Koo-Hyun Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6746510/publications.pdf Version: 2024-02-01

KOO-HYUN CHUNC

#	Article	IF	CITATIONS
1	Effect of Counter Material on Tribological Properties of CoCrMoSi Alloy. Tribology Letters, 2022, 70, 1.	2.6	0
2	<i>In Situ</i> Measurement of Elastic and Frictional Properties Using Atomic Force Microscopy. Microscopy and Microanalysis, 2021, 27, 1488-1497.	0.4	1
3	Assessment of Tribological Properties of Ti3C2 as a Water-Based Lubricant Additive. Materials, 2020, 13, 5545.	2.9	25
4	Atomistic investigation of the effect of contact condition on frictional properties of nanowire. Applied Surface Science, 2020, 534, 147629.	6.1	5
5	Effects of Interlayer Coupling and Band Offset on Second Harmonic Generation in Vertical MoS ₂ /MoS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Structures. ACS Nano, 2020, 14, 4366-4373.	14.6	29
6	Tribological Characteristics of Single-Layer h-BN Measured by Colloidal Probe Atomic Force Microscopy. Coatings, 2020, 10, 530.	2.6	3
7	Frictional properties of polymer binders for Li-ion batteries. Applied Physics Letters, 2020, 116, .	3.3	6
8	Bundling of Collagen Fibrils Using Sodium Sulfate for Biomimetic Cell Culturing. ACS Omega, 2020, 5, 3444-3452.	3.5	10
9	Layer-by-layer thinning of MoS ₂ via laser irradiation. Nanotechnology, 2019, 30, 275302.	2.6	19
10	Nanomechanical properties of polymer binders for Li-ion batteries probed with colloidal probe atomic force microscopy. Polymer Testing, 2019, 76, 245-253.	4.8	15
11	Operational and environmental conditions regulate the frictional behavior of two-dimensional materials. Applied Surface Science, 2019, 483, 34-44.	6.1	29
12	Effect of tip shape on nanomechanical properties measurements using AFM. Ultramicroscopy, 2019, 202, 1-9.	1.9	22
13	Microstructure, mechanical, and tribological properties of pressureless sintered and spark plasma sintered Fe TiB2 nanocomposites. Tribology International, 2019, 131, 83-93.	5.9	4
14	Assessment of Effect of Test Parameters on Drag Torque Characteristics for Wet Clutch Design. Journal of the Korean Society for Precision Engineering, 2019, 36, 653-658.	0.2	0
15	Interfacial Strength and Surface Damage Characteristics of Atomically Thin h-BN, MoS ₂ , and Graphene. ACS Applied Materials & Interfaces, 2018, 10, 9164-9177.	8.0	45
16	Friction characteristics of mechanically exfoliated and CVD-grown single-layer MoS2. Friction, 2018, 6, 395-406.	6.4	48
17	Assessment of Wear Characteristics of Paper-Based Wet Friction Materials. International Journal of Precision Engineering and Manufacturing, 2018, 19, 705-711.	2.2	12
18	Surface Properties of Laser-Treated Molybdenum Disulfide Nanosheets for Optoelectronic Applications. ACS Applied Materials & Interfaces, 2018, 10, 18104-18112.	8.0	23

Коо-Нуим Снимс

#	Article	IF	CITATIONS
19	Degradation Progression of Polyurethane Hydraulic Reciprocating Seal. Journal of the Korean Society for Precision Engineering, 2018, 35, 701-706.	0.2	0
20	Assessment of Wear Characteristics of Fe-TiB2 Sintered from Nanocomposite Mixtures. Journal of the Korean Society for Precision Engineering, 2018, 35, 1001-1006.	0.2	0
21	Impact of Selenium Doping on Resonant Second-Harmonic Generation in Monolayer MoS ₂ . ACS Photonics, 2017, 4, 38-44.	6.6	75
22	Accelerated wear testing of polyurethane hydraulic seal. Polymer Testing, 2017, 63, 110-117.	4.8	13
23	Growth and Simultaneous Valleys Manipulation of Two-Dimensional MoSe ₂ -WSe ₂ Lateral Heterostructure. ACS Nano, 2017, 11, 8822-8829.	14.6	54
24	Nonlinear optical characteristics of monolayer MoSe ₂ . Annalen Der Physik, 2016, 528, 551-559.	2.4	59
25	Static and kinetic friction characteristics of nanowire on different substrates. Applied Surface Science, 2016, 379, 452-461.	6.1	18
26	Quantitative Assessment of Friction Characteristics of Single-Layer MoS ₂ and Graphene Using Atomic Force Microscopy. Journal of Nanoscience and Nanotechnology, 2016, 16, 4428-4433.	0.9	9
27	Laser-Induced Particle Adsorption on Atomically Thin MoS ₂ . ACS Applied Materials & Interfaces, 2016, 8, 2974-2984.	8.0	27
28	Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy. Ultramicroscopy, 2016, 161, 41-50.	1.9	18
29	Near bandgap second-order nonlinear optical characteristics of MoS2 monolayer transferred on transparent substrates. Applied Physics Letters, 2015, 107, .	3.3	36
30	Simultaneous Measurement of Elastic Properties and Friction Characteristics of Nanowires Using Atomic Force Microscopy. Experimental Mechanics, 2015, 55, 903-915.	2.0	24
31	Wear characteristics of atomic force microscopy tips: A review. International Journal of Precision Engineering and Manufacturing, 2014, 15, 2219-2230.	2.2	41
32	Strong optical nonlinearity of CVD-grown <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2as probed by wavelength-dependent second-harmonic generation. Physical Review B, 2014, 90, .</mml:mn></mml:msub></mml:math 	ıl:m a. 2 <td>ml:m6ub></td>	ml :m6 ub>
33	Time-dependent adhesion of a polydimethylsiloxane (PDMS) elastomer film to a flat indenter tip characterized using a cohesive-zone law. Philosophical Magazine Letters, 2014, 94, 242-250.	1.2	Ο
34	Effect of test parameters on degradation of polyurethane elastomer for accelerated life testing. Polymer Testing, 2014, 40, 13-23.	4.8	17
35	Multi-resistive Reduced Graphene Oxide Diode with Reversible Surface Electrochemical Reaction induced Carrier Control. Scientific Reports, 2014, 4, 5642.	3.3	37
36	Component and Bench Tests of Polyurethane Hydraulic Reciprocating Seal for Accelerated Life Testing. Journal of the Korean Society of Tribologists and Lubrication Engineers, 2014, 30, 271-277.	0.1	2

Коо-Нуим Снимс

#	Article	IF	CITATIONS
37	Fundamental Investigation of the Wear Progression of Silicon Atomic Force Microscope Probes. Tribology Letters, 2013, 52, 315-325.	2.6	18
38	Cell spreading and proliferation in response to the composition and mechanics of engineered fibrillar extracellular matrices. Biotechnology and Bioengineering, 2013, 110, 2731-2741.	3.3	19
39	Frictional properties of native and functionalized type I collagen thin films. Applied Physics Letters, 2013, 103, 143703.	3.3	3
40	Effect of Contact Stiffness on Lateral Force Calibration of Atomic Force Microscopy Cantilever. Journal of the Korean Society of Tribologists and Lubrication Engineers, 2012, 28, 289-296.	0.1	0
41	Nanomechanical Properties of Thin Films of Type I Collagen Fibrils. Langmuir, 2010, 26, 3629-3636.	3.5	45
42	Lateral Force Calibration: Accurate Procedures for Colloidal Probe Friction Measurements in Atomic Force Microscopy. Langmuir, 2010, 26, 1386-1394.	3.5	25
43	Note: Lateral force microscope calibration using multiple location pivot loading of rectangular cantilevers. Review of Scientific Instruments, 2010, 81, 026104.	1.3	11
44	The treatment of collagen fibrils by tissue transglutaminase to promote vascular smooth muscle cell contractile signaling. Biomaterials, 2009, 30, 5486-5496.	11.4	48
45	The relative roles of collagen adhesive receptor DDR2 activation and matrix stiffness on the downregulation of focal adhesion kinase in vascular smooth muscle cells. Biomaterials, 2009, 30, 6687-6694.	11.4	46
46	Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy. Review of Scientific Instruments, 2009, 80, 065107.	1.3	30
47	Vascular Smooth Muscle Cell Response to Transglutaminase 2 Cross-linked Collagen Fibril Thin Films. Biophysical Journal, 2009, 96, 297a.	0.5	1
48	Tribological characteristics of ZnO nanowires investigated by atomic force microscope. Applied Physics A: Materials Science and Processing, 2008, 92, 267-274.	2.3	13
49	Nanoscale water capillary bridges under deeply negative pressure. Chemical Physics Letters, 2008, 451, 88-92.	2.6	75
50	Response to the comment on â€~Nanoscale water capillary bridges under deeply negative pressure' by Caupin et al Chemical Physics Letters, 2008, 463, 286-287.	2.6	3
51	Effects of Contact Geometry on Pull-Off Force Measurements with a Colloidal Probe. Langmuir, 2008, 24, 743-748.	3.5	43
52	SI traceable calibration of an instrumented indentation sensor spring constant using electrostatic force. Review of Scientific Instruments, 2008, 79, 095105.	1.3	15
53	Wear characteristics of diamond-coated atomic force microscope probe. Ultramicroscopy, 2007, 108, 1-10.	1.9	43
54	The Stiffness of Collagen Fibrils Influences Vascular Smooth Muscle Cell Phenotype. Biophysical Journal, 2007, 92, 1759-1769.	0.5	141

Коо-Нуим Снимс

#	Article	IF	CITATIONS
55	Wear characteristics of microscopic bushings for MEMS applications investigated by an AFM. Journal of Micromechanics and Microengineering, 2007, 17, 1877-1887.	2.6	12
56	Nano-tribological characteristics of PZT thin film investigated by atomic force microscopy. Surface and Coatings Technology, 2007, 201, 7983-7991.	4.8	23
57	Development of flying type head/slider for optical recording technology. Tribology International, 2005, 38, 578-587.	5.9	0
58	Tribological characteristics of probe tip and PZT media for AFM-based recording technology. IEEE Transactions on Magnetics, 2005, 41, 849-854.	2.1	28
59	Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy, 2005, 102, 161-171.	1.9	126
60	Wear Characteristics of Atomic Force Microscope Probe Tips. , 2005, , .		1
61	Nano-mechanical and tribological characteristics of ultra-thin amorphous carbon film investigated by afm. Journal of Mechanical Science and Technology, 2004, 18, 1772-1781.	0.4	3
62	Particle monitoring method using acoustic emission signal for analysis of slider/disk/particle interaction. Tribology International, 2004, 37, 849-857.	5.9	15
63	Fundamental Investigation of Micro Wear Rate Using an Atomic Force Microscope. Tribology Letters, 2003, 15, 135-144.	2.6	95
64	Effect of substrate and protective coating on the tribological characteristics of optical recording media. Wear, 2003, 255, 1306-1313.	3.1	9
65	Tribological design methods for minimum surface damage of HDD slider. Tribology International, 2003, 36, 467-473.	5.9	13
66	Design of Optical Flying Head for Near-Field Recording. Transactions of the Magnetics Society of Japan, 2002, 2, 341-344.	0.5	0
67	Strategies for improvement of tribological characteristics at the head/disk interface. IEEE Transactions on Magnetics, 2001, 37, 912-917.	2.1	6
68	Effect of slider load on the wear debris contamination tendency of head/slider. IEEE Transactions on Magnetics, 1999, 35, 2355-2357.	2.1	10
69	Effect of slider load on the wear debris contamination tendency of head/slider. , 1999, , .		0
70	Assessment of surface damage mechanisms of head/disk interface using CSS and drag tests. IEEE Transactions on Magnetics, 1998, 34, 1714-1716.	2.1	11
71	Micro-tribological characteristics of PFPE Zdol lubricant coated on silicon. , O, , .		0
72	Tribological characteristics of probe tip and PZT media for AFM-based recording technology. , 0, , .		0

5