Raphael F Margueron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6747041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rare germline heterozygous missense variants in BRCA1-associated protein 1, BAP1, cause a syndromic neurodevelopmental disorder. American Journal of Human Genetics, 2022, 109, 361-372.	6.2	6
2	Paramecium Polycomb repressive complex 2 physically interacts with the small RNA-binding PIWI protein to repress transposable elements. Developmental Cell, 2022, 57, 1037-1052.e8.	7.0	27
3	XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell, 2022, 185, 2164-2183.e25.	28.9	22
4	Succinylation of H3K122 destabilizes nucleosomes and enhances transcription. EMBO Reports, 2021, 22, e51009.	4.5	36
5	Enhancer rewiring in tumors: an opportunity for therapeutic intervention. Oncogene, 2021, 40, 3475-3491.	5.9	10
6	A cis-acting mechanism mediates transcriptional memory at Polycomb target genes in mammals. Nature Genetics, 2021, 53, 1686-1697.	21.4	53
7	H2A.Z facilitates licensing and activation of early replication origins. Nature, 2020, 577, 576-581.	27.8	119
8	Drugging histone methyltransferases in cancer. Current Opinion in Chemical Biology, 2020, 56, 51-62.	6.1	40
9	EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells. Nature Communications, 2019, 10, 3858.	12.8	76
10	BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nature Communications, 2019, 10, 348.	12.8	105
11	The Polycomb protein Ezl1 mediates H3K9 and H3K27 methylation to repress transposable elements in Paramecium. Nature Communications, 2019, 10, 2710.	12.8	69
12	EZH1/2 function mostly within canonical PRC2 and exhibit proliferation-dependent redundancy that shapes mutational signatures in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6075-6080.	7.1	42
13	A Family of Vertebrate-Specific Polycombs Encoded by the LCOR/LCORL Genes Balance PRC2 Subtype Activities. Molecular Cell, 2018, 70, 408-421.e8.	9.7	121
14	A meiotic XPF–ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes and Development, 2018, 32, 283-296.	5.9	98
15	Histone variants H2A.Z and H3.3 coordinately regulate PRC2-dependent H3K27me3 deposition and gene expression regulation in mES cells. BMC Biology, 2018, 16, 107.	3.8	54
16	Breaking into the PRC2 cage. Nature Chemical Biology, 2017, 13, 345-346.	8.0	2
17	<scp>PRC</scp> 2 is dispensable for <i><scp>HOTAIR</scp></i> â€mediated transcriptional repression. EMBO Journal, 2017, 36, 981-994.	7.8	146
18	Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines. Methods, 2017, 121-122, 45-54.	3.8	32

RAPHAEL F MARGUERON

#	Article	IF	CITATIONS
19	Mechanisms Regulating PRC2 Recruitment and Enzymatic Activity. Trends in Biochemical Sciences, 2017, 42, 531-542.	7.5	166
20	Histone propionylation is a mark of active chromatin. Nature Structural and Molecular Biology, 2017, 24, 1048-1056.	8.2	148
21	The Multiple Facets of PRC2 Alterations in Cancers. Journal of Molecular Biology, 2017, 429, 1978-1993.	4.2	44
22	Modulating BAP1 expression affects ROS homeostasis, cell motility and mitochondrial function. Oncotarget, 2017, 8, 72513-72527.	1.8	24
23	Association between EZH2 expression, silencing of tumor suppressors and disease outcome in solid tumors. Cell Cycle, 2016, 15, 2256-2262.	2.6	19
24	Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status. Nature Medicine, 2016, 22, 577-578.	30.7	57
25	Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Research, 2016, 44, 621-635.	14.5	41
26	Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes and Development, 2015, 29, 2547-2562.	5.9	77
27	Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition during Cell Differentiation. Molecular Cell, 2015, 57, 769-783.	9.7	229
28	The Histone H3 Lysine 9 Methyltransferases G9a and GLP Regulate Polycomb Repressive Complex 2-Mediated Gene Silencing. Molecular Cell, 2014, 53, 277-289.	9.7	214
29	Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. Molecular Cell, 2014, 53, 301-316.	9.7	221
30	Sequential histone-modifying activities determine the robustness of transdifferentiation. Science, 2014, 345, 826-829.	12.6	69
31	Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin. Genes and Development, 2013, 27, 2663-2677.	5.9	149
32	Regulation of Transcription through Acetylation of H3K122 on the Lateral Surface of the Histone Octamer. Cell, 2013, 152, 859-872.	28.9	209
33	Legionella pneumophila Effector RomA Uniquely Modifies Host Chromatin to Repress Gene Expression and Promote Intracellular Bacterial Replication. Cell Host and Microbe, 2013, 13, 395-405.	11.0	211
34	Cdyl, a New Partner of the Inactive X Chromosome and Potential Reader of H3K27me3 and H3K9me2. Molecular and Cellular Biology, 2013, 33, 5005-5020.	2.3	80
35	EZH2 couples pancreatic regeneration to neoplastic progression. Genes and Development, 2012, 26, 439-444.	5.9	103
36	Prdm3 and Prdm16 are H3K9me1 Methyltransferases Required for Mammalian Heterochromatin Integrity. Cell, 2012, 150, 948-960.	28.9	271

RAPHAEL F MARGUERON

#	Article	IF	CITATIONS
37	The Polycomb complex PRC2 and its mark in life. Nature, 2011, 469, 343-349.	27.8	2,783
38	Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells. Epigenetics and Chromatin, 2011, 4, 16.	3.9	113
39	Chromatin structure and the inheritance of epigenetic information. Nature Reviews Genetics, 2010, 11, 285-296.	16.3	642
40	Jarid2 and PRC2, partners in regulating gene expression. Genes and Development, 2010, 24, 368-380.	5.9	434
41	Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes and Development, 2010, 24, 2615-2620.	5.9	336
42	Chromatin in the Nuclear Landscape. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 11-22.	1.1	24
43	Highly Compacted Chromatin Formed In Vitro Reflects the Dynamics of Transcription Activation In Vivo. Molecular Cell, 2010, 38, 41-53.	9.7	85
44	Role of the polycomb protein EED in the propagation of repressive histone marks. Nature, 2009, 461, 762-767.	27.8	1,018
45	Ezh1 and Ezh2 Maintain Repressive Chromatin through Different Mechanisms. Molecular Cell, 2008, 32, 503-518.	9.7	748
46	Ezh2 Requires PHF1 To Efficiently Catalyze H3 Lysine 27 Trimethylation In Vivo. Molecular and Cellular Biology, 2008, 28, 2718-2731.	2.3	257
47	Retinoblastoma tumor suppressor protein–dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. Journal of Cell Biology, 2007, 179, 1399-1412.	5.2	116
48	ERα and ERβ expression and transcriptional activity are differentially regulated by HDAC inhibitors. Oncogene, 2006, 25, 1799-1806.	5.9	66
49	Suz12 binds to silenced regions of the genomein a cell-type-specific manner. Genome Research, 2006, 16, 890-900.	5.5	276
50	EZH2 and Histone 3 Trimethyl Lysine 27 Associated with II4 and Il13 Gene Silencing in TH1 Cells. Journal of Biological Chemistry, 2005, 280, 31470-31477.	3.4	132
51	Transcriptional and Posttranscriptional Regulation of Fibulin-1 by Estrogens Leads to Differential Induction of Messenger Ribonucleic Acid Variants in Ovarian and Breast Cancer Cells. Endocrinology, 2005, 146, 760-768.	2.8	56
52	Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1859-1864.	7.1	371
53	The Nuclear Receptor Coactivator PGC-1α Exhibits Modes of Interaction with the Estrogen Receptor Distinct From those of SRC-1. Journal of Molecular Biology, 2005, 347, 921-934.	4.2	43
54	The key to development: interpreting the histone code?. Current Opinion in Genetics and Development, 2005, 15, 163-176.	3.3	666

#	Article	IF	CITATIONS
55	Polycomb Group Protein Ezh2 Controls Actin Polymerization and Cell Signaling. Cell, 2005, 121, 425-436.	28.9	345
56	Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes and Development, 2004, 18, 1592-1605.	5.9	447
57	Histone deacetylase inhibition and estrogen receptor alpha levels modulate the transcriptional activity of partial antiestrogens. Journal of Molecular Endocrinology, 2004, 32, 583-594.	2.5	40
58	Transcriptional Regulation by the Repressor of Estrogen Receptor Activity via Recruitment of Histone Deacetylases. Journal of Biological Chemistry, 2004, 279, 24834-24843.	3.4	92
59	Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochemical Pharmacology, 2004, 68, 1239-1246.	4.4	56
60	Steps Toward Understanding the Inheritance of Repressive Methyl-Lysine Marks in Histones. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 171-182.	1.1	14
61	Ligands Differentially Modulate the Protein Interactions of the Human Estrogen Receptors α and β. Journal of Molecular Biology, 2003, 326, 77-92.	4.2	83
62	Oestrogen receptor alpha increases p21(WAF1/CIP1) gene expression and the antiproliferative activity of histone deacetylase inhibitors in human breast cancer cells. Journal of Endocrinology, 2003, 179, 41-53.	2.6	60