmacology and Experimental Therapeutics, 2022, 381, 164-175.	2.5	2
45	Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein-HBx requires MTA1 coregulator Journal of Biological Chemistry, 2017, 292, 4765.	3.4	1
46	FoxO4 controls sGCβ transcription in vascular smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H417-H426.	3.2	1
47	New human alpha1 soluble guanylyl cyclase splice variants as potential regulators of sGC activity. BMC Pharmacology, 2007, 7, .	0.4	0
48	Hypertension: Basics Concepts and the Evolving Role of Novel Treatments. Current Hypertension Reviews, 2010, 6, 232-237.	0.9	0
49	G-protein regulator LGN inhibits the activity of soluble guanylyl cyclase. BMC Pharmacology, 2011, 11, .	0.4	0
50	Gemfibrozil as a potential heme-independent sGC activator. BMC Pharmacology, 2011, 11, .	0.4	0
51	Synthesis and evaluation of bifunctional sGC regulators. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	0
52	Erythrocytes do not produce biologically active NO. BMC Pharmacology & Toxicology, 2015, 16, .	2.4	0
53	CBF regulates expression of the ${\rm \hat{l}}^21$ sGC gene in the BE2 human neuroblastoma cells. BMC News and Views, 2003, 3, .	0.0	0
54	A constitutively active heme-deficient mutant of human soluble guanylyl cyclase: implication for the mechanism of sGC activation. BMC News and Views, 2003, 3, .	0.0	0

#	Article	IF	CITATIONS
55	Gâ€protein regulator LGN inhibits the activity of nitric oxide receptor soluble guanylyl cyclase. FASEB Journal, 2011, 25, 958.1.	0.5	0
56	Role of Heme metabolism in the oxidative state of NOâ€receptor soluble guanylyl cyclase (sGC) in aging mouse brain. FASEB Journal, 2020, 34, 1-1.	0.5	0