
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6745284/publications.pdf Version: 2024-02-01

ANNE M MOON

#	Article	IF	CITATIONS
1	Complex functional redundancy of Tbx2 and Tbx3 in mouse limb development. Developmental Dynamics, 2022, 251, 1613-1627.	0.8	2
2	<i>Fgf8</i> dosage regulates jaw shape and symmetry through pharyngeal ardiac tissue relationships. Developmental Dynamics, 2022, 251, 1711-1727.	0.8	6
3	Novel Cell-Penetrating Peptides Derived From Scaffold-Attachment- Factor A Inhibits Cancer Cell Proliferation and Survival. Frontiers in Oncology, 2021, 11, 621825.	1.3	7
4	Regulation of otocyst patterning by <i>Tbx2</i> and <i>Tbx3</i> is required for inner ear morphogenesis in the mouse. Development (Cambridge), 2021, 148, .	1.2	32
5	Inhibiting an RBM39/MLL1 epigenomic regulatory complex with dominant-negative peptides disrupts cancer cell transcription and proliferation. Cell Reports, 2021, 35, 109156.	2.9	14
6	hnRNPK-derived cell-penetrating peptide inhibits cancer cell survival. Molecular Therapy - Oncolytics, 2021, 23, 342-354.	2.0	5
7	Delta-like ligand-4 mediated Notch signaling controls proliferation of second heart field progenitor cells by regulating Fgf8 expression. Development (Cambridge), 2020, 147, .	1.2	14
8	Fgf8 genetic labeling reveals the early specification of vestibular hair cell type in mouse utricle. Development (Cambridge), 2020, 147, .	1.2	9
9	Hedgehog–FGF signaling axis patterns anterior mesoderm during gastrulation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15712-15723.	3.3	21
10	Tbx3-Mediated Regulation of Cardiac Conduction System Development and Function: Potential Contributions of Alternative RNA Processing. Pediatric Cardiology, 2019, 40, 1388-1400.	0.6	0
11	Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nature Metabolism, 2019, 1, 222-235.	5.1	27
12	Gene-environment interaction impacts on heart development and embryo survival. Development (Cambridge), 2019, 146, .	1.2	43
13	TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development (Cambridge), 2018, 145, .	1.2	32
14	Loss of Tbx3 in murine neural crest reduces enteric glia and causes cleft palate, but does not influence heart development or bowel transit. Developmental Biology, 2018, 444, S337-S351.	0.9	15
15	Myocardial wall stiffening in a mouse model of persistent truncus arteriosus. PLoS ONE, 2017, 12, e0184678.	1.1	1
16	T-box3 is a ciliary protein and regulates stability of the Gli3 transcription factor to control digit number. ELife, 2016, 5, .	2.8	33
17	Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. Developmental Cell, 2016, 39, 239-253.	3.1	82
18	Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene <i>Tbx3</i> . DMM Disease Models and Mechanisms, 2016, 9, 1257-1269.	1.2	38

#	Article	IF	CITATIONS
19	Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene <i>Tbx3</i> . Development (Cambridge), 2016, 143, e1.1-e1.1.	1.2	2
20	A Dynamic Role of TBX3 in the Pluripotency Circuitry. Stem Cell Reports, 2015, 5, 1155-1170.	2.3	57
21	MiR-93 Controls Adiposity via Inhibition of Sirt7 and Tbx3. Cell Reports, 2015, 12, 1594-1605.	2.9	95
22	Disruption of G-Protein Î ³ 5 Subtype Causes Embryonic Lethality in Mice. PLoS ONE, 2014, 9, e90970.	1.1	14
23	Coordinated control of senescence by IncRNA and a novel T-box3 co-repressor complex. ELife, 2014, 3, .	2.8	81
24	Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nature Communications, 2014, 5, 5323.	5.8	164
25	<i>Pitx2</i> , an Atrial Fibrillation Predisposition Gene, Directly Regulates Ion Transport and Intercalated Disc Genes. Circulation: Cardiovascular Genetics, 2014, 7, 23-32.	5.1	103
26	Genetic analysis of the role of Alx4 in the coordination of lower body and external genitalia formation. European Journal of Human Genetics, 2014, 22, 350-357.	1.4	18
27	TBX3 Regulates Splicing In Vivo: A Novel Molecular Mechanism for Ulnar-Mammary Syndrome. PLoS Genetics, 2014, 10, e1004247.	1.5	31
28	Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development. Developmental Biology, 2014, 390, 68-79.	0.9	62
29	Heparan sulfate expression in the neural crest is essential for mouse cardiogenesis. Matrix Biology, 2014, 35, 253-265.	1.5	19
30	Mouse Tbx3 Mutants Suggest Novel Molecular Mechanisms for Ulnar-Mammary Syndrome. PLoS ONE, 2013, 8, e67841.	1.1	34
31	A novel role for Tbx3 in regulating digit number in the developing limb by Shh dependent and independent mechanisms. FASEB Journal, 2013, 27, .	0.2	Ο
32	Lethal arrhythmias in <i>Tbx3</i> -deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E154-63.	3.3	113
33	Reduced BMP Signaling Results in Hindlimb Fusion with Lethal Pelvic/Urogenital Organ Aplasia: A New Mouse Model of Sirenomelia. PLoS ONE, 2012, 7, e43453.	1.1	28
34	Influence of mesodermal Fgf8 on the differentiation of neural crest-derived postganglionic neurons. Developmental Biology, 2012, 361, 125-136.	0.9	5
35	Hox genes define distinct progenitor sub-domains within the second heart field. Developmental Biology, 2011, 353, 266-274.	0.9	144
36	Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Developmental Biology, 2011, 356, 308-322.	0.9	55

#	Article	IF	CITATIONS
37	Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Developmental Biology, 2011, 356, 383-397.	0.9	47
38	Expression of fibroblast growth factors (Fgfs) in murine tooth development. Journal of Anatomy, 2011, 218, 534-543.	0.9	37
39	A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. Journal of Clinical Investigation, 2011, 121, 1585-1595.	3.9	123
40	Role of Mesodermal FGF8 and FGF10 Overlaps in the Development of the Arterial Pole of the Heart and Pharyngeal Arch Arteries. Circulation Research, 2010, 106, 495-503.	2.0	108
41	Overlapping functions of Pea3 ETS transcription factors in FGF signaling during zebrafish development. Developmental Biology, 2010, 342, 11-25.	0.9	66
42	Fetal and postnatal lung defects reveal a novel and required role for Fgf8 in lung development. Developmental Biology, 2010, 347, 92-108.	0.9	19
43	Dosage-dependent hedgehog signals integrated with Wnt/β-catenin signaling regulate external genitalia formation as an appendicular program. Development (Cambridge), 2009, 136, 3969-3978.	1.2	88
44	Early thyroid development requires a Tbx1–Fgf8 pathway. Developmental Biology, 2009, 328, 109-117.	0.9	47
45	System for tamoxifenâ€inducible expression of creâ€recombinase from the <i>Foxa2</i> locus in mice. Developmental Dynamics, 2008, 237, 447-453.	0.8	95
46	Chapter 4 Mouse Models of Congenital Cardiovascular Disease. Current Topics in Developmental Biology, 2008, 84, 171-248.	1.0	48
47	<i>Frs2</i> α-deficiency in cardiac progenitors disrupts a subset of FGF signals required for outflow tract morphogenesis. Development (Cambridge), 2008, 135, 3611-3622.	1.2	64
48	An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development (Cambridge), 2008, 135, 3599-3610.	1.2	132
49	Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development (Cambridge), 2007, 134, 525-533.	1.2	134
50	System for inducible expression of cre-recombinase from theFoxa2 locus in endoderm, notochord, and floor plate. Developmental Dynamics, 2007, 236, 1085-1092.	0.8	16
51	The role of Fgf8 in cardiovascular development and human congenital heart disease. FASEB Journal, 2007, 21, A34.	0.2	0
52	Crkl Deficiency Disrupts Fgf8 Signaling in a Mouse Model of 22q11 Deletion Syndromes. Developmental Cell, 2006, 10, 71-80.	3.1	138
53	Mouse Models for Investigating the Developmental Basis of Human Birth Defects. Pediatric Research, 2006, 59, 749-755.	1.1	22
54	Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development (Cambridge), 2006, 133, 2419-2433.	1.2	235

#	Article	IF	CITATIONS
55	FGF8 initiates inner ear induction in chick and mouse. Genes and Development, 2005, 19, 603-613.	2.7	177
56	FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis. Developmental Biology, 2004, 268, 457-469.	0.9	68
57	The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Developmental Biology, 2004, 273, 361-372.	0.9	175
58	Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development. Development (Cambridge), 2003, 130, 6361-6374.	1.2	216
59	An <i>Fgf8</i> mouse mutant phenocopies human 22q11 deletion syndrome. Development (Cambridge), 2002, 129, 4591-4603.	1.2	312
60	An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development (Cambridge), 2002, 129, 4591-603.	1.2	145
61	Fgf8 is required for outgrowth and patterning of the limbs. Nature Genetics, 2000, 26, 455-459.	9.4	300
62	Structure and function of the murine β-globin locus control region 5′ HS-3. Nucleic Acids Research, 1992, 20, 5771-5778.	6.5	56
63	Function of Transfected Globin Promoters and the Globin Locus Activator in K562 Erythroleukemia Cells. Annals of the New York Academy of Sciences, 1990, 612, 207-214.	1.8	1
64	Clinical and Biochemical Variation and Family Studies in the Multiple Acyl-CoA Dehydrogenation Disorders. Pediatric Research, 1987, 21, 371-376.	1.1	38
65	Cloning and characterization of an abundant Plasmodium knowlesi antigen which cross reacts with Gambian sera. Molecular and Biochemical Parasitology, 1987, 25, 185-193.	0.5	3
66	14C-labeled substrate catabolism by human diploid fibroblasts derived from infants and adults. Biochemical Medicine, 1985, 34, 182-188.	0.5	9