
Marie-Claude Bourgeois-Daigneault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6745827/publications.pdf Version: 2024-02-01

Marie-Claude

#	Article	IF	CITATIONS
1	Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. Journal of Clinical Investigation, 2018, 128, 4654-4668.	8.2	591
2	Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Science Translational Medicine, 2018, 10, .	12.4	242
3	Interleukinâ€10â€induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. European Journal of Immunology, 2008, 38, 1225-1230.	2.9	135
4	Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. OncoImmunology, 2012, 1, 908-916.	4.6	135
5	VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection. Cancer Cell, 2015, 28, 210-224.	16.8	77
6	Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Breast Cancer Research, 2016, 18, 83.	5.0	73
7	Oncolytic vesicular stomatitis virus expressing interferon-σ has enhanced therapeutic activity. Molecular Therapy - Oncolytics, 2016, 3, 16001.	4.4	63
8	Sorting of MHC Class II Molecules into Exosomes through a Ubiquitinâ€Independent Pathway. Traffic, 2009, 10, 1518-1527.	2.7	61
9	Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T cell activation. Oncolmmunology, 2017, 6, e1285992.	4.6	60
10	Amplification of Oncolytic Vaccinia Virus Widespread Tumor Cell Killing by Sunitinib through Multiple Mechanisms. Cancer Research, 2018, 78, 922-937.	0.9	46
11	Autoregulation of MARCH1 Expression by Dimerization and Autoubiquitination. Journal of Immunology, 2012, 188, 4959-4970.	0.8	41
12	Adjuvant oncolytic virotherapy for personalized anti-cancer vaccination. Nature Communications, 2021, 12, 2626.	12.8	32
13	MARCH1 E3 Ubiquitin Ligase Dampens the Innate Inflammatory Response by Modulating Monocyte Functions in Mice. Journal of Immunology, 2017, 198, 852-861.	0.8	29
14	Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies. Biomedicines, 2017, 5, 3.	3.2	29
15	In silico trials predict that combination strategies for enhancing vesicular stomatitis oncolytic virus are determined by tumor aggressivity. , 2021, 9, e001387.		26
16	Pre-surgical neoadjuvant oncolytic virotherapy confers protection against rechallenge in a murine model of breast cancer. Scientific Reports, 2019, 9, 1865.	3.3	21
17	The pros and cons of interferons for oncolytic virotherapy. Cytokine and Growth Factor Reviews, 2020, 56, 49-58.	7.2	19
18	Cutting Edge: HLA-DO Impairs the Incorporation of HLA-DM into Exosomes. Journal of Immunology, 2011, 187, 1547-1551.	0.8	18

Marie-Claude

0

IF # ARTICLE CITATIONS Brief Communication; A Heterologous Oncolytic Bacteria-Virus Prime-Boost Approach for Anticancer 2.4 Vaccination in Mice. Journal of Immunotherapy, 2018, 41, 125-129. Tollip-induced down-regulation of MARCH1. Results in Immunology, 2013, 3, 17-25. 20 2.2 13 Identification of a novel motif that affects the conformation and activity of the MARCH1 E3 ubiquitin ligase. Journal of Cell Science, 2013, 126, 989-98. Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the 22 4.4 11 presence of antiviral antibodies. Molecular Therapy - Oncolytics, 2016, 3, 16027. Murine Tumor Models for Oncolytic Rhabdo-Virotherapy. ILAR Journal, 2016, 57, 73-85. 1.8 Magnetic targeting of oncolytic VSV-based therapies improves infection of tumor cells in the presence 24 of virus-specific neutralizing antibodies inÂvitro. Biochemical and Biophysical Research 2.1 9 Communications, 2020, 526, 641-646. Enhanced susceptibility of cancer cells to oncolytic rhabdo-virotherapy by expression of Nodamura virus protein B2 as a suppressor of RNA interference. , 2018, 6, 62. Major histocompatibility complex class-II molecules promote targeting of human immunodeficiency virus type 1 virions in late endosomes by enhancing internalization of nascent particles from the 26 2.15 plasma membrane. Cellular Microbiology, 2013, 15, 809-822. Pre-surgical oncolytic virotherapy improves breast cancer outcomes. Oncolmmunology, 2019, 8, e1655363.

28 Oncolytic viruses for antigen delivery., 2022, , 1-19.