Bernhard Kuster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6747225/publications.pdf

Version: 2024-02-01

254 papers

36,500 citations

81 h-index 180 g-index

274 all docs

274 docs citations

times ranked

274

42954 citing authors

#	Article	IF	CITATIONS
1	High sensitivity glycomics in biomedicine. Mass Spectrometry Reviews, 2022, 41, 1014-1039.	2.8	9
2	ProteomicsDB: toward a FAIR open-source resource for life-science research. Nucleic Acids Research, 2022, 50, D1541-D1552.	6.5	35
3	A novel Cereblon E3 ligase modulator with antitumor activity in gastrointestinal cancer. Bioorganic Chemistry, 2022, 119, 105505.	2.0	13
4	Proteomic profiling in cerebral amyloid angiopathy reveals an overlap with CADASIL highlighting accumulation of HTRA1 and its substrates. Acta Neuropathologica Communications, 2022, 10, 6.	2.4	16
5	Selective multi-kinase inhibition sensitizes mesenchymal pancreatic cancer to immune checkpoint blockade by remodeling the tumor microenvironment. Nature Cancer, 2022, 3, 318-336.	5.7	42
6	Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling. Nature Communications, 2022, 13, 165.	5.8	33
7	Plant Proteome Dynamics. Annual Review of Plant Biology, 2022, 73, 67-92.	8.6	22
8	Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross-kingdom conserved ubiquitination. PLoS ONE, 2022, 17, e0258924.	1.1	4
9	High temporal resolution proteome and phosphoproteome profiling of stem cell-derived hepatocyte development. Cell Reports, 2022, 38, 110604.	2.9	8
10	Epigenetic drug screening defines a PRMT5 inhibitor–sensitive pancreatic cancer subtype. JCI Insight, 2022, 7, .	2.3	6
11	SIMSI-Transfer: Software-Assisted Reduction of Missing Values in Phosphoproteomic and Proteomic Isobaric Labeling Data Using Tandem Mass Spectrum Clustering. Molecular and Cellular Proteomics, 2022, 21, 100238.	2.5	9
12	Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat. Molecular Metabolism, 2022, 61, 101499.	3.0	30
13	Prosit-TMT: Deep Learning Boosts Identification of TMT-Labeled Peptides. Analytical Chemistry, 2022, 94, 7181-7190.	3.2	8
14	Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nature Chemical Biology, 2022, 18, 812-820.	3.9	36
15	Novel, highly potent PROTACs targeting AURORA-A kinase. Current Research in Chemical Biology, 2022, 2, 100032.	1.4	9
16	Mass spectrometry-based draft of the mouse proteome. Nature Methods, 2022, 19, 803-811.	9.0	19
17	Development of hetero-triaryls as a new chemotype for subtype-selective and potent Sirt5 inhibition. European Journal of Medicinal Chemistry, 2022, 240, 114594.	2.6	3
18	Defining the carrier proteome limit for single-cell proteomics. Nature Methods, 2021, 18, 76-83.	9.0	142

#	Article	IF	CITATIONS
19	Robust Microflow LC-MS/MS for Proteome Analysis: 38†000 Runs and Counting. Analytical Chemistry, 2021, 93, 3686-3690.	3.2	36
20	SARSâ€CoVâ€2 infection remodels the host protein thermal stability landscape. Molecular Systems Biology, 2021, 17, e10188.	3.2	17
21	Chemical Phosphoproteomics Sheds New Light on the Targets and Modes of Action of AKT Inhibitors. ACS Chemical Biology, 2021, 16, 631-641.	1.6	21
22	The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma. Molecular Cell, 2021, 81, 1170-1186.e10.	4.5	39
23	Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 2021, 594, 246-252.	13.7	475
24	Systematic analysis of migration factors by MigExpress identifies essential cell migration control genes in nonâ€small cell lung cancer. Molecular Oncology, 2021, 15, 1797-1817.	2.1	9
25	Universal Spectrum Explorer: A Standalone (Web-)Application for Cross-Resource Spectrum Comparison. Journal of Proteome Research, 2021, 20, 3388-3394.	1.8	22
26	Design, Synthesis, and Evaluation of WD-Repeat-Containing Protein 5 (WDR5) Degraders. Journal of Medicinal Chemistry, 2021, 64, 10682-10710.	2.9	38
27	Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics. Nature Communications, 2021, 12, 3346.	5.8	90
28	Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell, 2021, 28, 1105-1124.e19.	5.2	53
29	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	9.0	198
30	Identification of 7†000†9†000 Proteins from Cell Lines and Tissues by Single-Shot Microflow LC†MS/MS. Analytical Chemistry, 2021, 93, 8687-8692.	3.2	25
31	Cytomegalovirus subverts macrophage identity. Cell, 2021, 184, 3774-3793.e25.	13.5	34
32	Stress-primed secretory autophagy promotes extracellular BDNF maturation by enhancing MMP9 secretion. Nature Communications, 2021, 12, 4643.	5.8	50
33	Degradation of CCNK/CDK12 is a druggable vulnerability of colorectal cancer. Cell Reports, 2021, 36, 109394.	2.9	41
34	Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics. Molecular and Cellular Proteomics, 2021, 20, 100076.	2.5	31
35	PLK1â€dependent phosphorylation restrains EBNA2 activity and lymphomagenesis in EBVâ€infected mice. EMBO Reports, 2021, 22, e53007.	2.0	5
36	Mutations and variants of ONECUT1 in diabetes. Nature Medicine, 2021, 27, 1928-1940.	15.2	24

#	Article	IF	CITATIONS
37	Evaluation of Disposable Trap Column nanoLC–FAIMS–MS/MS for the Proteomic Analysis of FFPE Tissue. Journal of Proteome Research, 2021, 20, 5402-5411.	1.8	12
38	ProteomicsDB: a multi-omics and multi-organism resource for life science research. Nucleic Acids Research, 2020, 48, D1153-D1163.	6.5	126
39	Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nature Communications, 2020, 11, 157.	5. 8	218
40	Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nature Chemistry, 2020, 12, 145-158.	6.6	78
41	PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nature Chemical Biology, 2020, 16, 1179-1188.	3.9	73
42	Proteome activity landscapes of tumor cell lines determine drug responses. Nature Communications, 2020, 11, 3639.	5. 8	47
43	Radiosensitization by Kinase Inhibition Revealed by Phosphoproteomic Analysis of Pancreatic Cancer Cells. Molecular and Cellular Proteomics, 2020, 19, 1649-1663.	2.5	7
44	Dissecting the sequence determinants for dephosphorylation by the catalytic subunits of phosphatases PP1 and PP2A. Nature Communications, 2020, 11, 3583.	5 . 8	38
45	PTPN2 Deficiency Enhances Programmed T Cell Expansion and Survival Capacity of Activated T Cells. Cell Reports, 2020, 32, 107957.	2.9	28
46	Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis. Scientific Data, 2020, 7, 334.	2.4	20
47	A series of novel aryl-methanone derivatives as inhibitors of FMS-like tyrosine kinase 3 (FLT3) in FLT3-ITD-positive acute myeloid leukemia. European Journal of Medicinal Chemistry, 2020, 193, 112232.	2.6	8
48	Mass-spectrometry-based draft of the Arabidopsis proteome. Nature, 2020, 579, 409-414.	13.7	328
49	Reduced mitochondrial resilience enables non-canonical induction of apoptosis after TNF receptor signaling in virus-infected hepatocytes. Journal of Hepatology, 2020, 73, 1347-1359.	1.8	11
50	Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing. Molecular and Cellular Proteomics, 2020, 19, 1503-1522.	2.5	78
51	Proteomic and Metabolite Profiling Reveals Profound Structural and Metabolic Reorganization of Adipocyte Mitochondria in Obesity. Obesity, 2020, 28, 590-600.	1.5	10
52	Combined proteomics/miRNomics of dendritic cell immunotherapy-treated glioblastoma patients as a screening for survival-associated factors. Npj Vaccines, 2020, 5, 5.	2.9	19
53	Localized Inhibition of Protein Phosphatase 1 by NUAK1 Promotes Spliceosome Activity and Reveals a MYC-Sensitive Feedback Control of Transcription. Molecular Cell, 2020, 77, 1322-1339.e11.	4. 5	34
54	Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Nature Communications, 2020, 11, 1548.	5.8	148

#	Article	IF	Citations
55	Meltome atlasâ€"thermal proteome stability across the tree of life. Nature Methods, 2020, 17, 495-503.	9.0	152
56	Loss of the Fanconi anemia–associated protein NIPA causes bone marrow failure. Journal of Clinical Investigation, 2020, 130, 2827-2844.	3.9	8
57	Identification of molecular targets for the targeted treatment of gastric cancer using dasatinib. Oncotarget, 2020, 11, 535-549.	0.8	29
58	Proteomics Is Not an Island: Multi-omics Integration Is the Key to Understanding Biological Systems. Molecular and Cellular Proteomics, 2019, 18, S1-S4.	2.5	27
59	Rebuilding core abscisic acid signaling pathways of <i>Arabidopsis</i> in yeast. EMBO Journal, 2019, 38, e101859.	3.5	25
60	Functional expression of electrogenic sodium bicarbonate cotransporter 1 (NBCe1) in mouse cortical astrocytes is dependent on S255â€257 and regulated by mTOR. Glia, 2019, 67, 2264-2278.	2.5	9
61	Interactions between Transport Protein Particle (TRAPP) complexes and Rab <scp>GTP</scp> ases in Arabidopsis. Plant Journal, 2019, 100, 279-297.	2.8	27
62	Challenges in Clinical Metaproteomics Highlighted by the Analysis of Acute Leukemia Patients with Gut Colonization by Multidrug-Resistant Enterobacteriaceae. Proteomes, 2019, 7, 2.	1.7	71
63	The formation of a camalexin-biosynthetic metabolon. Plant Cell, 2019, 31, tpc.00403.2019.	3.1	38
64	Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nature Methods, 2019, 16, 509-518.	9.0	539
65	MOGSA: Integrative Single Sample Gene-set Analysis of Multiple Omics Data. Molecular and Cellular Proteomics, 2019, 18, S153-S168.	2.5	59
66	PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms. Molecular and Cellular Proteomics, 2019, 18, S126-S140.	2.5	43
67	Detection of plasmid-mediated colistin resistance, mcr-1 gene, in Escherichia coli isolated from high-risk patients with acute leukemia in Spain. Journal of Infection and Chemotherapy, 2019, 25, 605-609.	0.8	15
68	Chemoproteomic Selectivity Profiling of PIKK and PI3K Kinase Inhibitors. ACS Chemical Biology, 2019, 14, 655-664.	1.6	21
69	Quantification and discovery of sequence determinants of proteinâ€perâ€mRNA amount inÂ29Âhuman tissues. Molecular Systems Biology, 2019, 15, e8513.	3.2	63
70	TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach. Molecular and Cellular Proteomics, 2019, 18, 1468-1478.	2.5	245
71	CiRCus: A Framework to Enable Classification of Complex High-Throughput Experiments. Journal of Proteome Research, 2019, 18, 1486-1493.	1.8	3
72	A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Molecular Systems Biology, 2019, 15, e8503.	3.2	576

#	Article	IF	CITATIONS
73	The IMiD-Target Cereblon Determines Transmembrane Protein Quality Control Promoting Tumor Metabolism. Blood, 2019, 134, 314-314.	0.6	O
74	Mining the Human Tissue Proteome for Protein Citrullination. Molecular and Cellular Proteomics, 2018, 17, 1378-1391.	2.5	93
75	ProteomicsDB. Nucleic Acids Research, 2018, 46, D1271-D1281.	6.5	197
76	Peptide Level Turnover Measurements Enable the Study of Proteoform Dynamics. Molecular and Cellular Proteomics, 2018, 17, 974-992.	2.5	98
77	Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nature Medicine, 2018, 24, 282-291.	15.2	216
78	Sucrose-Induced Proteomic Response and Carbohydrate Utilization of Lactobacillus sakei TMW 1.411 During Dextran Formation. Frontiers in Microbiology, 2018, 9, 2796.	1.5	21
79	Expanding the Use of Spectral Libraries in Proteomics. Journal of Proteome Research, 2018, 17, 4051-4060.	1.8	47
80	The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nature Communications, 2018, 9, 3760.	5.8	200
81	Dynamic Proteome Alteration and Functional Modulation of Human Saliva Induced by Dietary Chemosensory Stimuli. Journal of Agricultural and Food Chemistry, 2018, 66, 5621-5634.	2.4	22
82	ProteomeTools: Systematic Characterization of 21 Post-translational Protein Modifications by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Using Synthetic Peptides. Molecular and Cellular Proteomics, 2018, 17, 1850-1863.	2.5	78
83	Adaptive Resistance to EGFR-Targeted Therapy by Calcium Signaling in NSCLC Cells. Molecular Cancer Research, 2018, 16, 1773-1784.	1.5	9
84	NVPâ€BHG712: Effects of Regioisomers on the Affinity and Selectivity toward the EPHrin Family. ChemMedChem, 2018, 13, 1629-1633.	1.6	20
85	Protease signaling through protease activated receptor 1 mediate nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients. PLoS ONE, 2018, 13, e0193943.	1.1	32
86	Increased Pancreatic Protease Activity in Response to Antibiotics Impairs Gut Barrier and Triggers Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 370-388.e3.	2.3	22
87	DENEDDYLASE1 Protein Counters Automodification of Neddylating Enzymes to Maintain NEDD8 Protein Homeostasis in Arabidopsis. Journal of Biological Chemistry, 2017, 292, 3854-3865.	1.6	17
88	Building ProteomeTools based on a complete synthetic human proteome. Nature Methods, 2017, 14, 259-262.	9.0	182
89	Label-free quantitative proteome analysis of the surface-bound salivary pellicle. Colloids and Surfaces B: Biointerfaces, 2017, 152, 68-76.	2.5	43
90	Effect of Astringent Stimuli on Salivary Protein Interactions Elucidated by Complementary Proteomics Approaches. Journal of Agricultural and Food Chemistry, 2017, 65, 2147-2154.	2.4	23

#	Article	IF	Citations
91	Lapatinib Resistance in Breast Cancer Cells Is Accompanied by Phosphorylation-Mediated Reprogramming of Glycolysis. Cancer Research, 2017, 77, 1842-1853.	0.4	79
92	High pH Reversed-Phase Micro-Columns for Simple, Sensitive, and Efficient Fractionation of Proteome and (TMT labeled) Phosphoproteome Digests. Methods in Molecular Biology, 2017, 1550, 83-98.	0.4	43
93	Hydrophilic Strong Anion Exchange (hSAX) Chromatography Enables Deep Fractionation of Tissue Proteomes. Methods in Molecular Biology, 2017, 1550, 69-82.	0.4	13
94	Optimized Enrichment of Phosphoproteomes by Fe-IMAC Column Chromatography. Methods in Molecular Biology, 2017, 1550, 47-60.	0.4	26
95	Annotation of the Domestic Pig Genome by Quantitative Proteogenomics. Journal of Proteome Research, 2017, 16, 2887-2898.	1.8	25
96	Chemoproteomicsâ€Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors. ChemMedChem, 2017, 12, 999-1011.	1.6	23
97	Targeted Diazotransfer Reagents Enable Selective Modification of Proteins with Azides. Bioconjugate Chemistry, 2017, 28, 913-917.	1.8	24
98	Salivary Proteome Patterns Affecting Human Salt Taste Sensitivity. Journal of Agricultural and Food Chemistry, 2017, 65, 9275-9286.	2.4	25
99	<i>N</i> -Heterocyclic carbenes on close-packed coinage metal surfaces: bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu. Chemical Science, 2017, 8, 8301-8308.	3.7	87
100	Target and identify: triazene linker helps identify azidation sites of labelled proteins via click and cleave strategy. Chemical Communications, 2017, 53, 11929-11932.	2.2	3
101	Quantitative Proteomics for the Comprehensive Analysis of Stress Responses of <i>Lactobacillus paracasei</i> subsp. <i>paracasei</i> F19. Journal of Proteome Research, 2017, 16, 3816-3829.	1.8	20
102	PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration. Proteomics, 2017, 17, 1700263.	1.3	58
103	Trimodal Mixed Mode Chromatography That Enables Efficient Offline Two-Dimensional Peptide Fractionation for Proteome Analysis. Analytical Chemistry, 2017, 89, 8884-8891.	3.2	22
104	<i>Arabidopsis</i> SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7197-E7204.	3.3	71
105	The target landscape of clinical kinase drugs. Science, 2017, 358, .	6.0	609
106	Pharmacoproteomic characterisation of human colon and rectal cancer. Molecular Systems Biology, 2017, 13, 951.	3.2	44
107	Bacterial Cellulose Shifts Transcriptome and Proteome of Cultured Endothelial Cells Towards Native Differentiation. Molecular and Cellular Proteomics, 2017, 16, 1563-1577.	2.5	18
108	Ethylene glycol improves electrospray ionization efficiency in bottom-up proteomics. Analytical and Bioanalytical Chemistry, 2017, 409, 1049-1057.	1.9	14

#	Article	IF	CITATIONS
109	The Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release in the Absence of Caspase-1 Protease Activity. Cell Reports, 2017, 21, 3846-3859.	2.9	202
110	Persistent inhibition of pore-based cell migration by sub-toxic doses of miuraenamide, an actin filament stabilizer. Scientific Reports, 2017, 7, 16407.	1.6	9
111	Preferential microRNA targeting revealed by in vivo competitive binding and differential Argonaute immunoprecipitation. Nucleic Acids Research, 2017, 45, 10218-10228.	6.5	19
112	Wilhelm et al. reply. Nature, 2017, 547, E23-E23.	13.7	7
113	Two serines in the distal C-terminus of the human ß1-adrenoceptor determine ß-arrestin2 recruitment. PLoS ONE, 2017, 12, e0176450.	1.1	5
114	MALDIâ€₹OF and nESI Orbitrap MS/MS identify orthogonal parts of the phosphoproteome. Proteomics, 2016, 16, 1447-1456.	1.3	13
115	Translatomics combined with transcriptomics and proteomics reveals novel functional, recently evolved orphan genes in Escherichia coli O157:H7 (EHEC). BMC Genomics, 2016, 17, 133.	1.2	42
116	K + Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria. Immunity, 2016, 45, 761-773.	6.6	364
117	Expression and Purification of EPHA2 Tyrosine Kinase Domain for Crystallographic and NMR Studies. ChemBioChem, 2016, 17, 2257-2263.	1.3	5
118	Identification of Highly Potent Protein Kinaseâ€Câ€Related Kinaseâ€1 Inhibitors by Virtual Screening, Binding Free Energy Rescoring, and inâ€vitro Testing. ChemMedChem, 2016, 11, 2084-2094.	1.6	10
119	Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1). Future Medicinal Chemistry, 2016, 8, 1537-1551.	1.1	10
120	Cell cycleâ€regulated <scp>PLEIADE</scp> /At <scp>MAP</scp> 65â€3 links membrane and microtubule dynamics during plant cytokinesis. Plant Journal, 2016, 88, 531-541.	2.8	29
121	Chemical Proteomics and Structural Biology Define EPHA2 Inhibition by Clinical Kinase Drugs. ACS Chemical Biology, 2016, 11, 3400-3411.	1.6	42
122	A bead-based western for high-throughput cellular signal transduction analyses. Nature Communications, 2016, 7, 12852.	5.8	84
123	Phosphoproteome Profiling Reveals Molecular Mechanisms of Growth-Factor-Mediated Kinase Inhibitor Resistance in EGFR-Overexpressing Cancer Cells. Journal of Proteome Research, 2016, 15, 4490-4504.	1.8	18
124	Reduced mitochondrial mass and function add to age-related susceptibility toward diet-induced fatty liver in C57BL/6J mice. Physiological Reports, 2016, 4, e12988.	0.7	31
125	Immunomodulatory drugs disrupt the cereblon–CD147–MCT1 axis to exert antitumor activity and teratogenicity. Nature Medicine, 2016, 22, 735-743.	15.2	145
126	Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors. ACS Chemical Biology, 2016, 11, 1245-1254.	1.6	82

#	Article	IF	Citations
127	Towards Understanding Male Infertility After Spinal Cord Injury Using Quantitative Proteomics. Molecular and Cellular Proteomics, 2016, 15, 1424-1434.	2.5	26
128	Dimension reduction techniques for the integrative analysis of multi-omics data. Briefings in Bioinformatics, 2016, 17, 628-641.	3.2	280
129	moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets. Journal of Proteome Research, 2016, 15, 755-765.	1.8	88
130	ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer. Oncotarget, 2016, 7, 83278-83293.	0.8	19
131	Inhibitor-based affinity probes for the investigation of JAK signaling pathways. Proteomics, 2015, 15, 3066-3074.	1.3	10
132	Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins. Cell Reports, 2015, 12, 183-189.	2.9	22
133	Optimized Chemical Proteomics Assay for Kinase Inhibitor Profiling. Journal of Proteome Research, 2015, 14, 1574-1586.	1.8	104
134	Comprehensive and Reproducible Phosphopeptide Enrichment Using Iron Immobilized Metal Ion Affinity Chromatography (Fe-IMAC) Columns. Molecular and Cellular Proteomics, 2015, 14, 205-215.	2.5	111
135	<i>De novo</i> discovery of phenotypic intratumour heterogeneity using imaging mass spectrometry. Journal of Pathology, 2015, 235, 3-13.	2.1	116
136	Novel Flp pilus biogenesis-dependent natural transformation. Frontiers in Microbiology, 2015, 6, 84.	1.5	33
137	A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets. Molecular and Cellular Proteomics, 2015, 14, 2394-2404.	2.5	350
138	Chemical Proteomics Uncovers EPHA2 as a Mechanism of Acquired Resistance to Small Molecule EGFR Kinase Inhibition. Journal of Proteome Research, 2015, 14, 2617-2625.	1.8	48
139	DENEDDYLASE1 Deconjugates NEDD8 from Non-Cullin Protein Substrates in Arabidopsis thaliana. Plant Cell, 2015, 27, 741-753.	3.1	24
140	Optimized Plk1 PBD Inhibitors Based on Poloxin Induce Mitotic Arrest and Apoptosis in Tumor Cells. ACS Chemical Biology, 2015, 10, 2570-2579.	1.6	53
141	Evaluation of Kinase Activity Profiling Using Chemical Proteomics. ACS Chemical Biology, 2015, 10, 2743-2752.	1.6	32
142	Quantitative proteome profiling of human myoma and myometrium tissue reveals kinase expression signatures with potential for therapeutic intervention. Proteomics, 2015, 15, 356-364.	1.3	8
143	Molecular mechanisms behind the antimicrobial activity of hop iso-α-acids in Lactobacillus brevis. Food Microbiology, 2015, 46, 553-563.	2.1	30
144	Mitotic arrest and slippage induced by pharmacological inhibition of Poloâ€like kinase 1. Molecular Oncology, 2015, 9, 140-154.	2.1	47

#	Article	IF	CITATIONS
145	Quantitative chemical proteomics reveals a Plk1 inhibitor-compromised cell death pathway in human cells. Cell Research, 2014, 24, 1141-1145.	5.7	19
146	Ion Mobility Tandem Mass Spectrometry Enhances Performance of Bottom-up Proteomics. Molecular and Cellular Proteomics, 2014, 13, 3709-3715.	2.5	98
147	Disruption of the PRKCD–FBXO25–HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis. Nature Medicine, 2014, 20, 1401-1409.	15.2	50
148	Probing SH2-domains using Inhibitor Affinity Purification (IAP). Proteome Science, 2014, 12, 41.	0.7	10
149	High-fat diet alters gut microbiota physiology in mice. ISME Journal, 2014, 8, 295-308.	4.4	583
150	Clec12a Is an Inhibitory Receptor for Uric Acid Crystals that Regulates Inflammation in Response to Cell Death. Immunity, 2014, 40, 389-399.	6.6	158
151	Mass-spectrometry-based draft of the human proteome. Nature, 2014, 509, 582-587.	13.7	1,697
152	A hydrodynamically optimized nano-electrospray ionization source and vacuum interface. Analyst, The, 2014, 139, 1856.	1.7	45
153	Investigating RET RTK Signaling Pathways Using an IAP-Based Activity-Profiling Approach. Journal of Proteome Research, 2014, 13, 3628-3634.	1.8	2
154	PAS-cal: a Generic Recombinant Peptide Calibration Standard for Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2014, 25, 1489-1497.	1.2	3
155	A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics, 2014, 15, 162.	1.2	238
156	New Affinity Probe Targeting VEGF Receptors for Kinase Inhibitor Selectivity Profiling by Chemical Proteomics. Journal of Proteome Research, 2014, 13, 2445-2452.	1.8	19
157	Tracking cancer drugs in living cells by thermal profiling of the proteome. Science, 2014, 346, 1255784.	6.0	812
158	A new chemical probe for quantitative proteomic profiling of fibroblast growth factor receptor and its inhibitors. Journal of Proteomics, 2014, 96, 44-55.	1.2	11
159	Phosphoramidates as Novel Activityâ€Based Probes for Serine Proteases. ChemBioChem, 2014, 15, 1106-1110.	1.3	12
160	Plant Cytokinesis Is Orchestrated by the Sequential Action of the TRAPPII and Exocyst Tethering Complexes. Developmental Cell, 2014, 29, 607-620.	3.1	97
161	Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. ELife, 2014, 3, .	2.8	205
162	PAS-cal: A repetitive peptide sequence calibration standard for MALDI mass spectrometry. Proteomics, 2014, 14, 2427-2431.	1.3	3

#	Article	IF	Citations
163	Global Proteome Analysis of the NCI-60 Cell Line Panel. Cell Reports, 2013, 4, 609-620.	2.9	276
164	Characterization of a high field Orbitrap mass spectrometer for proteome analysis. Proteomics, 2013, 13, 2552-2562.	1.3	9
165	DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nature Methods, 2013, 10, 989-991.	9.0	209
166	Characterization of a Chemical Affinity Probe Targeting Akt Kinases. Journal of Proteome Research, 2013, 12, 3792-3800.	1.8	31
167	Comparing Immobilized Kinase Inhibitors and Covalent ATP Probes for Proteomic Profiling of Kinase Expression and Drug Selectivity. Journal of Proteome Research, 2013, 12, 1723-1731.	1.8	48
168	A public-private partnership to unlock the untargeted kinome. Nature Chemical Biology, 2013, 9, 3-6.	3.9	141
169	A Simple and Effective Cleavable Linker for Chemical Proteomics Applications. Molecular and Cellular Proteomics, 2013, 12, 237-244.	2.5	58
170	SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nature Cell Biology, 2013, 15, 72-81.	4.6	76
171	Coâ€immunoprecipitationâ€based identification of putative <scp>BAX INHIBITOR</scp> â€1â€interacting protein involved in cell death regulation and plant–powdery mildew interactions. Molecular Plant Pathology, 2013, 14, 791-802.	s 2.0	42
172	Proteome Wide Purification and Identification of <i>O</i> -GlcNAc-Modified Proteins Using Click Chemistry and Mass Spectrometry. Journal of Proteome Research, 2013, 12, 927-936.	1.8	151
173	Clinical response to chemotherapy in oesophageal adenocarcinoma patients is linked to defects in mitochondria. Journal of Pathology, 2013, 230, 410-419.	2.1	71
174	A large synthetic peptide and phosphopeptide reference library for mass spectrometry–based proteomics. Nature Biotechnology, 2013, 31, 557-564.	9.4	164
175	MScDB: A Mass Spectrometry-centric Protein Sequence Database for Proteomics. Journal of Proteome Research, 2013, 12, 2386-2398.	1.8	11
176	Measuring and Managing Ratio Compression for Accurate iTRAQ/TMT Quantification. Journal of Proteome Research, 2013, 12, 3586-3598.	1.8	238
177	ML3 Is a NEDD8- and Ubiquitin-Modified Protein Â. Plant Physiology, 2013, 163, 135-149.	2.3	18
178	Comprehensive Identification of Proteins from MALDI Imaging. Molecular and Cellular Proteomics, 2013, 12, 2901-2910.	2.5	69
179	Deciphering The Molecular Impact Of Myc Overexpression On B Cell Receptor Signaling and Its Implications For Burkitt Lymphoma Treatment. Blood, 2013, 122, 3018-3018.	0.6	0
180	Systematic Identification of the HSP90 Regulated Proteome. Molecular and Cellular Proteomics, 2012, 11, M111.016675.	2.5	82

#	Article	IF	Citations
181	Discovery of O-GlcNAc-6-phosphate Modified Proteins in Large-scale Phosphoproteomics Data. Molecular and Cellular Proteomics, 2012, 11, 1063-1069.	2.5	20
182	Discovery of O-GlcNAc-modified Proteins in Published Large-scale Proteome Data. Molecular and Cellular Proteomics, 2012, 11, 843-850.	2.5	58
183	Phosphotyrosine mediated protein interactions of the discoidin domain receptor 1. Journal of Proteomics, 2012, 75, 3465-3477.	1.2	63
184	MALDI imaging mass spectrometry reveals COX7A2, TAGLN2 and S100-A10 as novel prognostic markers in Barrett's adenocarcinoma. Journal of Proteomics, 2012, 75, 4693-4704.	1.2	90
185	Comprehensive proteome analysis in Cenococcum geophilum Fr. as a tool to discover drought-related proteins. Journal of Proteomics, 2012, 75, 3707-3719.	1.2	12
186	Lactocepin Secreted By Lactobacillus Exerts Anti-Inflammatory Effects By Selectively Degrading Proinflammatory Chemokines. Cell Host and Microbe, 2012, 11, 387-396.	5.1	196
187	Affinity Purification of Proteins Binding to Kinase Inhibitors Immobilized on Self-Assembling Monolayers. Methods in Molecular Biology, 2012, 795, 149-160.	0.4	0
188	Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Analytical and Bioanalytical Chemistry, 2012, 404, 939-965.	1.9	695
189	Carbonyl-Reactive Tandem Mass Tags for the Proteome-Wide Quantification of N-Linked Glycans. Analytical Chemistry, 2012, 84, 3716-3724.	3.2	110
190	Quantitative mass spectrometry in proteomics. Analytical and Bioanalytical Chemistry, 2012, 404, 937-938.	1.9	27
191	MALDI Imaging Mass Spectrometry for In Situ Proteomic Analysis of Preneoplastic Lesions in Pancreatic Cancer. PLoS ONE, 2012, 7, e39424.	1.1	52
192	Ultraâ€high intraâ€spectrum mass accuracy enables unambiguous identification of fragment reporter ions in isobaric multiplexed quantitative proteomics. Proteomics, 2012, 12, 1328-1332.	1.3	9
193	Software Tools for MS-Based Quantitative Proteomics: A Brief Overview. Methods in Molecular Biology, 2012, 893, 489-499.	0.4	27
194	Mass Spectrometry-Based Proteomics in Preclinical Drug Discovery. Chemistry and Biology, 2012, 19, 72-84.	6.2	156
195	Phosphorylation site localization in peptides by MALDI MS/MS and the Mascot Delta Score. Analytical and Bioanalytical Chemistry, 2012, 402, 249-260.	1.9	23
196	Enterococcus faecalis Metalloprotease Compromises Epithelial Barrier and Contributes to Intestinal Inflammation. Gastroenterology, 2011, 141, 959-971.	0.6	246
197	Requirement of ATM-Dependent Monoubiquitylation of Histone H2B for Timely Repair of DNA Double-Strand Breaks. Molecular Cell, 2011, 41, 529-542.	4.5	347
198	Requirement of ATM-Dependent Monoubiquitylation of Histone H2B for Timely Repair of DNA Double-Strand Breaks. Molecular Cell, 2011, 42, 137.	4.5	3

#	Article	IF	CITATIONS
199	Quantitative Chemical Proteomics Reveals New Potential Drug Targets in Head and Neck Cancer. Molecular and Cellular Proteomics, 2011, 10, M111.011635.	2.5	65
200	A Novel Two-Stage Tandem Mass Spectrometry Approach and Scoring Scheme for the Identification of O-GlcNAc Modified Peptides. Journal of the American Society for Mass Spectrometry, 2011, 22, 931-942.	1.2	23
201	Confident Phosphorylation Site Localization Using the Mascot Delta Score. Molecular and Cellular Proteomics, 2011, 10, S1-S12.	2.5	247
202	Gas–liquid mass transfer in rotating solid foam reactors. Chemical Engineering Science, 2010, 65, 472-479.	1.9	55
203	Proteomics: a pragmatic perspective. Nature Biotechnology, 2010, 28, 695-709.	9.4	374
204	Bacterial production and functional characterization of the Fab fragment of the murine $IgG1/\hat{A}$ monoclonal antibody cmHsp70.1, a reagent for tumour diagnostics. Protein Engineering, Design and Selection, 2010, 23, 161-168.	1.0	22
205	Human Proteinpedia enables sharing of human protein data. Nature Biotechnology, 2008, 26, 164-167.	9.4	155
206	Oxidative stress modulates theophylline effects on steroid responsiveness. Biochemical and Biophysical Research Communications, 2008, 377, 797-802.	1.0	49
207	Robust and Sensitive iTRAQ Quantification on an LTQ Orbitrap Mass Spectrometer. Molecular and Cellular Proteomics, 2008, 7, 1702-1713.	2.5	219
208	Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotechnology, 2007, 25, 1035-1044.	9.4	979
209	Computational prediction of proteotypic peptides for quantitative proteomics. Nature Biotechnology, 2007, 25, 125-131.	9.4	653
210	Quantitative mass spectrometry in proteomics: a critical review. Analytical and Bioanalytical Chemistry, 2007, 389, 1017-1031.	1.9	1,448
211	Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440, 631-636.	13.7	2,347
212	Transgenic Mouse Proteomics Identifies New 14-3-3-associated Proteins Involved in Cytoskeletal Rearrangements and Cell Signaling. Molecular and Cellular Proteomics, 2006, 5, 2211-2227.	2.5	130
213	Scoring proteomes with proteotypic peptide probes. Nature Reviews Molecular Cell Biology, 2005, 6, 577-583.	16.1	344
214	Covalent Cross-links between the \hat{l}^3 Subunit (FXYD2) and \hat{l}_2 Subunits of Na,K-ATPase. Journal of Biological Chemistry, 2005, 280, 18291-18301.	1.6	30
215	A Proteome-wide Approach Identifies Sumoylated Substrate Proteins in Yeast. Journal of Biological Chemistry, 2004, 279, 41346-41351.	1.6	236
216	Comprehensive Proteomic Analysis of Human Par Protein Complexes Reveals an Interconnected Protein Network. Journal of Biological Chemistry, 2004, 279, 12804-12811.	1.6	162

#	Article	IF	Citations
217	A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biology, 2004, 6, 97-105.	4.6	970
218	Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics, 2004, 5, 79.	1.2	317
219	Femtomol sensitivity post-digest18O labeling for relative quantification of differential protein complex composition. Rapid Communications in Mass Spectrometry, 2004, 18, 869-876.	0.7	55
220	Affinity purification-mass spectrometry. FEBS Journal, 2003, 270, 570-578.	0.2	200
221	Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nature Cell Biology, 2003, 5, 21-27.	4.6	125
222	ERCC1/XPF Removes the 3′ Overhang from Uncapped Telomeres and Represses Formation of Telomeric DNA-Containing Double Minute Chromosomes. Molecular Cell, 2003, 12, 1489-1498.	4.5	349
223	ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Research, 2003, 31, 3625-3630.	6.5	555
224	Profiling Core Proteomes of Human Cell Lines by One-dimensional PAGE and Liquid Chromatography-Tandem Mass Spectrometry. Molecular and Cellular Proteomics, 2003, 2, 1297-1305.	2.5	210
225	A Transmembrane Tight Junction Protein Selectively Expressed on Endothelial Cells and Platelets. Journal of Biological Chemistry, 2002, 277, 16294-16303.	1.6	196
226	Tyrosine Phosphorylation Mapping of the Epidermal Growth Factor Receptor Signaling Pathway. Journal of Biological Chemistry, 2002, 277, 1031-1039.	1.6	175
227	90S Pre-Ribosomes Include the 35S Pre-rRNA, the U3 snoRNP, and 40S Subunit Processing Factors but Predominantly Lack 60S Synthesis Factors. Molecular Cell, 2002, 10, 105-115.	4.5	427
228	An improved two-step calibration method for matrix-assisted laser desorption/ionization time-of-flight mass spectra for proteomics. Rapid Communications in Mass Spectrometry, 2002, 16, 1892-1895.	0.7	14
229	Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415, 141-147.	13.7	4,509
230	Detection of Tyrosine Phosphorylated Peptides by Precursor Ion Scanning Quadrupole TOF Mass Spectrometry in Positive Ion Mode. Analytical Chemistry, 2001, 73, 1440-1448.	3.2	306
231	Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. Journal of Mass Spectrometry, 2001, 36, 782-790.	0.7	141
232	Glycosylation analysis of gel-separated proteins. Proteomics, 2001, 1, 350-361.	1.3	101
233	Mass spectrometry allows direct identification of proteins in large genomes. Proteomics, 2001, 1, 641-650.	1.3	124
234	Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. Journal of the American Society for Mass Spectrometry, 2000, 11, 564-571.	1.2	213

#	Article	IF	Citations
235	Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genetics, 2000, 25, 347-352.	9.4	560
236	Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO Journal, 2000, 19, 6569-6581.	3.5	183
237	A New Variant of the \hat{I}^3 Subunit of Renal Na,K-ATPase. Journal of Biological Chemistry, 2000, 275, 18441-18446.	1.6	84
238	Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of N-Linked Carbohydrates and Related Compounds., 2000,, 403-437.		3
239	Characterisation of tissue-specific oligosaccharides from rat brain and kidney membrane preparations enriched in Na+,K+-ATPase. Glycoconjugate Journal, 1999, 16, 437-456.	1.4	4
240	Glycosylation of Natural Human Neutrophil Gelatinase B and Neutrophil Gelatinase B-Associated Lipocalin. Biochemistry, 1999, 38, 13937-13950.	1.2	108
241	18O-Labeling of N-Glycosylation Sites To Improve the Identification of Gel-Separated Glycoproteins Using Peptide Mass Mapping and Database Searching. Analytical Chemistry, 1999, 71, 1431-1440.	3.2	154
242	Perspectives in the glycosciencesmatrix-assisted laser desorption/ionization (MALDI) mass spectrometry of carbohydrates. Glycoconjugate Journal, 1998, 15, 333-338.	1.4	41
243	Structural determination of N-linked carbohydrates by matrix-assisted laser desorption/ionization-mass spectrometry following enzymatic release within sodium dodecyl sulphate-polyacrylamide electrophoresis gels: Application to species-specific glycosylation of $\hat{l}\pm 1$ -acid glycoprotein. Electrophoresis. 1998. 19. 1950-1959.	1.3	63
244	Oligosaccharides of recombinant mouse gelatinase B variants. Biochimica Et Biophysica Acta - General Subjects, 1998, 1425, 587-598.	1.1	24
245	Identifying proteins and post-translational modifications by mass spectrometry. Current Opinion in Structural Biology, 1998, 8, 393-400.	2.6	98
246	Partially glucose-capped oligosaccharides are found on the hemoglobins of the deep-sea tube worm Riftia pachyptila. Glycobiology, 1998, 8, 663-673.	1.3	17
247	Oligosaccharide sequencing technology. Nature, 1997, 388, 205-207.	13.7	144
248	Sequencing of N-Linked Oligosaccharides Directly from Protein Gels: In-Gel Deglycosylation Followed by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry and Normal-Phase High-Performance Liquid Chromatography. Analytical Biochemistry, 1997, 250, 82-101.	1.1	371
249	Identification of oligosaccharides by matrix-assisted laser desorption ionization and electrospray MS. Biochemical Society Transactions, 1996, 24, 905-912.	1.6	22
250	Rapid Approach for Sequencing Neutral Oligosaccharides by Exoglycosidase Digestion and Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. , 1996, 31, 1131-1140.		69
251	Effect of the Reducing-terminal Substituents on the High Energy Collision-induced Dissociation Matrix-assisted Laser Desorption/Ionization Mass Spectra of Oligosaccharides., 1996, 10, 1645-1651.		44
252	Comparison of fragmentation modes for the structural determination of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 1995, 9, 1556-1561.	0.7	87

#	Article	lF	CITATIONS
253	Infection-induced rapid cell death in plants: a means of efficient pathogen defense. Canadian Journal of Botany, 1995, 73, 426-434.	1.2	22
254	Isolation and Structure Determination of a New Iridal from Iris sibirica. Journal of Natural Products, 1995, 58, 299-301.	1.5	6